RU2771342C1 - Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы - Google Patents

Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы Download PDF

Info

Publication number
RU2771342C1
RU2771342C1 RU2021125666A RU2021125666A RU2771342C1 RU 2771342 C1 RU2771342 C1 RU 2771342C1 RU 2021125666 A RU2021125666 A RU 2021125666A RU 2021125666 A RU2021125666 A RU 2021125666A RU 2771342 C1 RU2771342 C1 RU 2771342C1
Authority
RU
Russia
Prior art keywords
temperature
shape memory
deformation
ingots
tinihf
Prior art date
Application number
RU2021125666A
Other languages
English (en)
Inventor
Владимир Александрович Андреев
Роман Дмитриевич Карелин
Владимир Сабитович Юсупов
Надежда Владимировна Лайшева
Галина Юрьевна Лазаренко
Виктор Сергеевич Комаров
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority to RU2021125666A priority Critical patent/RU2771342C1/ru
Application granted granted Critical
Publication of RU2771342C1 publication Critical patent/RU2771342C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/003Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к металлургии, а именно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий с повышенной температурой эксплуатации для различных отраслей промышленности, медицины и техники. Способ получения прутков из сплава TiNiHf с высокотемпературным эффектом памяти формы включает выплавку слитков и их деформацию. Выплавляют слитки заданного химического состава с содержанием гафния 1,0-3,0 ат. %, никеля 48,5-50,0 ат. % и титан - остальное, из чистых исходных компонентов Ti, Ni и Hf или из готового сплава никелида титана в виде прутка и гафниевой проволоки повышенной чистоты методом электроннолучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа, проводят гомогенизирующий отжиг слитков в вакууме не менее 10-4мм рт. ст. при температуре 1050°С в течение не менее 1 ч. Последующую деформацию осуществляют путем ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или прокатки в интервале температур 750-950°С с коэффициентом вытяжки за проход не более 1,15, а затем проводят последеформационный отжиг при температуре 400-550°С в течение 1-10 ч. Обеспечивается получение прутков из сплавов TiNiHf контролируемого фазового и химического состава, обладающих высокотемпературным эффектом памяти формы, а также высокими механическими характеристиками. 5 табл., 2 пр.

