RU2751065C1 - Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка - Google Patents

Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка Download PDF

Info

Publication number
RU2751065C1
RU2751065C1 RU2020126238A RU2020126238A RU2751065C1 RU 2751065 C1 RU2751065 C1 RU 2751065C1 RU 2020126238 A RU2020126238 A RU 2020126238A RU 2020126238 A RU2020126238 A RU 2020126238A RU 2751065 C1 RU2751065 C1 RU 2751065C1
Authority
RU
Russia
Prior art keywords
wire
ingots
temperature
carried out
vacuum
Prior art date
Application number
RU2020126238A
Other languages
English (en)
Inventor
Михаил Анатольевич Севостьянов
Константин Владимирович Сергиенко
Александр Сергеевич Баикин
Елена Олеговна Насакина
Алексей Георгиевич Колмаков
Сергей Викторович Конушкин
Михаил Александрович Каплан
Ярослава Анатольевна Морозова
Анна Владимировна Михайлова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority to RU2020126238A priority Critical patent/RU2751065C1/ru
Application granted granted Critical
Publication of RU2751065C1 publication Critical patent/RU2751065C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/003Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Изобретение относится к металлургии, в частности к способам изготовления проволоки TiNbTa из биосовместимого сплава для производства сферического порошка. Способ получения проволоки из сплава титан-ниобий-тантал для производства сферического порошка включает выплавку слитков сплава из исходных материалов в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, гомогенизирующий отжиг слитков в вакууме 5⋅10-5 мм рт.ст., интенсивную пластическую деформацию слитков с получением проволоки и рекристаллизационный отжиг полученной проволоки. Гомогенизирующий отжиг слитков осуществляют при температуре 600°С в течение 12 ч, интенсивную пластическую деформацию осуществляют путем прокатки на реверсивном стане до сечения заготовки 10×10 мм2, ротационной ковки на воздухе при температуре 600°С и одно- или многократного волочения до диаметра проволоки 1 мм, а рекристаллизационный отжиг полученной проволоки проводят в вакууме при температуре 600°С в течение 12 ч. Полученная проволока характеризуется высокой пластичностью и эксплуатационными характеристиками. 7 ил.

