RU2759624C1 - Способ получения тонкой проволоки из сплава TiNiTa - Google Patents

Способ получения тонкой проволоки из сплава TiNiTa Download PDF

Info

Publication number
RU2759624C1
RU2759624C1 RU2020143076A RU2020143076A RU2759624C1 RU 2759624 C1 RU2759624 C1 RU 2759624C1 RU 2020143076 A RU2020143076 A RU 2020143076A RU 2020143076 A RU2020143076 A RU 2020143076A RU 2759624 C1 RU2759624 C1 RU 2759624C1
Authority
RU
Russia
Prior art keywords
wire
ingots
alloy
temperature
annealing
Prior art date
Application number
RU2020143076A
Other languages
English (en)
Inventor
Михаил Анатольевич Севостьянов
Константин Владимирович Сергиенко
Александр Сергеевич Баикин
Елена Олеговна Насакина
Сергей Викторович Конушкин
Михаил Александрович Каплан
Ярослава Анатольевна Морозова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority to RU2020143076A priority Critical patent/RU2759624C1/ru
Application granted granted Critical
Publication of RU2759624C1 publication Critical patent/RU2759624C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/003Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к металлургии, а именно к способам получения тонкой проволоки из сплава для Кава-фильтров и стентов. Способ получения проволоки из сплава титан-никель-тантал для производства сферического порошка включает выплавку слитков сплава из исходных материалов в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, гомогенизирующий отжиг слитков в вакууме 5⋅10-5мм рт. ст., интенсивную пластическую деформацию слитков с получением проволоки и рекристаллизационный отжиг полученной проволоки. Гомогенизирующий отжиг слитков осуществляют при температуре 600°С в течение 12 ч, интенсивную пластическую деформацию осуществляют путем прокатки на реверсивном стане до сечения заготовки 10х10 мм2, ротационной ковки на воздухе при температуре 600°С и одно- или многократного волочения до диаметра проволоки 0,18 мм, а рекристаллизационный отжиг полученной проволоки проводят в вакууме при температуре 600°С в течение 12 ч. Обеспечивается получение единой проволоки. 6 ил., 1 пр.