Description

Изобретение относится к металлургическому производству, конкретно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий, действующих на основе высокотемпературного эффекта памяти формы и предназначенных для различных отраслей промышленности, медицины и техники, в особенности сигнально-пусковых устройств.
Сплавы на основе TiNi, легированные гафнием, представляют особый интерес благодаря реализации высокотемпературного эффекта памяти формы. Применение данных сплавов позволяет в исполнительных элементах готовых изделий получить температуру конца обратного мартенситного превращения Ак выше 100°С.
Известен способ получения сплавов TiNiHf, заключающийся в использовании порошковой технологии, включающей гидро-кальциевый синтез с последующей консолидацией порошковой массы путем прессования и дальнейшего спекания в вакууме (Патент РФ 2630740, МПК B22F 3/16 B22F 9/18 С22С 14/00 С22С 19/03, 2017 г. и Патент РФ №2705487, МПК B22F 3/16 B22F 9/18 С22С 14/00 С22С 19/03, 2019 г.).
К недостаткам данного способа можно отнести сложность получения заданного химического состава, а также высокую вероятность получения повышенной концентрации газовых примесей, что негативно сказывается на функциональных свойствах и особенно на технологической пластичности получаемого сплава. Кроме того, к недостаткам данного способа можно отнести сложность получения заготовки без остаточной пористости, а также сложность получения длинномерных заготовок методом экструзии.
Известен способ получения сплавов TiNiHf с высокотемпературным эффектом памяти формы, при которых выплавка исходных слитков производится методом дуговой плавки чистых шихтовый компонентов (Патент США №5114504, МПК С22С 14/00; С22С 19/00, 1992).
Данный метод выплавки имеет ряд недостатков, связанных с физико-химическими свойствами исходных компонентов и особенностями процесса выплавки, что зачастую приводит к несоответствию заданного и фактического химического составов. Кроме того, повышенная ликвация компонентов и вероятное выделение неравновесных и избыточных фаз требуют многократного переплава и длительного высокотемпературного отжига, а также приводят к ухудшению свойств сплава.
Также известен способ получения сплавов TiNiHf с высокотемпературным эффектом памяти формы с использованием различных методов выплавки и деформационной обработки, включающий также предварительную термическую обработку перед финишной термообработкой старением (Патент США №20190194788. МПК C22F 1/00; C22F 1/10, С22С 19/03 2019).
Недостатки данного способа состоят в том, что содержание Ni в данной группе сплавов составляет от 50,0 ат. % до 50,3 ат %, что. во-первых, приводит к необходимости увеличения концентрации дорогостоящего Hf для получения высокотемпературного эффекта памяти формы, а во вторых к проявлению эффекта старения, что может повлиять на эксплуатационные характеристики материала в условиях длительной работы сплава при повышенных температурах. Кроме того, в описании данного способа отсутствуют четкие критерии выбора того или иного метода получения исходного слитка, а также его последующей обработки, что, в свою очередь затрудняет прогнозирование формирующейся в сплаве структуры и комплекса механических и функциональных свойств.
Технический результат, решаемый изобретением, заключается в создании способа получении длинномерных полуфабрикатов из сплавов TiNiHf контролируемого фазового и химического состава, обладающих высокотемпературным эффектом памяти формы, а также заданными механическими характеристиками.
Технический результат достигается тем, что, выплавку исходных слитков заданного химического состава с содержанием гафния 1,0-3,0 ат. % и никеля 48,5-50,0 ат. % производят методом электронно-лучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа за один переплав. В качестве шихтовых материалов используют или чистые исходные компоненты Ti, Ni и Hf, или готовый сплав никелида титана в виде прутка известного химического состава и гафниевую проволоку повышенной чистоты. Полученный слиток, подвергают гомогенизирующему отжигу в вакууме не менее 10-4 мм рт. ст. при температуре 1050°С в течение не менее 1 ч. Из исходного слитка после гомогенизирующего отжига получают пруток требуемого диаметра методом ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или методом сортовой прокатки в аналогичном интервале температур с коэффициентом вытяжки за проход не более 1,15. После этого прутки подвергают последеформационному отжигу при температуре 400-550°С в течение 1-10 ч в зависимости от требований к конечному комплексу механических и функциональных свойств.
Сущность заявленного способа заключается в проведении выплавки исходных слитков методом электронно-лучевой плавки на первом этапе, гомогенизирующего отжига на втором этапе, деформационной обработки (ротационной ковки или прокатки) на третьем этапе и последеформационного отжига на заключительном этапе. Метод электронно-лучевой плавки обладает рядом преимуществ, по сравнению с другими методами, такими как индукционная и электродуговая плавки, а именно: эффективным очищением металлов от газовых и других неметаллических примесей; исключением загрязнения металла материалом тигля, так как плавка идет в гарниссаже с последующей кристаллизацией в водоохлаждаемом медном кристаллизаторе; отсутствием дефектов усадочного происхождения в слитках за счет возможности плавного изменения мощности в электронном пучке и полного заполнения металлом усадочной раковины; возможностью использования шихтовых металлов в любом виде. Использование медного кристаллизатора ручьевого типа позволяет осуществлять последующую термомеханическую обработку слитка непосредственно после выплавки, например методом ротационной ковки или сортовой прокатки, для изготовления полуфабрикатов различного профильного сортамента.
