RU2657678C1 - Способ получения катанки из термостойкого сплава на основе алюминия - Google Patents

Способ получения катанки из термостойкого сплава на основе алюминия Download PDF

Info

Publication number
RU2657678C1
RU2657678C1 RU2017113263A RU2017113263A RU2657678C1 RU 2657678 C1 RU2657678 C1 RU 2657678C1 RU 2017113263 A RU2017113263 A RU 2017113263A RU 2017113263 A RU2017113263 A RU 2017113263A RU 2657678 C1 RU2657678 C1 RU 2657678C1
Authority
RU
Russia
Prior art keywords
temperature
heating
wire rod
carried out
melt
Prior art date
Application number
RU2017113263A
Other languages
English (en)
Inventor
Виктор Христьянович Манн
Александр Юрьевич Крохин
Александр Николаевич Алабин
Виктор Федорович Фролов
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Application granted granted Critical
Publication of RU2657678C1 publication Critical patent/RU2657678C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Изобретение относится к области металлургии, в частности к технологии получения алюминиевых сплавов, и может быть использовано для получения изделий электротехнического назначения, способных работать при повышенных температурах. Способ получения катанки из термостойкого сплава на основе алюминия, содержащего в качестве основного легирующего элемента цирконий в количестве 0,20-0,52 масс. %, включает приготовление расплава, получение литой заготовки бесконечной длины путем кристаллизации расплава, получение катанки бесконечной длины путем горячей деформации литой заготовки, намотку катанки в бухты мерной длины, термическую обработку бухт катанки путем нагрева и выдержки при заданной температуре, при этом кристаллизацию расплава проводят при температуре на 5°С выше температуры ликвидуса сплава, максимальную температуру катанки после горячей деформации поддерживают на уровне не более 300°С, термическую обработку бухт катанки осуществляют при температуре нагрева не выше 415°С в течение не более 144 часов, при этом нагрев бухт в интервале температур 300-400°С осуществляют со скоростью не выше 15°С/час. Техническим результатом изобретения является повышение термостойкости сплава на основе алюминия при обеспечении требуемой электропроводности, достигаемые без использования длительных временных выдержек при термической обработке. 3 з.п. ф-лы, 2 ил., 4 пр., 4 табл.