Description

Изобретение относится к способам изготовления проволоки из сплава TiNbTa, готовой к применению в качестве исходного материала в производстве сферического порошка.
Известен способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы (RU 2685622 С1, МПК C22F 1/16, опубл. 22.04.19 г.), включающий термомеханическую обработку прутков сплавов титан-никель, сочетающую интенсивную пластическую деформацию, пластическую деформацию и отжиг, отличающийся тем, что интенсивную пластическую деформацию проводят путем непрерывного равноканального углового прессования с накопленной степенью деформации более 6 в интервалах температур 200-299°С и 551-600°С, пластическую деформацию осуществляют прокаткой со степенью деформации не менее 30% при температуре 501-600°С, а отжиг осуществляют при температуре 250-349°С.
Недостатки данного изобретения заключаются в создании структуры с внутренними напряжениями, вызванными интенсивной деформацией и придающими повышенные механические свойства, за счет создания ультрамелкозернистой структуры, однако при этом прутки получают высокую упругость и становятся тяжело применяемыми в установках для получения сферического порошка, обладающих механизмом подачи прутков, рассчитанных на легко изгибаемый материал.
Известен способ получения сплавов TiNb (Ta и/или Zr) и их обработки (Патент РФ №2485197 МПК C22F 1/18, опубл. 20.06.2013 г.). Способ обработки сплава включает горячую обработку давлением слитка сплава на основе титана при начальной температуре 900-950°С и конечной температуре 700-750°С, термомеханическую обработку путем многопроходной холодной деформации с суммарной степенью обжатия от 31 до 99%, последеформационного отжига при температуре 500-600°С и завершающего закалочного охлаждения в воде. После механическое псевдоупругое циклирование полученной заготовки в условиях одноосного растяжения до достижения 2% деформации в течение 50-100 циклов и снятия нагрузки.
К недостаткам этого способа относится обработка на первых этапах давлением, без вакуума. При нагреве сплава более 400 градусов не в вакууме или инертной среде замечено поглощение кислорода титаном и танталом, что негативно сказывается на усталостные свойства конечного продукта - проволоки.
Наиболее близким к предложенному изобретению является способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы патент РФ 2656626. Способ обработки материала включает деформационно-термическую обработку заготовки из сплава титан-ниобий-тантал-цирконий, включающую гомогенизирующий отжиг слитка при температуре 600°С в вакуумной среде в течение 16 часов, прокат слитка в пластину с дальнейшей нарезкой ее электроэрозионным способом на прутки квадратного сечения, ротационную ковку и волочение до искомого диаметра в 0,28 мм.
К недостаткам данного способа стоит отнести наличие упругости не снятой отжигом, что затрудняет применение в установках для получения сферического порошка, обладающих механизмом подачи прутков, рассчитанных на легко изгибаемый материал.
Задачей изобретения является создание способа изготовления проволоки из биосовместимого безникелевого сплава для дальнейшего производства сферического порошка предназначенного для трехмерной лазерной печати.
Техническим результатом является получение биосовместимой отожженной проволоки диаметром 1 мм из сплава TiNbTa с низкой упругостью при этом минимизировать образование оксидов титана и тантала, что обеспечивает материалу пластичность и улучшенные эксплуатационные характеристики.
Технический результат достигается тем, что в способе получения отожженной проволоки из биосовместимого сплава TiNbTa, состоящем из выплавки заготовки, деформационно-термической обработки заготовки из сплава титан-ниобий-тантал, сочетающем гомогенизирующий отжиг, интенсивная многоступенчатая пластическая деформация и рекристаллизационный отжиг, минимизируя при этом образование оксидов титана и тантала за счет проведения отжигов в вакууме 5*10-5 мм рт.ст., единая проволока получается из целого слитка, без необходимости разделения слитка на части, как в прототипе, что повышает практичность способа. Согласно изобретению изготовление проволоки проводится в 6 этапов. На первом этапе, используя в качестве шихтовых материалов йодидный титан, йодидный цирконий, технически чистый ниобий и технически чистый тантал, выплавка слитков проводилась в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, на втором этапе выплавленные слитки подвергали гомогенизационному отжигу в вакууме 5*10-5 мм рт.ст. при температуре 600°С в течение 12 ч, на третьем этапе производится процесс прокатки, заключается в том, что заготовка обжимается (сдавливается), проходя в зазор между вращающимися валками, при этом, она уменьшается в своем поперечном сечении и увеличивается в длину. Прокатка происходит на реверсивном стане до сечения 10×10 мм2. На четвертом этапе ротационная ковка, заключающаяся в уменьшение площади поперечного сечения заготовки под воздействием перемещающегося в радиальном направлении инструмента при относительном вращении заготовки и инструмента. На пятом этапе проводится волочение, процесс характеризующийся постепенным однократным или многократным протягивания последнего через специальный волочильный инструмент, предназначенный для поэтапного уменьшения поперечного сечения исходной заготовки до искомого диаметра в 1 мм (рис. 7). На шестом этапе проволоку подвергают отжигу при температуре 600°С в течение 12 ч в вакуумной среде для снижения упругости, которая необходима при дальнейшем использовании проволоки.
