RU2660137C2 - Изготовление катушек для электротехнических компонентов с использованием лент анодированного неуплотненного алюминия - Google Patents

Изготовление катушек для электротехнических компонентов с использованием лент анодированного неуплотненного алюминия Download PDF

Info

Publication number
RU2660137C2
RU2660137C2 RU2015143925A RU2015143925A RU2660137C2 RU 2660137 C2 RU2660137 C2 RU 2660137C2 RU 2015143925 A RU2015143925 A RU 2015143925A RU 2015143925 A RU2015143925 A RU 2015143925A RU 2660137 C2 RU2660137 C2 RU 2660137C2
Authority
RU
Russia
Prior art keywords
anodized aluminum
intermediate material
precursor mixture
coil
tape
Prior art date
Application number
RU2015143925A
Other languages
English (en)
Other versions
RU2015143925A3 (ru
RU2015143925A (ru
Inventor
Матье ШАРЛА
Original Assignee
Лабиналь Пауэр Системз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лабиналь Пауэр Системз filed Critical Лабиналь Пауэр Системз
Publication of RU2015143925A publication Critical patent/RU2015143925A/ru
Publication of RU2015143925A3 publication Critical patent/RU2015143925A3/ru
Application granted granted Critical
Publication of RU2660137C2 publication Critical patent/RU2660137C2/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/061Winding flat conductive wires or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/061Winding flat conductive wires or sheets
    • H01F41/063Winding flat conductive wires or sheets with insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Изобретение относится к области электротехники, а именно к способу изготовления пропитанной ленты анодированного алюминия, предназначенной для использования в катушке электротехнического компонента, причем упомянутая катушка включает промежуточный материал, обеспечивающий функции когезии и диэлектрической изоляции. Промежуточный материал также способен к сшиванию, то есть к образованию посредством химических реакций между его ингредиентами, когда он подвергается воздействию определенных физических условий, молекулярных структур с сетчатой организацией. Способ включает этап нанесения смеси-предшественника упомянутого промежуточного материала на анодированный алюминий и по меньшей мере один этап сшивания смеси-предшественника для образования упомянутого промежуточного материала на ленте алюминия, при этом анодированный алюминий не подвергнут закупорке образовавшихся при анодировании пор в оксиде алюминия перед нанесением смеси-предшественника промежуточного материала. Повышение качества диэлектрической изоляции при изготовлении катушки индуктивности или других электротехнических изделий с использованием пропитанной ленты анодированного алюминия является техническим результатом изобретения. 5 н. и 8 з.п. ф-лы.