Description

Область техники
Изобретение относится к области металлургии и может быть использовано для получения изделий электротехнического назначения, способных работать при повышенных температурах, в частности: проводов высоковольтных линий электропередач (ЛЭП), бортовых проводов транспортных средств, проводов устройств нефтегазового комплекса и других изделий.
Предшествующий уровень техники
Благодаря высокой электропроводности и хорошей коррозионной стойкости технический алюминий и низколегированные алюминиевые сплавы (сплавы 1xxx, 8ххх) широко применяются в изделиях электротехнического назначения. В частности, проволока, полученная из технического алюминия (марок типа 1350) широко используется для изготовления проводов высоковольтных воздушных ЛЭП. Для производства проволоки из технического алюминия исходной заготовкой в большинстве случаев является катанка, для получения которой выполняются следующие основные операции: приготовление расплава, кристаллизация расплава в заготовку бесконечной длины, горячая деформация заготовки в катанку, смотка катанки в мерные бухты. Под катанкой понимается форма металла в виде прутка, как правило, произведенная посредством горячей прокатки на многовалковом прокатном стане, которая является заготовкой для последующего производства проволоки. Конечной операцией в большинстве случаев при производстве проволоки является волочение. В нагартованном состоянии такая проволока обеспечивает удачное сочетание прочностных характеристик и удельного электросопротивления. Однако низкий уровень термической стойкости технического алюминия (обычно не превышающий 90°С) позволяет длительно использовать этот материал при нагревах выше 100-150°С и кратковременно выше 150°С, ввиду их существенного разупрочнения из-за процессов возврата и рекристаллизации.
Более высоким уровнем прочностных свойств характеризуются сплавы системы Al-Mg-Si (6ххх серия), в частности сплавы типа 6101 широко используются для производства самонесущих изолированных проводов. Однако, так же как и в случае с нелегированным алюминием, сплавы 6ххх серии характеризуются относительно невысокой термостойкостью, которая обычно не превышает 90°С, что связано протеканием при нагревании следующих процессов:
1) огрубление метастабильной фазы упрочнения Mg2Si (в том числе трансформацией в стабильную) и
2) процессами возврата.
К двум другим недостаткам сплавов 6ххх серии следует отнести:
1) худшую электропроводность (около 10%), по сравнению с техническим алюминием;
2) необходимость использования операции закалки в воду бухт катанки для обеспечения дисперсионного твердения при последующей операции старения проволоки.
Один из подходов, позволяющих достичь сочетания высокой термостойкости и электропроводности, достигается в сплавах с высокой объемной долей эвтектики. Так существенное повышение термической стабильности (до 300°С) достигается на сплавах системы Аl-Се (Добаткин В.И., Елагин В.И., Федоров В.М. Быстрозакристаллизованные алюминиевые сплавы, ВИЛС, 1995), где повышенное количество эвтектической составляющей (Аl+Аl4Се) обеспечивает высокую термостойкость за счет термической стабильности фазы Аl4Се при нагреве, а сочетание низкой растворимости церия в алюминиевом растворе - удовлетворительную электропроводность.
К недостаткам сплавов, содержащих повышенные концентрации церия (4-7 масс. %), следует отнести высокую активность (окисление) церия на воздухе, что создает проблемы при производстве (литье) сплавов этого типа, кроме того, относительно низкая объемная доля алюминиевого раствора (по сравнению с техническим алюминием) не позволяет достичь удельного электрического сопротивления ниже 31 мкОм/мм.
Другим примером создания сплавов этого типа является алюминиевый никельсодержащий материал и способ получения изделия, раскрытые в изобретении US 3830635 компании Southwire. Материал характеризуется проводимостью на уровне 57% IACS и содержит (масс. %) 0,20-1,60 никеля, 0,30-1,30 кобальта, остальное алюминий и примеси. В частном исполнении материал может содержать 0,001-1,0% железа и магния. Способ получения изделия включает следующие основные операции: непрерывное получение заготовки из расплава между вращающимися валками, горячую прокатку заготовки в многовалковом прокатном стане до катанки и волочение проволоки. В частном исполнении способ получения расплава предусматривает введение дополнительных элементов (масс. %), в частности миш-металла, ниобия, тантала и циркония.
К недостаткам известного способа следует отнести достижение относительно невысоких значений удельной электрической проводимости (на уровне 57% IACS) и относительно высокую стоимость кобальта, что ограничивает использование данного материала в массовом производстве, например проводов для высоковольтных линий электропередач.
Существенного повышения термической стабильности при повышенных температурах без значимого ухудшения (не более 3%) удельной электрической проводимости алюминиевой проволоки можно добиться за счет введения небольших добавок переходных металлов, в частности циркония и/или других переходных металлов. Способ получения термостойкой проволоки с минимальным уровнем электрического сопротивления из Zr-содержащего сплава в этом случае обычно включает в себя следующие операции: формирование литой заготовки непрерывным или полунепрерывным способом, деформацию литой заготовки в катанку, термическую обработку катанки и волочение катанки в проволоку.