Description

Изобретение относится к способам получения тонкой проволоки из сплава для Кава-фильтров и стентов, а именно TiNiTa.
Известен способ получения сверхупругого титан-никелевого сплава (JP 58161753, МПК C22F 1/10, опубл. 26.09.83 г), включающий предварительную закалку крупнозернистого сплава, последующую холодную деформацию прокаткой со степенью деформации более 20% и отжиг при температуре 250-550°С.
Недостатками способа являются относительно низкие степени деформации (ε менее 100%) и ограничения по степени измельчения микроструктуры, не позволяющие достигать наиболее высоких механических и функциональных свойств. Наличие никеля в данном составе может вызывать у части пациентов аллергические реакции на медицинские импланты, изготовленные из него.
Известен способ получения сплавов TiNb(Ta и/или Zr) и их обработки (Патент РФ №2485197 МПК C22F 1/18, опубл. 20.06.2013 г.). Способ обработки сплава включает горячую обработку давлением слитка сплава на основе титана при начальной температуре 900-950°С и конечной температуре 700-750°С, термомеханическую обработку путем многопроходной холодной деформации с суммарной степенью обжатия от 31 до 99%, последеформационного отжига при температуре 500-600°С и завершающего закалочного охлаждения в воде. После механическое псевдоупругое циклирование полученной заготовки в условиях одноосного растяжения до достижения 2% деформации в течение 50-100 циклов и снятия нагрузки.
К недостаткам этого способа относится обработка на первых этапах давлением, без вакуума. При нагреве сплава более 400 градусов не в вакууме или инертной среде замечено поглощение кислорода титаном и танталом, что негативно сказывается на усталостные свойства конечного продукта - проволоки.
Наиболее близком к предложенному изобретению является способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы патент РФ 2656626. Способ обработки материала включает деформационно-термическую обработку заготовки из сплава титан-ниобий-тантал-цирконий, включающую гомогенизирующий отжиг слитка при температуре 600°С в вакуумной среде в течении 16 часов, прокат слитка в пластину с дальнейшей нарезкой ее электроэрозионным способом на прутки квадратного сечения, ротационную ковку и волочение до искомого диаметра в 0,28 мм.
К недостаткам данного способа можно отметить прокат слитка в пластину с дальнейшей ее нарезкой. Данный способ требует дополнительного технологического этапа работы и соответственно оборудования для электроэрозионной резки, а также вносит снижение длины получаемой проволоки по отношению к предложенному способу в несколько раз.
Задачей изобретения является создание способа получения тонкой проволоки из безникелевого сплава TiNiTa для целей использования в медицинских изделиях Кава-фильтр и стент.
Техническим результатом является получение единой тонкой проволока диаметром 0,18 мм из сплава TiNiTa. (фиг. 5.)
Технический результат достигается тем, что в способе получения тонкой проволоки из сплава TiNiTa, состоящем из выплавки заготовки, деформационно-термической обработки заготовки из сплава титан-ниобий-тантал-цирконий, сочетающем гомогенизирующий отжиг, интенсивная многоступенчатая пластическая деформация и рекристаллизационный отжиг, минимизируя при этом образование оксидов титана и тантала за счет проведения отжигов в вакууме 5*10-5 мм. рт. ст., единая проволока получается из целого слитка, без необходимости разделения слитка на части, как в прототипе, что повышает практичность способа. Согласно изобретению изготовление проволоки проводится в 5 этапов. На первом этапе, используя в качестве шихтовых материалов йодидный титан, технически чистый никель и технически чистый тантал, выплавка слитков проводилась в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, на втором этапе выплавленные слитки подвергали гомогенизационному отжигу в вакууме 5*10-5 мм. рт. ст. при температуре 600°С в течении 12 ч, на третьем этапе производится процесс прокатки, заключается в том, что заготовка обжимается (сдавливается), проходя в зазор между вращающимися валками, при этом, она уменьшается в своем поперечном сечении и увеличивается в длину. Прокатка происходит на реверсивном стане до сечения 10x10 мм2. На четвертом этапе ротационная ковка, заключающаяся в уменьшение площади поперечного сечения заготовки под воздействием перемещающегося в радиальном направлении инструмента при относительном вращении заготовки и инструмента. На пятом этапе проводится волочение, процесс характеризующийся постепенным однократным или многократным протягивания последнего через специальный волочильный инструмент, предназначенный для поэтапного уменьшения поперечного сечения исходной заготовки до искомого диаметра в 0,18 мм.