Description

Область техники
Изобретение относится к индукционному электротехническому оборудованию, такому как катушки индуктивности, трансформаторы, а также электрические двигатели. Оно направлено, прежде всего, на изготовление обмоток, используемых в этих компонентах.
Предшествующий уровень техники
Для создания магнитного поля нужно изготавливать катушки из электропроводов, покрытых слоем изоляционного материала. Любое повреждение этого изоляционного материала приводило к короткому замыканию витков, то есть к снижению величины индуктивности катушки.
Катушки обычно выполняют из медной проволоки. В настоящее время изоляцию проволоки осуществляют термореактивными полимерными материалами, такими как полиэфирные лаки, полиамид, полиэпоксиды или полиимиды, в зависимости от предусмотренных требований в отношении термостойкости. После изготовления катушек с изолированными проводниками их дополнительно пропитывают другим слоем смолы. Эти решения позволяют изготовлять компактные катушки, пригодные для текущих применений.
Применения в авиационной технике требуют оптимизации этих решений по массе и объему. Первое направление состоит в том, чтобы оптимизировать объемную процентную долю проводника по отношению к общему объему изолированной катушки. Применение медной проволоки прямоугольного сечения, например, отвечает этой цели, снижая зазоры по сравнению с проволокой круглого сечения.
С другой стороны, чтобы выиграть также в весе, вместо меди используют алюминий. Действительно, использование алюминиевых лент для изготовления катушек сочетает в себе преимущества компактной геометрии с электропроводным материалом небольшой плотности.
Кроме того, использование анодирования с целью электрически изолировать алюминий - это очень своевременное решение, которое также обладает преимуществом наличия стойкости при намного более высокой температуре, чем существующие решения. Как следствие, катушки из анодированного алюминия, используемые для изготовления электротехнических компонентов, в настоящее время пользуются спросом на рынке. Их изготовляют по размерам компонента, и остается лишь вставить их в него после соответствующей пропитки смолой.
Между тем, применение этих катушек имеет ряд недостатков:
- во-первых, алюминий сразу же после анодирования подвергают операции уплотнения (colmatage) горячей водой, следствием чего является закупорка образовавшихся при анодировании пор в оксиде алюминия и, таким образом, снижение адгезионных свойств этой поверхности, то есть уменьшение срока службы компонента;
- кроме того, изготовление катушек требует использования адгезива (клея) для склеивания между собой лент анодированного алюминия; применение такого клея означает введение дополнительного материала, неконтролируемая граница раздела которого со смолой, используемой для дополнительной пропитки в компоненте, снижает долговечность компонента.
Сущность изобретения
Задача изобретения состоит в том, чтобы устранить вышеупомянутые недостатки.
Изобретение относится к способу изготовления пропитанной ленты анодированного алюминия, предназначенной для использования в катушке электротехнического компонента, причем упомянутая катушка включает промежуточный материал, обеспечивающий функции когезии и диэлектрической изоляции, причем упомянутый промежуточный материал получен из способной к сшиванию смеси-предшественника, а упомянутый способ содержит:
- этап нанесения смеси-предшественника упомянутого промежуточного материала на анодированный алюминий;
- по меньшей мере один этап сшивания смеси-предшественника для образования упомянутого промежуточного материала на ленте алюминия.
Этот способ отличается тем, что анодированный алюминий не подвергнут закупорке (уплотнению) образовавшихся при анодировании пор в оксиде алюминия перед нанесением смеси-предшественника упомянутого промежуточного материала.
Известным образом сшивание смеси-предшественника состоит в том, что посредством химических реакций между ее ингредиентами, когда эта смесь подвергается воздействию определенных физических условий, образуются молекулярные структуры с сетчатой организацией.
Факт замены операции уплотнения горячей водой на операцию пропитки способной к сшиванию смесью-предшественником промежуточного материала позволяет создать идеальные условия адгезии на поверхности анодированного алюминия с этим же промежуточным материалом в тот момент, когда его используют для изготовления катушки в электротехническом компоненте. Фактически, пористый оксид алюминия, созданный в итоге анодирования, пропитывают промежуточным материалом, что делает границу раздела с ним очень «тесной» и, следовательно, долговечной.