Известен способ получения изделий для применения в электротехнике, предложенный компанией Nexans и отраженный в публикации международной заявки WO 2013057415 А1. Способ изготовления относится к материалу, содержащему 250-1200 рpm скандия и остальное примеси. В частном исполнении сплав может содержать до 0,1 масс. % циркония. Способ включает следующие стадии: приготовление расплава, содержащего алюминий, скандий и неизбежные примеси, получение литой заготовки из расплава, прокатку заготовки и волочение проволоки без использования стабилизирующих отжигов.
К недостаткам известного способа следует отнести высокую конечную стоимость полученного продукта из-за содержания скандия и ограниченности ресурсной базы по скандию. Кроме того, в описании не приведен абсолютный уровень прочностных характеристик полученной проволоки из Sc-содержащего алюминиевого сплава.
Наиболее близким к предложенному способу является способ, изложенный в патенте US 4402763А компании Sumitomo Electric Industries, Ltd, включающий получение расплава сплава Al-Zr, содержащий в основном 0,23-0,35 масс. % Zr, остальное преимущественно алюминий, литья приготовленного сплава в заготовку, горячей прокатки при начальной температуре по меньшей мере 530°С, холодной обработки прокатанной сплава, и последующее старение в интервале температур 310-390°С в течение 50-400 часов. В частном исполнении холодная обработка после горячей прокатки может достигать не менее 30%.
К недостаткам этого способа следует отнести:
1) длительность термической обработки, которая может достигать сотен часов;
2) в способе присутствует дополнительная холодная обработка горячекатанной заготовки, что усложняет технологический процесс получения требуемого уровня характеристик;
3) способ обеспечивает достижение проводимости не менее 58% IACS, что в некоторых случаях является недостаточным.
Раскрытие сущности изобретения
Задачей изобретения является создание нового способа получения катанки из термостойкого сплава на основе алюминия, содержащего в качестве основного легирующего элемента цирконий, обеспечивающего одновременное достижение значений высокой удельной электропроводности (не ниже 60% IACS) и высокого уровня механических свойств, в том числе сохраняющихся на уровне 90% от исходного после высокотемпературных нагревов вплоть до 300°С.
Техническим результатом является решение поставленной задачи, повышение термостойкости сплава на основе алюминия при обеспечении требуемой электропроводности, достигаемые без использования длительных временных выдержек при термической обработке.
Решение поставленной задачи и достижение указанного технического результата обеспечивается тем, что предложен способ получения катанки из термостойкого сплава на основе алюминия, характеризующегося проводимостью не менее 60% IACS, содержащего цирконий в количестве 0,20-0,52 масс. % и неизбежные примеси, включающий приготовление расплава, получение литой заготовки бесконечной длины путем кристаллизации расплава, получение катанки бесконечной длины путем горячей деформации литой заготовки, намотка катанки в бухты мерной длины, термическую обработку бухт катанки путем нагрева и выдержки при заданной температуре. При этом кристаллизацию расплава проводят при температуре на 5°С выше температуры ликвидуса сплава, максимальная температура катанки после горячей деформации не более 300°С, термическую обработку бухт катанки осуществляют при максимальной температуре нагрева 415°С в течение не более 144 часов, при этом скорость нагрева в интервале температур 300-400°С не выше 15°С/ч.
В частности, термическую обработку бухт катанки осуществляют:
- при максимальной температуре нагрева 370°С в течение не более 96 часов, при этом скорость нагрева в интервале температур 300-370°С не выше 10°С/ч.
- при максимальной температуре нагрева 350°С в течение не более 36 часов, при этом скорость нагрева в интервале температур 300-350°С не выше 5°С/ч.
Подробное описание сущности изобретения
Для обеспечения достижения одновременного достижения значений высокой удельной электропроводности (не ниже 60% IACS) и высокого уровня механических свойств, в том числе после высокотемпературных нагревов структура проводникового материала должна представлять собой нелегированный алюминиевый раствор с распределенными в нем вторичными выделениями Zr-содержащей фазы с размером до 20 нм с типом решетки L12. Эффект повышения проводимости достигается за счет уменьшения концентрации циркония в алюминиевом растворе и образования вторичных выделений Zr-содержащей фазы. Эффект повышенной термостойкости в этом случае достигается благодаря положительному влиянию вторичных выделений циркониевой фазы, стойких к высокотемпературному нагреву. Снижение времени термической обработки, необходимой для достижения требуемых характеристик, достигается за счет равномерного распада циркониевой фазы с размером до 20 нм, выделению которой предшествует формирование «предвыделений» в процессе контролируемого нагрева.
Цирконий в количестве 0,20-0,52 масс. % необходим для образования вторичных выделений метастабильной фазы Al3(Zr) с кристаллической решеткой L12. В общем виде цирконий перераспределяется между алюминиевым раствором и вторичными выделениями метастабильной фазы Al3Zr с решеткой типа L12, максимальная доля последней будет находится в интервале 0,31-0,91 масс. %.
Более высокое содержание циркония, чем 0,52%, в алюминиевом растворе приводит к снижению теплопроводности и снижению электропроводности ниже 60% IACS. При этом, при концентрациях выше Zr выше 0,52% потребуется повышение температуры литья существенно выше 800°С (Фиг. 1), что трудно реализуемо в промышленных условиях, в противном случае возможно формирование в структуре литой заготовки первичных кристаллов фазы с решеткой типа D023. Наличие в структуре Zr-частиц с решеткой типа D023 является недопустимым в связи с необеспечением требуемой термостойкости, кроме того, возможно снижение технологичности при волочении проволоки тонких диаметров.