Перспективной областью металлургии является трехмерная печать единичных изделий, к примеру, персонализированных имплантов суставов или частей костей. Существующие технологии печати позволяют создавать ранее не достижимые формы, в том числе с трабекулярной сетью наподобие живой кости. В то же время существует малоисследованная область предшествующих печати этапов, а именно получение сферических порошков заданной фракции из редких сплавов, в том числе призванных заменить классические сплавы ВТ6 и титан в части областей применения. И для получения порошков требуется подготовка материалов, в том числе проволок требуемых составов и диаметров.
Отожженная при температуре 600°С в течение 12 ч в вакуумной среде проволока TiNbTa обладает достаточно низкой упругостью (рис. 1) по отношению к проволоке без отжига (рис. 2) для манипуляций загрузки проволоки и протяжки ее установкой получения порошка.
Пример конкретной реализации изобретения:
Электродуговой переплав
Плавка навесок проводилась в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом LK8 фирмы LEYBOLD-HERAEUS (Германия). Навески помещались в медный водоохлаждаемый кристаллизатор, после чего рабочая камера герметично закрывалась и вакуумировалась до давления 1*10-2 мм рт.ст. После этого в камеру напускался аргон до давления 2 атм. В процессе первых 2-3 переплавов получали единый слиток, последующие переплавы направлены на получение равномерного химического состава по всему объему слитка. Длительность каждой плавки одного слитка 1-1,5 мин. Перед плавкой слитка расплавлялся геттер. В качестве геттера использовался слиток йодидного циркония массой 30 г. Каждый слиток переплавляли 7 раз. Далее в этих условиях полученные слитки сплавляются в единый слиток весом 260 г за 2 переплава. Конечный слиток имел длину 190 мм, ширину 30-35 мм, высоту 10-12 мм.
На рисунке 3 представлена схема вакуумной дуговой печи с нерасходуемым электродом, где: 1 - корпус печи, 2 - нерасходуемый электрод, 3 - электрододержатель, 4 - кристаллизатор, 5 - поддон, 6 - вакуумное уплотнение, 7 - механизм перемещения электрода, 8 - автоматический регулятор перемещения электрода, 9 - источник питания печи, 10 - вакуумная система, 11 - регулятор тока, 12 - пульт управления 13 - подвижный поток.
Термообработка.
Выплавленные слитки подвергали гомогенизационному отжигу в печи СШВЗ-1.2,5/25-ИЗ. Слитки отжигали в вакууме 5*10-5 мм рт.ст. при температуре 600°С в течение 12 ч.
Прокатка слитков.
Сущность процесса прокатки заключается в том, что заготовка обжимается (сдавливается), проходя в зазор между вращающимися валками, при этом, она уменьшается в своем поперечном сечении и увеличивается в длину. Форма поперечного сечения называется профилем.
Процесс прокатки обеспечивается силами трения между вращающимся инструментом и заготовкой, благодаря которым заготовка перемещается в зазоре между валками, одновременно деформируясь. В момент захвата металла со стороны каждого валка действуют на металл две силы: нормальная сила N и касательная сила трения Т.
На рисунке 4 изображена схема сил, действующих при прокатке: N - нормальная сила; Т - касательная сила трения; α- угол между нормальной силой и вертикалью.
Прокатка происходила на реверсивном стане ДУО-300. Выплавленные слитки деформировали на воздухе до сечения 10×10 мм2. Заготовки подогревали на воздухе до температуры 600°С. Нагрев осуществлялся непосредственно перед деформацией в печи KYLS 20.18.40/10.
Ротационная ковка.
Ротационная ковка - уменьшение площади поперечного сечения заготовки под воздействием перемещающегося в радиальном направлении инструмента при относительном вращении заготовки и инструмента.
На рисунке 5 изображена схема ротационной ковки.
Ротационная ковка заготовок последовательно проводилась на радиальных ковочных машинах В2129.02, В2127.01, В2123.01 (Россия) с последовательной сменой бойков. Подогрев заготовок на воздухе непосредственно перед деформацией осуществлялся в печи ПТС-2000-40-1200 (Россия).
Волочение.
Волочение проволоки - это процесс обработки металла давлением, характеризующийся постепенным однократным или многократным протягивания последнего через специальный волочильный инструмент, предназначенный для поэтапного уменьшения поперечного сечения исходной заготовки. Принципиальная схема волочения приведена на рисунке, где 1 - фильера; 2 - проволока; Fo - площадь поперечного сечения на входе в фильеру; Fk - площадь поперечного сечения на выходе из фильеры.
На рисунке 6 изображена схема волочения.
С диаметра проволоки 2 мм до диаметра 0,4 мм волочение производилось на машине C7328/ZF фирмы «ТНЕ NORTHWEST MACHIBE CO.LTD» (Китай). Волочение проходило на воздухе. В качестве смазки использовался аквадаг.
Отжиг.
Полученную проволоку сворачивали в моток, подвергали гомогенизационному отжигу в печи СШВЗ-1.2,5/25-ИЗ в вакууме 5*10-5 мм рт.ст. при температуре 600°С в течение 12 ч.
Таким образом, предложенное изобретение позволяет изготавливать отожженную проволоку из сплава титан-ниобий-тантал для дальнейшего производства из нее сферического порошка, минимизируя образование оксидов титана и тантала, что обеспечивает материалу пластичность и улучшенные эксплуатационные характеристики.