На сегодняшний день наибольшей популярностью пользуется сплав NiTi для изготовления медицинских изделий типа Стент. Однако известны другие составы сплавов, коррозионная стойкость которых выше, при прочих свойствах сопоставимыми с NiTi. Перспективными видятся сплав TiNiTa.
Сплав является довольно технологичным и позволяет проводить механическую обработку при комнатной температуре, при снятии наклепа при помощи отжига.
Пример конкретной реализации изобретения:
Элетродуговой переплав
Плавка навесок проводилась в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом LK8 фирмы LEYBOLD-HERAEUS (Германия). Навески помещались в медный водоохлаждаемый кристаллизатор, после чего рабочая камера герметично закрывалась и вакуумировалась до давления 1*10-2 мм. рт. ст. После этого в камеру напускался аргон до давления 2 атм. В процессе первых 2-3 переплавов получали единый слиток, последующие переплавы направлены на получение равномерного химического состава по всему объему слитка. Длительность каждой плавки одного слитка 1-1,5 мин. Перед плавкой слитка расплавлялся геттер. В качестве геттера использовался слиток йодидного циркония массой 15-20 г. Каждый слиток переплавляли 7 раз. Далее в этих условиях полученные слитки сплавляются в единый слиток весом 60 г за 2 переплава. Конечный слиток имел длину 60-70 мм, ширину 20-25 мм, высоту 10-12 мм.
На фиг. 1 представлена схема вакуумной дуговой печи с нерасходуемым электродом, где: 1 - корпус печи, 2 - нерасходуемый электрод, 3 - электрододержатель, 4 - кристаллизатор, 5 - поддон, 6 - вакуумное уплотнение, 7 - механизм перемещения электрода, 8 - автоматический регулятор перемещения электрода, 9 - источник питания печи, 10 - вакуумная система, 11 - регулятор тока, 12 - пульт управления 13 - подвижный поток.
Термообработка.
Выплавленные слитки подвергали гомогенизационному отжигу в печи СШВ3-1.2,5/25-ИЗ. Слитки отжигали в вакууме 5*10-5 мм. рт. ст. при температуре 600°С в течении 12 ч.
Прокатка слитков.
Сущность процесса прокатки заключается в том, что заготовка обжимается (сдавливается), проходя в зазор между вращающимися валками, при этом, она уменьшается в своем поперечном сечении и увеличивается в длину. Форма поперечного сечения называется профилем.
Процесс прокатки обеспечивается силами трения между вращающимся инструментом и заготовкой, благодаря которым заготовка перемещается в зазоре между валками, одновременно деформируясь. В момент захвата металла со стороны каждого валка действуют на металл две силы: нормальная сила N и касательная сила трения Τ (рис.).
На фиг. 2 изображена схема сил, действующих при прокатке: N - нормальная сила; Τ - касательная сила трения; α - угол между нормальной силой и вертикалью
Прокатка происходила на реверсивном стане ДУО-300. Выплавленные слитки деформировали на воздухе до сечения 10x10 мм2. Заготовки подогревали на воздухе до температуры 600°С. Нагрев осуществлялся непосредственно перед деформацией в печи KYLS 20.18.40/10.
Ротационная ковка.
Ротационная ковка - уменьшение площади поперечного сечения заготовки под воздействием перемещающегося в радиальном направлении инструмента при относительном вращении заготовки и инструмента.
На фиг. 3 изображена схема ротационной ковки.
Ротационная ковка заготовок последовательно проводилась на радиальных ковочных машинах В2129.02, В2127.01, В2123.01 (Россия) с последовательной сменой бойков. Подогрев заготовок на воздухе непосредственно перед деформацией осуществлялся в печи ПТС-2000-40-1200 (Россия).
Волочение.
Волочение проволоки - это процесс обработки металла давлением, характеризующийся постепенным однократным или многократным протягивания последнего через специальный волочильный инструмент, предназначенный для поэтапного уменьшения поперечного сечения исходной заготовки. Принципиальная схема волочения приведена на фиг. 4, где 1 - фильера; 2 - проволока; Fo - площадь поперечного сечения на входе в фильеру; Fk - площадь поперечного сечения на выходе из фильеры.
На фиг. 4 изображена схема волочения.
С диаметра проволоки 2 мм до диаметра 0,4 мм волочение производилось на машине C7328/ZF фирмы «ТНЕ NORTHWEST MACHIBE CO.LTD» (Китай). Волочение проходило на воздухе. В качестве смазки использовался аквадаг.
С диаметра 2 мм до диаметра 0,4 мм волочение производилось на машине UDZWGW 100/8 (Германия). Скорость волочения 0,7 м/мин. С диаметра 0,4 мм до 0,18 мм шаг фильер составлял 0,02 мм. Волочение проходило на воздухе. В качестве смазки использовался аквадаг. Финальная проволока получила диаметр 0,18 мм (фиг. 6).