При концентрациях циркония в сплаве ниже 0,20 масс. % количество вторичных выделений метастабильной фазы Al3Z с решеткой типа L12 будет недостаточным для достижения заданных прочностных характеристик и термостойкости.
Обоснование заявляемых технологических параметров способа получения, деформированных из данного сплава, приведено ниже.
Снижение температуры расплава ниже температуры ликвидуса сплава может привести к образованию в процессе кристаллизации грубых первичных кристаллов фазы Al3Zr и снижению концентрации циркония в алюминиевом твердом растворе. Следствием этого будет уменьшение количества вторичных выделений Zr-фазы в окончательной структуре и приведет к снижению прочностных свойств и термостойкости.
Если скорость нагрева бухт будет выше 15°С/ч, то возможен неравномерный распад алюминиевого раствора с образованием вторичных выделений фазы Al3Zr с решеткой типа L12, что негативно отразится на общем уровне механических свойств, термостойкости и увеличении времени термической обработки.
Если температура термической обработки катанки будет превышать 410°С, то размеры вторичных выделений, содержащих Zr, могут превысить 20 нм, что негативно скажется на прочностных свойствах, при этом остаточная растворимость циркония в алюминиевом растворе будет повышенной, что негативно отразится на удельной электропроводности (Фиг. 2).
Снижение температуры термической обработки катанки ниже 300°С не обеспечит формирования вторичных выделений Zr-фазы за приемлемое время в промышленных условия.
Повышение максимальной температуры катанки после горячей деформации не более 300°С может привести к неравномерному распаду алюминиевого раствора с образованием вторичных выделений фазы Al3Zr с решеткой типа L12, что негативно отразится на общем уровне механических свойств и термостойкости.
Способ может быть использован и для термостойких материалов, содержащих в качестве основных легирующих элементов переходные металлы, например Sc и Сr. Термостойкий сплав на основе алюминия может представлять собой сплав, содержащий цирконий и, по меньшей мере, один элемент, выбранный из группы, включающей железо и никель.
Примеры осуществления изобретения
ПРИМЕР 1
Из сплавов, содержащих 0,20 и 0,52 масс. % Zr, были получены литые заготовки (с площадью поперечного сечения 1256 мм2) при различных температурах литья. Температура литья заготовок измерялась непосредственно перед заливкой в форму, обеспечивающей скорость кристаллизации на уровне 40 К/с.
Химический состав сплавов, температуры литья и параметры структуры сплавов приведены в таблице 1.
Методом сканирующей электронной микроскопии была проанализирована микроструктура на предмет наличия или отсутствия первичных кристаллов фазы Al3Zr D023.
Figure 00000001
Тл - температура литья;
Тliq - температура ликвидус;
ΔT - перегрев расплава над температурой ликвидус (Тliq), определяется как разница Тлитья - Tliq
«+» наличие в структуре фазы Al3Zr D023;
«-» отсутствие в структуре фазы Al3Zr D023
Из результатов, представленных в таблице 1, следует, что при скорости охлаждении при литье 40°С/с и при перегреве расплава не менее чем на 5°С реализуется структура на основе твердого раствора без первичных кристаллов фазы Al3Zr D023.
В общем виде структура литой заготовки представляла собой алюминиевый твердый раствор циркония и других элементов, некоторое количество железосодержащих фаз эвтектического происхождения.
Такая структура литой заготовки является приемлемой для последующей деформационной и термической обработки.
ПРИМЕР 2
Из сплава состава 3 (табл. 1) была получена катанка на непрерывном литейно-прокатном агрегате. Далее термическую обработку катанки проводили в печи с разными скоростями нагрева. Далее из катанки получали проволоку.
Критерием положительного результата являлось достижение заданного уровня удельного электрического сопротивления (ρ) 28,5 мкОм⋅мм и потеря прочностных свойств (Δσ) на проволоке не более 10% после отжига при 400°С в течение 1 часа.
Как видно из таблицы 2, только при скорости нагрева менее 15°С/ч в интервале температур 350-450°С обеспечивается необходимая электропроводность на катанке и термостойкость на проволоке.
Повышение скорости нагрева выше 15°С/ч приводит увеличению удельного электрического сопротивления.
Figure 00000002
ПРИМЕР 3
Из сплава состава 3 (табл. 1) проводили термическую обработку бухт катанки с постоянной скоростью нагрева 10°С/ч и постоянным временем отжига 96 часов.
Figure 00000003
Как видно из таблицы 3, только при температуре отжига ниже 415°С обеспечивается заданная электропроводность. Повышение температуры отжига выше 415°С приводит к увеличению электропроводности за счет увеличения растворимости циркония в алюминиевом растворе.
Кроме того, с увеличением температуры отжига временное сопротивление разрыву снижается ниже 120 МПа.
ПРИМЕР 4
Из сплава состава 3 (табл. 1) получена катанка с различной конечной температурой. Далее катанка нагревалась до 390°С с заданной скоростью нагрева - 10°С/час и отжигалась в течение 144 часов.
Критерием являлась термостойкость проволоки (уровень падения прочностных характеристик (Δσ)), полученной из катанки.
Figure 00000004
Как видно из таблицы 4, только при температуре катанки после деформации ниже 300°С обеспечивается заданный уровень термостойкости на проволоке. Повышение температуры выше 300°С приводит к неравновесному распаду алюминиевого твердого раствора, что не обеспечивает необходимой термостойкости.