Предпочтительно используемая в способе смесь-предшественник содержит смолу и отвердитель. В целом, следует отметить, что эта смола термореактивная, поскольку происходит сшивание смеси-предшественника.
Преимущественно для того, чтобы смола обладала требуемыми свойствами сопротивления напряжению и диэлектрической изоляции в условиях работы компонентов авиационного назначения, она должна включать в свой состав по меньшей мере один ингредиент, выбранный из полиэпоксидов, полиимидов или силиконов.
В предпочтительном варианте, когда промежуточным материалом является термореактивная смола, изготовление предварительно пропитанных лент анодированного алюминия осуществляют первоначальным способом, в котором этап сшивания является незавершенным.
Не более чем инициирование этапа сшивания позволяет хранить эти предварительно пропитанные ленты анодированного алюминия, предпочтительно при низкой температуре, чтобы позже повторно использовать их.
В одном варианте осуществления промежуточный материал представляет собой материал, реализуемый методом золь-гель. Несмотря на то что химические реакции, преобразующие смесь-предшественник, очень различаются по их природе и их температурному циклу от термореактивной смолы, они определяют окончательную форму сшивания материала, имеющего пространственную структуру, которая не существовала в смеси-предшественнике. Методы золь-гель имеют то преимущество, что позволяют получить различные материалы, некоторые, например, с улучшенной термостойкостью, чем у смол.
Следовательно, изобретение относится также к способу изготовления электротехнического компонента, содержащего по меньшей мере одну катушку, причем упомянутая катушка содержит намотанную витками ленту анодированного алюминия и промежуточный материал, обеспечивающий функции когезии и диэлектрической изоляции, отличающемуся тем, что:
- ленту анодированного алюминия пропитывают по одному из предыдущих пунктов;
- по меньшей мере один этап окончательного сшивания смеси-предшественника для образования упомянутого промежуточного материала на алюминиевой ленте осуществляют, когда ей придают форму по размерам катушки.
При такой конфигурации часть электрической изоляции между витками катушки обеспечивается анодированным слоем алюминия на лентах. Промежуточный материал обеспечивает, в свою очередь, функции защиты и когезии, чтобы сохранять катушку в предусмотренной форме. Он также обеспечивает улучшение диэлектрической изоляции между лентами алюминия. Кроме того, способ позволяет, таким образом, иметь лишь один материал, охватывающий алюминиевые ленты в катушке, и устраняет нежелательные границы раздела между различными материалами.
Предпочтительно, когда промежуточным материалом является смола, вышеописанный способ изготовления электротехнического компонента выполняют с использованием предварительно пропитанной ленты анодированного алюминия, которой сразу же придают форму по размерам катушки и подвергают этапу окончательного сшивания.
Изобретение относится также к предварительно пропитанным лентам анодированного алюминия и электротехническим компонентам, полученным при помощи вышеуказанных способов.
Описание предпочтительного варианта осуществления изобретения
Ниже изобретение представлено более подробно на нескольких примерах осуществления.
Анодирование алюминия соответствует контролируемому окислению поверхности детали, здесь - алюминиевой ленты. Например, согласно известному способу, создание анодного слоя является результатом пропускания тока в электролите. Ванна для анодирования содержит, например, но не исключительным образом, раствор фосфорной кислоты, в который помещают алюминиевую ленту. Подают постоянный ток в течение определенного времени, чтобы создать анодный слой заданной толщины, порядка десяти микрон.
Созданный таким образом слой оксида алюминия является великолепным электроизолятором. Он также имеет хорошие механические свойства. Однако он обладает ячеистой структурой, с микропорами, которая пропускает примеси, приводящие с течением времени к коррозии алюминиевой ленты.
По этой причине, изделия из анодированного алюминия, особенно когда они должны быть помещены на хранение, подвергают операции так называемого уплотнения (забивки пор). Эта операция состоит в гидратации анодного слоя, в результате которой стенки ячеек набухают и перекрывают отверстия. Эту операцию, как правило, выполняют, окуная анодированный алюминий в горячую воду, при этом контролируя температуру и длительность.
К сожалению для намеченного применения, уплотненный таким образом анодированный слой потерял свои поверхностные свойства. А именно, ячеистый оксид алюминия в большей степени способен связываться с клеем, чем гидратное покрытие, полученное вследствие уплотнения.