Claims (1)

  1. Способ получения проволоки из сплава титан-никель-тантал для производства сферического порошка, включающий выплавку слитков сплава из исходных материалов в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, гомогенизирующий отжиг слитков в вакууме 5⋅10-5 мм рт. ст., интенсивную пластическую деформацию слитков с получением проволоки и рекристаллизационный отжиг полученной проволоки, отличающийся тем, что гомогенизирующий отжиг слитков осуществляют при температуре 600°С в течение 12 ч, интенсивную пластическую деформацию осуществляют путем прокатки на реверсивном стане до сечения заготовки 10х10 мм2, ротационной ковки на воздухе при температуре 600°С и одно- или многократного волочения до диаметра проволоки 0,18 мм, а рекристаллизационный отжиг полученной проволоки проводят в вакууме при температуре 600°С в течение 12 ч.
RU2020143076A 2020-12-25 2020-12-25 Способ получения тонкой проволоки из сплава TiNiTa RU2759624C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020143076A RU2759624C1 (ru) 2020-12-25 2020-12-25 Способ получения тонкой проволоки из сплава TiNiTa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020143076A RU2759624C1 (ru) 2020-12-25 2020-12-25 Способ получения тонкой проволоки из сплава TiNiTa

Publications (1)

Publication Number Publication Date
RU2759624C1 true RU2759624C1 (ru) 2021-11-16

Family

ID=78607202

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020143076A RU2759624C1 (ru) 2020-12-25 2020-12-25 Способ получения тонкой проволоки из сплава TiNiTa

Country Status (1)

Country Link
RU (1) RU2759624C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132526A (en) * 1997-12-18 2000-10-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Titanium-based intermetallic alloys
RU2536614C2 (ru) * 2013-04-09 2014-12-27 Общество с ограниченной ответственностью "Промышленный центр МАТЭК-СПФ" Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы
RU2621535C1 (ru) * 2016-11-02 2017-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы
RU2656626C1 (ru) * 2017-05-15 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
RU2694099C1 (ru) * 2018-10-22 2019-07-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr
CN109355530B (zh) * 2018-11-21 2020-01-03 中国科学院金属研究所 一种耐热钛合金丝材的制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132526A (en) * 1997-12-18 2000-10-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Titanium-based intermetallic alloys
RU2536614C2 (ru) * 2013-04-09 2014-12-27 Общество с ограниченной ответственностью "Промышленный центр МАТЭК-СПФ" Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы
RU2621535C1 (ru) * 2016-11-02 2017-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы
RU2656626C1 (ru) * 2017-05-15 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
RU2694099C1 (ru) * 2018-10-22 2019-07-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr
CN109355530B (zh) * 2018-11-21 2020-01-03 中国科学院金属研究所 一种耐热钛合金丝材的制备方法和应用

Similar Documents

Publication Publication Date Title
RU2694099C1 (ru) Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr
JP6208320B2 (ja) ニッケル−チタン合金の熱機械処理
US5624505A (en) Titanium matrix composites
JP2016512287A5 (ru)
US10407745B2 (en) Methods for producing titanium and titanium alloy articles
RU2536614C2 (ru) Способ получения прутков и способ получения тонкой проволоки из сплава системы никель-титан с эффектом памяти формы
RU2771342C1 (ru) Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы
JP2004353067A (ja) マグネシウム基合金成形体の製造方法
RU2751065C1 (ru) Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка
RU2759624C1 (ru) Способ получения тонкой проволоки из сплава TiNiTa
RU2314362C2 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ α- ИЛИ α+β-ТИТАНОВЫХ СПЛАВОВ
USH1659H (en) Method for heat treating titanium aluminide alloys
JP5605546B2 (ja) α+β型チタン合金とその製造方法並びにチタン合金材の製造方法
JPH08144034A (ja) Ti−Al系金属間化合物基合金の製造方法
US3377211A (en) Tungsten base alloy treatment
JP2729011B2 (ja) 高強度を有するTiAl基金属間化合物合金及びその製造方法
JP3328557B2 (ja) 高強度を有するTiAl基金属間化合物合金及びその製造方法
CN106507837B (zh) 一种超塑性钛合金
RU2807260C1 (ru) Способ изготовления прутков из бронзы БрХ08
CN117144166A (zh) 一种医用镍钛合金线的生产方法及其生产装置
KR101468689B1 (ko) 저온 초소성이 높은 소재를 대량으로 제조하는 방법
KENZHEGULOV et al. Study of titanium alloy Ti–Al–Zr–Nb–V during heating under deformation and its phase transformation features
JP3056541B2 (ja) TiAl基金属間化合物とその製造方法
SU894015A1 (ru) Способ обработки алюмини и его сплавов
JPH05209243A (ja) 超塑性変形能を有するβ+γTiAl基金属間化合物合金とその製造方法