Claims (1)

  1. Способ получения проволоки из сплава титан-ниобий-тантал для производства сферического порошка, включающий выплавку слитков сплава из исходных материалов в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, гомогенизирующий отжиг слитков в вакууме 5⋅10-5 мм рт.ст., интенсивную пластическую деформацию слитков с получением проволоки и рекристаллизационный отжиг полученной проволоки, отличающийся тем, что гомогенизирующий отжиг слитков осуществляют при температуре 600°С в течение 12 ч, интенсивную пластическую деформацию осуществляют путем прокатки на реверсивном стане до сечения заготовки 10×10 мм2, ротационной ковки на воздухе при температуре 600°С и одно- или многократного волочения до диаметра проволоки 1 мм, а рекристаллизационный отжиг полученной проволоки проводят в вакууме при температуре 600°С в течение 12 ч.
RU2020126238A 2020-08-06 2020-08-06 Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка RU2751065C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020126238A RU2751065C1 (ru) 2020-08-06 2020-08-06 Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020126238A RU2751065C1 (ru) 2020-08-06 2020-08-06 Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка

Publications (1)

Publication Number Publication Date
RU2751065C1 true RU2751065C1 (ru) 2021-07-07

Family

ID=76755988

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020126238A RU2751065C1 (ru) 2020-08-06 2020-08-06 Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка

Country Status (1)

Country Link
RU (1) RU2751065C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807554A (zh) * 2022-04-11 2022-07-29 合肥工业大学 一种提高Ta-2.5W合金硬度的形变热处理方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132526A (en) * 1997-12-18 2000-10-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Titanium-based intermetallic alloys
CN107747001A (zh) * 2017-10-24 2018-03-02 宝鸡市永盛泰钛业有限公司 一种钛合金及其制备方法
RU2656626C1 (ru) * 2017-05-15 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
CN109161724A (zh) * 2018-02-09 2019-01-08 沈阳中核舰航特材科技(常州)有限公司 一种生物医用钛合金tc20棒/线材的制造方法
RU2694099C1 (ru) * 2018-10-22 2019-07-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132526A (en) * 1997-12-18 2000-10-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Titanium-based intermetallic alloys
RU2656626C1 (ru) * 2017-05-15 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
CN107747001A (zh) * 2017-10-24 2018-03-02 宝鸡市永盛泰钛业有限公司 一种钛合金及其制备方法
CN109161724A (zh) * 2018-02-09 2019-01-08 沈阳中核舰航特材科技(常州)有限公司 一种生物医用钛合金tc20棒/线材的制造方法
RU2694099C1 (ru) * 2018-10-22 2019-07-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807554A (zh) * 2022-04-11 2022-07-29 合肥工业大学 一种提高Ta-2.5W合金硬度的形变热处理方法及其应用
CN114807554B (zh) * 2022-04-11 2024-04-16 合肥工业大学 一种提高Ta-2.5W合金硬度的形变热处理方法及其应用

Similar Documents

Publication Publication Date Title
RU2694099C1 (ru) Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr
US10077492B2 (en) Ultrafine-grained profile of twin-crystal wrought magnesium alloys, preparation process and use of the same
JP6622761B2 (ja) ニッケル−チタン合金の熱機械処理
KR100528090B1 (ko) 미세한 균일 구조 및 조직을 가지는 금속 물품 및 그의 제조방법
RU2729569C2 (ru) Материалы с оцк-структурой на основе титана, алюминия, ванадия и железа и изделия, полученные из них
US5624505A (en) Titanium matrix composites
JP2016512287A5 (ru)
KR20010071476A (ko) 미세균일 구조 및 조직을 갖는 금속재 및 그 제조방법
RU2536614C2 (ru) Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы
CN109097713B (zh) 一种超细晶Ta材及其制备方法
RU2751065C1 (ru) Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка
RU2771342C1 (ru) Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы
EP3256613A1 (en) Methods for producing titanium and titanium alloy articles
RU2314362C2 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ α- ИЛИ α+β-ТИТАНОВЫХ СПЛАВОВ
USH1659H (en) Method for heat treating titanium aluminide alloys
RU2759624C1 (ru) Способ получения тонкой проволоки из сплава TiNiTa
Zhu et al. High-strength Ti-Al-V-Zr cast alloys designed using α and β cluster formulas
JP5605546B2 (ja) α+β型チタン合金とその製造方法並びにチタン合金材の製造方法
Imayev et al. The principles of producing an ultrafine-grained structure in large-section billets
JP3374553B2 (ja) Ti−Al系金属間化合物基合金の製造方法
JP2729011B2 (ja) 高強度を有するTiAl基金属間化合物合金及びその製造方法
JP3328557B2 (ja) 高強度を有するTiAl基金属間化合物合金及びその製造方法
RU2807260C1 (ru) Способ изготовления прутков из бронзы БрХ08
RU2694098C1 (ru) Способ получения полуфабрикатов из высокопрочных никелевых сплавов
KR101468689B1 (ko) 저온 초소성이 높은 소재를 대량으로 제조하는 방법

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20211216

Effective date: 20211216