Первое воплощение изобретения состоит в переносе понятия предварительной пропитки, используемой в промышленности композитных материалов с органической матрицей, на случай, в котором матрицей является неуплотненная лента анодированного алюминия, а материалом пропитки - смола, которая, в конечном итоге, послужит для изготовления катушки в компоненте.
Фактически, термореактивная смола, которая представляет собой смесь полимеров и других ингредиентов и которая существует в различных известных композициях в зависимости от типов применения, будет присутствовать в ходе различных этапов способа в нескольких состояниях. В своем конечном состоянии, в виде материала когезии катушки, смола представляет собой твердый материал, обладающий адекватными свойствами механической прочности. В то же время, это твердое состояние получено из жидкотекучей формы, способной к деформации, способом так называемого сшивания. Как правило, этот способ представляет собой термическую обработку. Он организует сетчатую молекулярную структуру полимера, чтобы придать ей твердую форму. В данном документе смолу в ее жидкотекучем состоянии до сшивания называют в дальнейшем смесью-предшественником. Известным образом эта смесь-предшественник содержит смолу, относящуюся к следующей группе: полиимид, полиэпоксид, полиамид, полиамид-имид, сложный полиэфир, полиэфиримид, силикон, полифенольный, или полиуретан. Известным образом, она содержит также отвердитель, реагирующий со смолой для реализации сшивания. Она может содержать добавки/присадки, способствующие протеканию общего процесса, такие как растворители и катализаторы. В случае известных термореактивных смол это сшивание может быть выполнено не полностью. Это позволяет придать смоле первичную форму, гелеобразную, и хранить ее такой, чтобы позже возобновить процесс сшивания и довести его до конца. В ходе процесса окончательного сшивания два предварительно обработанных слоя смолы могут быть сварены друг с другом, как если бы они были образованы из одного целого элемента.
Итак, первый этап процесса реализации катушки компонента состоит в изготовлении неуплотненной ленты анодированного алюминия. Затем реализация предварительно пропитанной ленты алюминия включает три важных этапа.
Первый этап состоит в том, что на анодированную и неуплотненную алюминиевую ленту наносят слой смеси-предшественника смолы, которая будет использована для изготовления катушки в электротехническом компоненте. Предпочтительным образом этот предшественник содержит по меньшей мере один растворитель, которой наделяет его реологическими свойствами, необходимыми для его правильного нанесения и проникновения в поры слоя анодированного алюминия, чтобы связаться с ним как одно целое. Существуют известные методы, например полива, набрызгивания или окунания, для обеспечения равномерного нанесения смеси-предшественника и хорошего проникновения его через поры анодированного слоя.
Второй этап неполного сшивания состоит в промежуточной термической обработке, которая инициирует сшивание и придает полимеру гелеобразное состояние. В гелеобразном состоянии смола и отвердитель прореагировали в достаточной степени, чтобы начать создание трехмерной сетки и обеспечить адгезию продукта на анодированном алюминии. С другой стороны, жесткость материала еще очень незначительна. Это состояние интересно, поскольку оно позволяет формировать защитный слой, сцепленный адекватным образом с анодированной алюминиевой лентой для того, чтобы хранить ее до ее интеграции в компонент и, прежде всего, как станет очевидным позже, возобновить процесс сшивания для обеспечения когезии продукта.
Наконец, третий этап, хранение при низкой температуре (как правило, при -20°C), необходим для стабилизации материала и отправки предварительно пропитанной ленты анодированного алюминия на место изготовления конечной детали. В первом варианте предварительно пропитанные ленты алюминия формируют в катушки по размерам изготавливаемого электротехнического компонента, перед отправкой их на хранение. Во втором варианте упомянутые катушки предварительно не формуют, а используется по заказу предварительно пропитанная лента.
Реализация катушки электротехнического компонента из такой предварительно пропитанной ленты анодированного алюминия также содержит три основных этапа.
На первом этапе предварительно пропитанную ленту анодированного алюминия подогревают до температуры окружающей среды, чтобы ее можно было поместить на место в электротехническом компоненте. Согласно варианту, выбранному для хранения, устанавливают полностью готовую катушку. В другом случае, предварительно пропитанную алюминиевую ленту при температуре окружающей среды предварительно наматывают по размерам катушки электротехнического компонента.