Claims (4)

1. Способ получения катанки из термостойкого сплава на основе алюминия, содержащего в качестве основного легирующего элемента цирконий в количестве 0,20-0,52 мас. %, включающий приготовление расплава, получение литой заготовки бесконечной длины путем кристаллизации расплава, получение катанки бесконечной длины путем горячей деформации литой заготовки, намотку катанки в бухты мерной длины, термическую обработку бухт катанки путем нагрева и выдержки при заданной температуре, при этом кристаллизацию расплава проводят при температуре на 5°C выше температуры ликвидуса сплава, максимальную температуру катанки после горячей деформации поддерживают на уровне не более 300°C, термическую обработку бухт катанки осуществляют при температуре нагрева не выше 415°C в течение не более 144 часов, при этом нагрев бухт в интервале температур 300-400°C осуществляют со скоростью не выше 15°C/ч.
2. Способ по п. 1, в котором термическую обработку бухт катанки осуществляют при максимальной температуре нагрева 370°C в течение не более 96 часов, при этом нагрев в интервале температур 300-370°C осуществляют со скоростью не выше 10°C/ч.
3. Способ по п. 1, в котором термическую обработку бухт катанки осуществляют при максимальной температуре нагрева 350°C в течение не более 36 часов, при этом нагрев в интервале температур 300-350°C осуществляют со скоростью не выше 5°C/ч.
4. Способ по п. 1, в котором используют алюминиевый сплав, содержащий цирконий, и по меньшей мере один элемент, выбранный из группы, содержащей железо и никель.
RU2017113263A 2016-09-30 2016-09-30 Способ получения катанки из термостойкого сплава на основе алюминия RU2657678C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2016/000654 WO2018063023A1 (ru) 2016-09-30 2016-09-30 Способ получения катанки из термостойкого сплава на основе алюминия

Publications (1)

Publication Number Publication Date
RU2657678C1 true RU2657678C1 (ru) 2018-06-14

Family

ID=61763546

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017113263A RU2657678C1 (ru) 2016-09-30 2016-09-30 Способ получения катанки из термостойкого сплава на основе алюминия

Country Status (3)

Country Link
CN (1) CN108603273A (ru)
RU (1) RU2657678C1 (ru)
WO (1) WO2018063023A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696794C1 (ru) * 2018-11-14 2019-08-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения катанки из термостойкого алюминиевого сплава