При этом в качестве исходной шихты для выплавки могут использоваться как чистые исходные компоненты Ti, Ni и Hf, так и готовый интерметаллический сплав никелида титана в виде прутка известного химического состава и гафниевая проволока повышенной чистоты. Использование готового сплава никелида титана в качестве исходного компонента позволяет, во-первых, производить его переработку, а во-вторых, снижает вероятность дополнительного попадания примесей в расплав за счет окисления чистого титана при плавке.
Концентрацию никеля в готовом сплаве задают на уровне 48,50-50,0 ат. %, концентрацию гафния в сплаве задают на уровне 1,0-3,0 ат. %, а титан - все остальное. Пониженное содержание гафния на ряду с пониженным содержанием никеля и соответствующей термомеханической обработкой позволяют получить в сплаве температуру конца обратного мартенситного превращения Ак в интервале температур 125-185°С, а также избежать образования большого количество избыточной охрупчивающей фазы типа (Ti,Hf)2Ni, формирующейся в сплавах с повышенным содержанием Ti. Увеличение концентрации Hf выше 3,0 ат. % в сочетании с пониженным содержанием Ni приводит к значительному снижению технологической пластичности сплава. Увеличение концентрации Ni при сохранении концентрации Hf на таком же уровне не позволяет получить требуемые температуры начала и конца обратного мартенситного превращения.
На следующей этапе литую заготовку подвергают гомогенизирующему отжигу в вакууме при температуре 1050°С в течение не менее 1 ч и последующей ротационной ковке в интервале температур 750-950°С с единичными обжатиями не более 7% или сортовой прокатке в аналогичном интервале температур с коэффициентом вытяжки за проход не более 1,15 до требуемого конечного диаметра.
Проведение ротационной ковки или сортовой прокатки при температуре деформации 750-950°С позволяет получать длинномерную заготовку различного диаметра сплава TiNiHf, обладающую высокотемпературным эффектом памяти формы.
На последнем этапе полученную заготовку подвергают последеформационному отжигу при температуре 400-550°С в течения 1-10 ч с целью устранения избыточного деформационного наклепа и получения требуемого сочетания механических и функциональных свойств, в том числе требуемой температуры конца обратного мартенситного превращения Ак в интервале температур 125-185°С.
Результаты апробации заявленного способа приведены в виде конкретного примера.
Пример №1.
Выплавку исходного слитка проводили методом электронной-лучевой плавки в печи мощностью 60 кВт в вакууме 1×10-5 мм рт. ст. в медном водоохлаждаемом кристаллизаторе ручьевого типа. В качестве исходной шихты для выплавки сплава TiNiHf были выбраны следующие материалы: шлифованный пруток диаметром 12 мм никелида титана марки ТН-1; проволока гафниевая нагартованная марки ГФИ-1 диаметром 2 мм. Химический состав используемых прутка и проволоки приведен в таблицах 1 и 2. Химический состав слитка приведен в таблице 3.
После выплавки слиток подвергали гомогенизирующему отжигу в вакууме 10-5 мм рт. ст.при температуре 1050°С в течение 3 ч. Деформацию слитков проводили методом горячей ротационной ковки при температуре 950°С с относительной степенью деформации за проход 5-10%. В результате из исходного слитка был получен пруток диаметром 3,5 мм и длиной 870 мм. После деформации пруток подвергали последеформационному отжигу при температуре 550°С, в течение 2 ч. Механические и функциональные свойства полученного прутка приведены в таблице 5.
Пример №2.
Выплавку исходного слитка проводили методом электронной-лучевой плавки в печи мощностью 60 кВт в вакууме 1×10-5 мм рт. ст. в медном водоохлаждаемом кристаллизаторе ручьевого типа. В качестве исходной шихты для выплавки сплава TiNiHf использовали следующие компоненты: йодидный титан марки ТИ-1 (99,99%), никель марки Н0 (99,99%) и йодидный гафний марки ГФИ-1 (99,93%). Химический состав слитка приведен в таблице 4.
После выплавки слиток подвергали гомогенизирующему отжигу в вакууме 10-5 мм рт. ст. при температуре 1050°С в течение 3 ч. Деформацию слитков проводили методом сортовой прокатки в системе калибров квадрат-квадрат при температуре 950°С с коэффициентом вытяжки за проход не более 1,15. В результате из исходного слитка был получен пруток сечением 7×7 мм и длиной 500 мм. После деформации пруток подвергали последеформационному отжигу при температуре 550°С, в течение 2 ч. Механические и функциональные свойства полученного прутка приведены в таблице 5.
Исходя из представленных примеров можно заключить, что благодаря заявленному способу удалось получить длинномерные качественные прутки из сплава на основе никелида титана с содержанием гафния 4,4 вес. % (1,4 ат. %) и 9,0 вес. % (2,9 ат. %) с высокими механическими и функциональными свойствами и высокотемпературным эффектом памяти формы в заявленном интервале температур (Ак=125-185°С). Из полученных прутков возможно изготовление изделий технического назначения, действующих на основе высокотемпературного эффекта памяти формы.
Технико-экономический эффект заявленного способа состоит в обеспечении возможности получения полуфабрикатов из сплавов на основе никелида титана, легированных гафнием, с высокотемпературным эффектом памяти формы и высокими механическими и функциональными свойствами. Использование данных полуфабрикатов позволит значительно расширить сферу применения сплавов TiNiHf за счет создания новых устройств, действующих на основе высокотемпературного эффекта памяти формы, используемых в различных областях науки и техники.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005