На втором этапе, полной пропитки, весь компонент полностью покрывают смолой, включая катушку или катушки, которые его составляют.
Последний этап состоит из полной термической обработки, которая завершается окончательным сшиванием смолы вокруг лент анодированного, неуплотненного, алюминия, намотанных по форме катушки компонента.
На этом этапе слои гелеобразной смолы двух предварительно пропитанных, наложенных одна на другую лент сливаются между собой и со смолой, которая покрывает компонент, благодаря тому, что их незавершенные молекулярные сетки допускают рекомбинацию с прилежащим материалом. Таким образом, в качестве границы раздела между смолой и анодированным неуплотненным алюминием остается лишь поверхность, характеристики адгезии которой были обеспечены с момента предварительной пропитки.
Для воплощения этого изобретения важно, чтобы смола имела:
- реологические свойства, позволяющие покрывать анодированные ленты алюминия слоем полимера с толщиной, достаточной для того, чтобы обеспечить его электроизоляционную функцию;
- реологические свойства, позволяющие смоле проникать через поры оксида алюминия, возникшие в результате способа алитирования;
- сопротивление электрическому напряжению, совместимое с электротехническим компонентом;
- термостойкость, совместимую с предусмотренными применениями;
- время гелеобразования, совместимое со способом анодирования;
- температуру сшивания, превышающую температуру компонента.
Смолы на основе полиэпоксида, полиимида или силикона предпочтительно используются для получения свойств, необходимых в диапазоне рабочей температуры, а также уровней напряжения, предусмотренных для электротехнических применений в палубной авиации. Cмолы этого типа уже используются в изготовлении индуктивных катушек согласно предшествующему уровню техники. Кроме того, температура сшивания этого типа смолы позволяет использовать их для компонентов, обмотки которых рассчитаны на температуры примерно 250°C.
Реологические свойства, необходимые смоле для нанесения на анодированный алюминий, получают посредством разбавления в органических растворителях. Пропорцию растворителя, подбираемую к уровню вязкости смолы, определяют экспериментально для каждого состава вышеуказанной смолы.
Один из вариантов изобретения состоит в том, что смолу заменяют материалом, реализуемым методом золь-гель. Метод золь-гель позволяет посредством полимеризации молекулярных предшественников в растворе получить стекловидные материалы, минуя этап сплавления. В частности, могут быть получены твердые минеральные материалы, имеющие диэлектрические свойства, на основе органоминеральных золь-гель смесей.
Несмотря на то что химические процессы отличаются от случая сшивания термореактивной смолы, заливка ленты анодированного неуплотненного алюминия материалом осуществляется методом золь-гель аналогичным образом в два этапа:
- этап нанесения смеси-предшественника на алюминиевую ленту, например, поливом или набрызгиванием;
- этап сшивания при термообработке, называемой чаще полимеризацией с материалами, используемыми в методе золь-гель, где реакции с элементами-предшественниками в смеси-предшественнике формируют конечный материал.
Для реализации изобретения используют, например, смесь-предшественник типа, включающего воду, уксусную кислоту, метанол, изопропанол и органосилан. Дополнительные ингредиенты, такие как гидраты алюминия, позволяют получить желаемые диэлектрические свойства.
Предпочтительно также используют неорганические полимеры для получения известным образом керамических материалов золь-гель методом. Керамические материалы имеют механические и термические свойства, которые позволяют применять полученные этим методом катушки в компонентах, температуры которых могут достигать 250°C, а рабочее электрическое напряжение - 2 кВ.
В случае использования метода золь-гель исключается этап предварительной пропитки или предварительной обработки ленты. Фактически, в случае метода золь-гель, процесс «сшивания» может быть завершен сразу же после его начала. Отсутствует промежуточное «гелеобразное» состояние, которое имело бы полезные пластические свойства. Следовательно, этапы изготовления катушки компонента включают:
- придание формы неуплотненной ленте анодированного алюминия согласно геометрии конечной катушки;
- нанесение смеси-предшественника методом золь-гель таким образом, что она плотно связывается с анодированным алюминием и заполняет объем катушки;
- применение термической обработки сшивания для получения конечного продукта.