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
US4624717A (en) * 1983-03-31 1986-11-25 Alcan International Limited Aluminum alloy heat treatment
RU2458151C1 (ru) * 2010-12-09 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
WO2014088449A1 (en) * 2012-12-06 2014-06-12 The Federal State Autonomous Educational Institution Of The Higher Professional Education "National University Of Science And Technology "Misis" Heat resistant aluminium base alloy and fabrication method
RU2541263C2 (ru) * 2013-07-01 2015-02-10 Общество с ограниченной ответственностью "ЭМ-КАТ" Проводниковый термостойкий сплав на основе алюминия

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827949A (ja) * 1981-08-12 1983-02-18 Tokyo Electric Power Co Inc:The 導電用耐熱アルミニウム合金線の製造方法
JPS61238945A (ja) * 1985-04-12 1986-10-24 Furukawa Electric Co Ltd:The 高力耐熱アルミニウム合金導体の製造法
JP2582073B2 (ja) * 1987-05-26 1997-02-19 住友電気工業株式会社 導電用高力耐熱アルミニウム合金の製造方法
CN102021444B (zh) * 2010-12-09 2012-08-22 北京科技大学 一种高导电耐热铝合金导线及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
US4624717A (en) * 1983-03-31 1986-11-25 Alcan International Limited Aluminum alloy heat treatment
RU2458151C1 (ru) * 2010-12-09 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
WO2014088449A1 (en) * 2012-12-06 2014-06-12 The Federal State Autonomous Educational Institution Of The Higher Professional Education "National University Of Science And Technology "Misis" Heat resistant aluminium base alloy and fabrication method
RU2541263C2 (ru) * 2013-07-01 2015-02-10 Общество с ограниченной ответственностью "ЭМ-КАТ" Проводниковый термостойкий сплав на основе алюминия

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696794C1 (ru) * 2018-11-14 2019-08-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения катанки из термостойкого алюминиевого сплава

Also Published As

Publication number Publication date
WO2018063023A1 (ru) 2018-04-05
WO2018063023A8 (ru) 2020-01-16
CN108603273A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6263333B2 (ja) Cu−Ti系銅合金板材およびその製造方法並びに通電部品
JP6039999B2 (ja) Cu−Ni−Co−Si系銅合金板材およびその製造法
JP5320642B2 (ja) 銅合金の製造方法及び銅合金
WO2016161565A1 (en) Formable magnesium based wrought alloys
Knych et al. Studies on the process of heat treatment of conductive AlZr alloys obtained in various productive processes
JPWO2016088887A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネスならびにアルミニウム合金線材の製造方法
RU2534170C1 (ru) Термостойкий сплав на основе алюминия и способ получения из него деформированных полуфабрикатов
TW201224171A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
Korotkova et al. Influence of heat treatment on the structure and properties of an Al–7% REM conductive aluminum alloy casted in an electromagnetic crystallizer
JP2021130878A (ja) アルミニウム基合金から変形半製品の製造方法
JP2016505713A5 (ru)
RU2636548C1 (ru) Термокоррозионностойкий алюминиевый сплав
RU2657678C1 (ru) Способ получения катанки из термостойкого сплава на основе алюминия
Jabłoński et al. Effect of iron addition to aluminium on the structure and properties of wires used for electrical purposes
JP6317966B2 (ja) Cu−Ni−Si系銅合金板材およびその製造方法並びに通電部品
RU2639284C2 (ru) Термокоррозионно-стойкий алюминиевый сплав
RU2659546C1 (ru) Термостойкий сплав на основе алюминия
JP2020516777A (ja) ケーブル導体用アルミニウム合金
RU2771342C1 (ru) Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы
JP2005089834A (ja) 電熱線用チタン合金及びその製造方法
JP6635732B2 (ja) アルミニウム合金導電線の製造方法、アルミニウム合金導電線、これを用いた電線及びワイヤハーネス
JP2004124152A (ja) マグネシウム基合金の圧延線材及びその製造方法
JP2022526677A (ja) 高強度および高伝導率を有する銅合金、ならびにこのような銅合金を作製するための方法
Szkliniarz Formation of microstructure and properties of Cu-3Ti alloy in thermal and thermomechanical processes
JP2004124154A (ja) マグネシウム基合金の圧延線材及びその製造方法