Claims (1)

  1. Способ получения прутков из сплава TiNiHf с высокотемпературным эффектом памяти формы, включающий выплавку слитков и их деформацию, отличающийся тем, что выплавляют слитки заданного химического состава с содержанием гафния 1,0-3,0 ат. %, никеля 48,5-50,0 ат. % и титан - остальное, из чистых исходных компонентов Ti, Ni и Hf или из готового сплава никелида титана в виде прутка и гафниевой проволоки повышенной чистоты методом электроннолучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа, проводят гомогенизирующий отжиг слитков в вакууме не менее 10-4 мм рт. ст. при температуре 1050°С в течение не менее 1 ч, а последующую деформацию осуществляют путем ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или прокатки в интервале температур 750-950°С с коэффициентом вытяжки за проход не более 1,15, а затем проводят последеформационный отжиг при температуре 400-550°С в течение 1-10 ч.
RU2021125666A 2021-08-31 2021-08-31 Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы RU2771342C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021125666A RU2771342C1 (ru) 2021-08-31 2021-08-31 Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021125666A RU2771342C1 (ru) 2021-08-31 2021-08-31 Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы

Publications (1)

Publication Number Publication Date
RU2771342C1 true RU2771342C1 (ru) 2022-04-29

Family

ID=81458782

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021125666A RU2771342C1 (ru) 2021-08-31 2021-08-31 Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы

Country Status (1)

Country Link
RU (1) RU2771342C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109968A (zh) * 2022-06-10 2022-09-27 华南理工大学 一种高热稳定性NiTiHf形状记忆合金及其制备方法与应用
CN115927915A (zh) * 2022-11-30 2023-04-07 西安赛特思迈钛业有限公司 一种Ti-Ni-Zr形状记忆合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381820B (zh) * 2007-09-05 2010-05-19 中国科学院金属研究所 一种低镍的三元TiNiHf形状记忆合金板材制备方法
RU2536614C2 (ru) * 2013-04-09 2014-12-27 Общество с ограниченной ответственностью "Промышленный центр МАТЭК-СПФ" Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы
CN108085563A (zh) * 2017-12-18 2018-05-29 西安赛特思迈钛业有限公司 一种高温钛镍基四元记忆合金
RU2656626C1 (ru) * 2017-05-15 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
US20190194788A1 (en) * 2017-12-22 2019-06-27 Aaron Stebner Method of pre-aging nitihf shape memory alloys and parts therefrom with uniform microstructures and superior properties
RU2717764C1 (ru) * 2019-12-24 2020-03-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты)
RU2720276C2 (ru) * 2013-03-15 2020-04-28 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи Термомеханическая обработка никель-титановых сплавов
RU2753210C1 (ru) * 2021-02-17 2021-08-12 Общество с ограниченной ответственностью "СПФ Биолаб" СПОСОБ ИЗГОТОВЛЕНИЯ ПРУТКОВ ИЗ СВЕРХУПРУГИХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Ti-Zr-Nb