Claims (25)

1. Способ изготовления пропитанной ленты анодированного алюминия, включающей имеющий поры оксид алюминия, предназначенной для использования в катушке электротехнического компонента, причем упомянутая катушка включает промежуточный материал, обеспечивающий этой ленте функции когезии и диэлектрической изоляции,
причем упомянутый промежуточный материал получают из способной к сшиванию смеси-предшественника, а упомянутый способ содержит:
- этап нанесения смеси-предшественника упомянутого промежуточного материала на анодированный алюминий;
- по меньшей мере один этап неполного сшивания смеси-предшественника для образования упомянутого промежуточного материала на ленте алюминия,
отличающийся тем, что анодированный алюминий не подвергнут закупорке образовавшихся при анодировании пор в оксиде алюминия перед нанесением смеси-предшественника упомянутого промежуточного материала,
причем смесь-предшественник находится в промежуточном состоянии, в котором она является гелеобразной.
2. Способ по предыдущему пункту, в котором смесь-предшественник содержит смолу и отвердитель.
3. Способ по предыдущему пункту, в котором в состав смолы входит по меньшей мере один ингредиент, выбранный из полиэпоксидов, полиимидов или силиконов.
4. Способ по любому из пп. 2 или 3, в котором этап сшивания является незавершенным.
5. Способ по п. 1, содержащий этап хранения ленты анодированного алюминия в промежуточном состоянии при низкой температуре.
6. Способ по п. 5, причем низкая температура составляет около -20°С.
7. Способ изготовления пропитанной ленты анодированного алюминия, включающей имеющий поры оксид алюминия, предназначенной для использования в катушке электротехнического компонента, причем упомянутая катушка включает промежуточный материал, обеспечивающий этой ленте функции когезии и диэлектрической изоляции,
причем упомянутый промежуточный материал получают из способной к сшиванию смеси-предшественника, а упомянутый способ содержит:
этап нанесения смеси-предшественника упомянутого промежуточного материала на анодированный алюминий;
этап сшивания смеси-предшественника для образования упомянутого промежуточного материала на ленте анодированного алюминия,
причем анодированный алюминий не подвергнут закупорке образовавшихся при анодировании пор в оксиде алюминия перед нанесением смеси-предшественника упомянутого промежуточного материала, и
причем промежуточный материал представляет собой материал, полученный методом золь-гель.
8. Способ по п. 7, причем смесь-предшественник содержит состав, выбранный из воды, уксусной кислоты, метанола, изопропанола и органосилана.
9. Способ по п. 7, причем материал не содержит смолу.
10. Пропитанная лента анодированного алюминия, полученная способом по п 4 или 7.
11. Способ изготовления электротехнического компонента, содержащего по меньшей мере одну катушку, причем упомянутая катушка содержит намотанную витками ленту анодированного алюминия и промежуточный материал, обеспечивающий функции когезии и диэлектрической изоляции, отличающийся тем, что:
- ленту анодированного алюминия пропитывают по любому из предыдущих пунктов;
- по меньшей мере один этап окончательного сшивания смеси-предшественника для образования упомянутого промежуточного материала на ленте алюминия осуществляют, когда ленте алюминия придают форму по размерам упомянутой по меньшей мере одной катушки.
12. Способ по п. 11, в котором ленту анодированного алюминия пропитывают способом по пункту 4, прежде чем ей придают форму по размерам упомянутой по меньшей мере одной катушки и подвергают этапу окончательного сшивания.
13. Электротехнический компонент, содержащий по меньшей мере одну катушку, полученный способом по любому из пп. 11 или 12.
RU2015143925A 2013-04-08 2014-04-03 Изготовление катушек для электротехнических компонентов с использованием лент анодированного неуплотненного алюминия RU2660137C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1353146A FR3004129B1 (fr) 2013-04-08 2013-04-08 Fabrication de bobines pour composants electrotechnique utilisant des bandes d'aluminium anodise non colmate.
FR1353146 2013-04-08
PCT/FR2014/050810 WO2014167223A1 (fr) 2013-04-08 2014-04-03 Fabrication de bobines pour composants électrotechniques utilisant des bandes d'aluminium anodisé non colmaté