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381820B (zh) * 2007-09-05 2010-05-19 中国科学院金属研究所 一种低镍的三元TiNiHf形状记忆合金板材制备方法
RU2720276C2 (ru) * 2013-03-15 2020-04-28 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи Термомеханическая обработка никель-титановых сплавов
RU2536614C2 (ru) * 2013-04-09 2014-12-27 Общество с ограниченной ответственностью "Промышленный центр МАТЭК-СПФ" Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы
RU2656626C1 (ru) * 2017-05-15 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
CN108085563A (zh) * 2017-12-18 2018-05-29 西安赛特思迈钛业有限公司 一种高温钛镍基四元记忆合金
US20190194788A1 (en) * 2017-12-22 2019-06-27 Aaron Stebner Method of pre-aging nitihf shape memory alloys and parts therefrom with uniform microstructures and superior properties
RU2717764C1 (ru) * 2019-12-24 2020-03-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты)
RU2753210C1 (ru) * 2021-02-17 2021-08-12 Общество с ограниченной ответственностью "СПФ Биолаб" СПОСОБ ИЗГОТОВЛЕНИЯ ПРУТКОВ ИЗ СВЕРХУПРУГИХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Ti-Zr-Nb

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109968A (zh) * 2022-06-10 2022-09-27 华南理工大学 一种高热稳定性NiTiHf形状记忆合金及其制备方法与应用
CN115927915A (zh) * 2022-11-30 2023-04-07 西安赛特思迈钛业有限公司 一种Ti-Ni-Zr形状记忆合金及其制备方法
CN115927915B (zh) * 2022-11-30 2024-05-17 西安赛特思迈钛业有限公司 一种Ti-Ni-Zr形状记忆合金及其制备方法

Similar Documents

Publication Publication Date Title
RU2771342C1 (ru) Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы
US5624505A (en) Titanium matrix composites
JP6387755B2 (ja) 銅圧延板及び電子・電気機器用部品
JP5051647B2 (ja) 高強度・高導電率Cu−Ag合金細線とその製造方法
JP6826879B2 (ja) Ni基超耐熱合金の製造方法
CN109312427B (zh) TiAl合金及其制造方法
JPH05214470A (ja) バナジウムを含む斜方晶チタンニオブアルミナイド
RU2536614C2 (ru) Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы
JP7350805B2 (ja) アルミニウム基合金から変形半製品の製造方法
JP6126235B2 (ja) 耐熱性アルミニウムベース合金を変形させてなる半製品およびその製造方法
JP2016505713A5 (ru)
JP5010841B2 (ja) Ni3Si−Ni3Ti−Ni3Nb系複相金属間化合物,その製造方法,高温構造材料
US3378916A (en) Manufacture of superconducting wire
RU2228382C2 (ru) Тантал-кремниевый сплав, изделия, содержащие их, и способ получения сплавов
JP6660042B2 (ja) Ni基超耐熱合金押出材の製造方法およびNi基超耐熱合金押出材
JP2020152965A (ja) アルミニウム合金材、その製造方法及びインペラ
RU2751065C1 (ru) Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка
RU2657678C1 (ru) Способ получения катанки из термостойкого сплава на основе алюминия
JP5252722B2 (ja) 高強度・高導電性銅合金及びその製造方法
RU2694098C1 (ru) Способ получения полуфабрикатов из высокопрочных никелевых сплавов
RU2807260C1 (ru) Способ изготовления прутков из бронзы БрХ08
CN117107112B (zh) 一种短中时高温钛合金及其制备方法
JP2018197397A (ja) 銅圧延板及び電子・電気機器用部品
JP2729011B2 (ja) 高強度を有するTiAl基金属間化合物合金及びその製造方法
WO2022211062A1 (ja) アルミニウム合金材、その製造方法及び機械部品