Publications (3)

Publication Number Publication Date
RU2015143925A RU2015143925A (ru) 2017-05-19
RU2015143925A3 RU2015143925A3 (ru) 2018-02-28
RU2660137C2 true RU2660137C2 (ru) 2018-07-05

Family

ID=48656134

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015143925A RU2660137C2 (ru) 2013-04-08 2014-04-03 Изготовление катушек для электротехнических компонентов с использованием лент анодированного неуплотненного алюминия

Country Status (7)

Country Link
US (1) US10236120B2 (ru)
EP (1) EP2984659B1 (ru)
BR (1) BR112015025419B1 (ru)
CA (1) CA2908371C (ru)
FR (1) FR3004129B1 (ru)
RU (1) RU2660137C2 (ru)
WO (1) WO2014167223A1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715211A (en) * 1971-02-01 1973-02-06 Horizons Inc Process and product of cold sealing an anodized aluminum article by a photo-polymerization process
GB1394361A (en) * 1971-08-13 1975-05-14 Aluminium Foils Ltd Manufacture of electrical coils
DE2451232A1 (de) * 1974-10-29 1976-05-06 Basf Ag Verfahren zur herstellung starrer magnetischer aufzeichnungstraeger
EP0441061A1 (en) * 1990-02-05 1991-08-14 Sermatech International, Incorporated Organic coatings with ion reactive pigments especially for active metals
GB2432260A (en) * 2005-11-14 2007-05-16 Siemens Magnet Technology Ltd A resin-impregnated superconducting magnet coil and its method of manufacture which comprises a cooling layer and a filler layer.
US20120225784A1 (en) * 2011-03-02 2012-09-06 Honeywell International Inc. High temperature electromagnetic coil assemblies and methods for the production thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB773911A (ru) *
US3574071A (en) * 1964-07-23 1971-04-06 Gen Magnaplate Corp Fluorine-containing resin coated articles
GB1255336A (en) * 1968-12-06 1971-12-01 Matsushita Electric Ind Co Ltd Self-bonding, surface-insulated foil conductors
JPS5812065B1 (ru) * 1971-06-29 1983-03-05 Nikkei Riken Kk
DE3820650A1 (de) * 1988-06-18 1989-12-21 Henkel Kgaa Verfahren zum verdichten von anodisierten oxidschichten auf aluminium und aluminiumlegierungen
JPH0636923A (ja) * 1992-07-20 1994-02-10 Railway Technical Res Inst 地上コイル
TWI296569B (en) * 2003-08-27 2008-05-11 Mitsui Chemicals Inc Polyimide metal laminated matter
US7572980B2 (en) 2007-01-26 2009-08-11 Ford Global Technologies, Llc Copper conductor with anodized aluminum dielectric layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715211A (en) * 1971-02-01 1973-02-06 Horizons Inc Process and product of cold sealing an anodized aluminum article by a photo-polymerization process
GB1394361A (en) * 1971-08-13 1975-05-14 Aluminium Foils Ltd Manufacture of electrical coils
DE2451232A1 (de) * 1974-10-29 1976-05-06 Basf Ag Verfahren zur herstellung starrer magnetischer aufzeichnungstraeger
EP0441061A1 (en) * 1990-02-05 1991-08-14 Sermatech International, Incorporated Organic coatings with ion reactive pigments especially for active metals
GB2432260A (en) * 2005-11-14 2007-05-16 Siemens Magnet Technology Ltd A resin-impregnated superconducting magnet coil and its method of manufacture which comprises a cooling layer and a filler layer.
US20120225784A1 (en) * 2011-03-02 2012-09-06 Honeywell International Inc. High temperature electromagnetic coil assemblies and methods for the production thereof

Also Published As

Publication number Publication date
FR3004129B1 (fr) 2015-03-27
FR3004129A1 (fr) 2014-10-10
EP2984659A1 (fr) 2016-02-17
CA2908371A1 (fr) 2014-10-16
WO2014167223A1 (fr) 2014-10-16
US10236120B2 (en) 2019-03-19
RU2015143925A3 (ru) 2018-02-28
RU2015143925A (ru) 2017-05-19
US20160071645A1 (en) 2016-03-10
BR112015025419B1 (pt) 2021-10-05
CA2908371C (fr) 2021-05-25
BR112015025419A2 (pt) 2017-07-18
EP2984659B1 (fr) 2018-02-14

Similar Documents

Publication Publication Date Title
JPH03127809A (ja) 耐熱絶縁コイルの製造方法
RU2535838C2 (ru) Катушка индуктивности и способ её изготовления
KR101195752B1 (ko) 유체 충진 변압기용 고체절연물 및 그의 제조방법
US8484831B2 (en) Methods of forming insulated wires and hermetically-sealed packages for use in electromagnetic devices
US4058444A (en) Process for preparing an insulated product
JP2010193673A (ja) ドライマイカテープ、それを用いた電気絶縁線輪,固定子コイル及び回転電機
RU2660137C2 (ru) Изготовление катушек для электротехнических компонентов с использованием лент анодированного неуплотненного алюминия
CN102185432B (zh) 用于实现导电棒周围的绝缘体的方法
CN112219341A (zh) 电动机的电绝缘系统和其制造方法
RU2366060C1 (ru) Способ изготовления изоляции обмоток электрических машин
US5455392A (en) Insulated winding, together with process and semi-finished product for the production thereof
US2707693A (en) Process for producing electrical coils
CN112243560B (zh) 电动机的电绝缘系统和其制造方法
KR101806448B1 (ko) 연자성복합체의 제조방법
JPS6121378B2 (ru)
US5674340A (en) Insulating tape for the winding of an electric machine
WO2015121999A1 (ja) 絶縁電線、回転電機及び絶縁電線の製造方法
CN112564364A (zh) 一种高压电机的绝缘结构
JP6104123B2 (ja) 電気機器のコイル製造方法
US3839653A (en) Flexible loop, hard slot coils for dynamoelectric machine windings
CN101409118B (zh) 电导线及其生产方法
EP4381527A1 (en) Method for the electromagentic insulation of components of an electric motor
JPH0410687B2 (ru)
CN203706691U (zh) 一种绝缘导线及用其制作的线圈
JPH0650696B2 (ja) 樹脂モ−ルドコイルの製造方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner