RU2636548C1 - Термокоррозионностойкий алюминиевый сплав - Google Patents

Термокоррозионностойкий алюминиевый сплав Download PDF

Info

Publication number
RU2636548C1
RU2636548C1 RU2016120393A RU2016120393A RU2636548C1 RU 2636548 C1 RU2636548 C1 RU 2636548C1 RU 2016120393 A RU2016120393 A RU 2016120393A RU 2016120393 A RU2016120393 A RU 2016120393A RU 2636548 C1 RU2636548 C1 RU 2636548C1
Authority
RU
Russia
Prior art keywords
alloy
zirconium
amount
aluminum alloy
rare
Prior art date
Application number
RU2016120393A
Other languages
English (en)
Inventor
Валерий Кондратьевич Барсуков
Евгений Валерьевич Барсуков
Денис Александрович Курашов
Владимир Григорьевич Савченко
Original Assignee
Общество с ограниченной ответственностью "СЕВАН"
Общество с ограниченной ответственностью "Опытно-конструкторское предприятие "ЭЛКА-Кабель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "СЕВАН", Общество с ограниченной ответственностью "Опытно-конструкторское предприятие "ЭЛКА-Кабель" filed Critical Общество с ограниченной ответственностью "СЕВАН"
Priority to RU2016120393A priority Critical patent/RU2636548C1/ru
Application granted granted Critical
Publication of RU2636548C1 publication Critical patent/RU2636548C1/ru

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

Изобретение относится к области металлургии проводниковых алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения, в частности проводов высоковольтных ЛЭП и кабелей погружных нефтенасосов, работающих при температуре до 230°C, когда требуется сочетание высокой прочности при повышенных температурах, высокой коррозионностойкости, повышенной электропроводности, пониженной ползучести и пониженной массы. Алюминиевый сплав содержит, мас. %: цирконий 0,2-0,32; железо 0,15-0,42; кремний 0,02-0,1; титан, хром, ванадий, марганец в сумме 0,01-0,04; магний, медь, цинк в сумме 0,01-0,07; никель 0,005-0,1; бор 0,001-0,01; алюминий остальное. Техническим результатом изобретения является повышение термостойкости и коррозионностойкости алюминиевого сплава. Сплав высокотехнологичен и обладает повышенными эксплуатационными характеристиками. 3 з.п. ф-лы, 1 пр., 2 табл.

Description

Изобретение относится к области металлургии проводниковых алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения, в частности проводов высоковольтных ЛЭП и кабелей погружных нефтенасосов, работающих при температуре до 230°C, когда требуется сочетание высокой прочности при повышенных температурах, высокой коррозионностойкости, повышенной электропроводности, пониженной ползучести и пониженной массы.
Известны марки алюминия и алюминиевых сплавов, широко применяемых при производстве изделий электротехнического назначения. В частности, технически чистый алюминий марки А5Е и А7Е с содержанием алюминия 99,5 и 99,7 мас. % соответственно используется для изготовления токопроводящих жил кабелей и проводов ЛЭП. Проводниковый алюминий марки А5Е и А7Е имеет достаточно высокие значения электропроводности, механической прочности и коррозионностойкости при низкой плотности. В кабельной промышленности используется также алюминиевый сплав марки ABE системы Al-Si-Mg, который имеет повышенную механическую прочность по сравнению с алюминием марки А5Е и А7Е, но при этом пониженную электропроводность. Общим недостатком алюминия марки А5Е, А7Е и алюминиевого сплава ABE является их низкая термическая стабильность из-за сильного разупрочнения при нагревах свыше 100°C. Проводниковый алюминий и сплав ABE не могут использоваться в изделиях, длительно работающих в условиях высоких температур. Существенного повышения термической стабильности проводниковых алюминиевых сплавов можно добиться за счет введения редких или редкоземельных металлов (РЗМ), в первую очередь циркония. Известны проводниковые алюминиевые сплавы, содержащие редкоземельные металлы и цирконий, с высоким уровнем прочностных характеристик, в том числе при повышенных температурах (патенты РФ №№2441090, 2458170, 2492258, патент US 4402763). Однако все эти сплавы обладают недостаточной электропроводностью из-за повышенного содержания РЗМ и циркония.
Наиболее близким аналогом к заявленному изобретению, принятым за прототип, является алюминиевый сплав, содержащий, мас. %: цирконий 0,1-0,19; железо 0,21-0,35; кремний 0,11-0,15; сумму примесей титана, хрома, ванадия и марганца до 0,015; алюминий - остальное (патент РФ №2458151 С1, МПК С21С 1/02, 2010). Недостаток прототипа - пониженная термостойкость (до 150°C).
Технической задачей изобретения является создание нового проводникового термокоррозионностойкого алюминиевого сплава с добавкой циркония, не уступающего прототипу по электропроводности и прочности, но исключающего приведенный недостаток и обеспечивающего лучшее сочетание термостойкости и коррозионностойкости.
Технический результат достигается тем, что термокоррозионностойкий алюминиевый сплав, содержащий цирконий, железо, кремний, титан, хром, ванадий и марганец, дополнительно содержит магний, медь, цинк, никель и бор при следующем соотношении компонентов, мас. %: цирконий 0,2-0,32; железо 0,15-0,42; кремний 0,02-0,1; титан, хром, ванадий, марганец в сумме 0,01-0,04; магний, медь, цинк в сумме 0,01-0,07; никель 0,005-0,1; бор 0,001-0,01; алюминий остальное.
В качестве основного модификатора, повышающего термостойкость алюминиевого сплава, выбран цирконий. Выбор циркония обусловлен его наибольшим влиянием на термостойкость алюминиевых сплавов, широкой известностью и доступностью, пониженной стоимостью. Добавки циркония в алюминиевые сплавы обеспечивают образование мелкодисперсных интерметаллидов Al3Zr, которые вызывают резкое и стабильное измельчение зерна. Стабильность структуры Al-Zr сплавов при воздействии температуры обуславливается малым коэффициентом диффузии циркония в алюминии и устойчивостью дисперсных частиц интерметаллидов. При этом существенно повышается температура рекристаллизации и термостойкость сплава, повышаются прочностные характеристики, снижается ползучесть, уменьшаются окислительные процессы (коррозия) под действием электрического тока высокого напряжения, улучшается свариваемость.
Отличительным признаком заявляемого сплава является содержание циркония в пределах 0,2-0,32 мас. %. Наличие циркония в заявленных пределах позволяет обеспечить термостойкость сплава до 230°C, что существенно выше, чем у прототипа. При этом обеспечивается наилучшее сочетание механических свойств, электропроводности и коррозионностойкости сплава, в том числе при повышенной температуре. Избыток циркония (>0,32%) приводит к снижению пластичности и электропроводности сплава, а его недостаток (<0,2%) - к снижению термостойкости и прочности. Наличие железа в заявленных пределах позволяет обеспечить в присутствии кремния необходимое количество компактных частиц, преимущественно фазы Al8Fe2Si, что благоприятно сказывается на технологичности при литье и волочении. При этом железо повышает прочность и жаропрочность алюминиевого сплава и снижает его ползучесть. Избыток железа (>0,42%) приводит к снижению коррозионной стойкости, электропроводности и пластичности данного сплава, а его недостаток (<0,15%) - к снижению прочности и технологичности. Наличие кремния в заявленных пределах и при оптимальном соотношении с другими элементами позволяет обеспечить связывание железа в фазу Al8Fe2Si. Избыток кремния (>0,1%) приводит к снижению электропроводности и термостойкости, а его недостаток (<0,02%) - к снижению прочности и технологичности. Сумма тяжелых металлов: титан, хром, ванадий и марганец в заявленных пределах при оптимальном соотношении между собой и другими элементами ограничивает рост зерна и затормаживает процессы диффузии, образуя стабильные сложнолегированные упрочняющие фазы. При этом повышается коррозионностойкость, прочность и жаропрочность сплава, значительно уменьшается склонность к трещинообразованию. Избыток суммы тяжелых металлов (>0,04%) приводит к снижению электропроводности сплава, а ее недостаток (<0,01%) - к снижению коррозионностойкости и прочности. Заявляемый сплав отличается также тем, что он дополнительно содержит магний, медь, цинк и бор. Металлы магний, медь и цинк имеют наибольшую по сравнению с другими известными элементами растворимость в твердом алюминии, резко снижающуюся с понижением температуры. В результате чего при охлаждении сплавов с этими компонентами из твердого раствора выделяются интерметаллидные фазы, а при нагреве - растворяются. Это фазовое превращение открыло возможность в сильной степени влиять на структуру и свойства алюминиевого сплава посредством термической обработки. Сумма перечисленных металлов в заявленных пределах при оптимальном соотношении между собой и другими элементами, в первую очередь кремнием, повышает технологичность сплава при термической обработке. При этом улучшаются прочностные характеристики сплава и его электропроводность. Избыток суммы магния, меди и цинка (>0,07%) приводит к снижению электропроводности и коррозионностойкости сплава, а ее недостаток (<0,01%) - к снижению технологичности и эффективности термообработки. Никель является модифицирующей добавкой для повышения жаропрочности термокоррозионностойкого алюминиевого сплава. Никель затормаживает диффузионные процессы и образует сложнолегированные мелкодисперсные упрочняющие фазы, устойчивые к коагуляции при нагреве. Сплавы алюминия с никелем обладают высокой пластичностью и технологичностью в горячем состоянии при деформировании. Избыток никеля (>0,1%) приводит к снижению коррозионностойкости и электропроводности сплава, а его недостаток (<0,005%) - к снижению эффективности. Полуметалл бор также является модифицирующей добавкой для алюминиевых сплавов. Количество бора в заявленных пределах, особенно в присутствии титана, эффективно измельчает зерно алюминиевого сплава. Бор способствует улучшению механических свойств, пластичности и электропроводности, равномерности свойств во всем объеме. Бор способствует также нейтрализации отрицательного воздействия вредных примесей: галлия, водорода и др. Вступая в реакцию с этими примесями, бор образует нерастворимые соединения, выводя их из твердого раствора. При этом увеличивается коррозионностойкость сплава и существенно снижается газовая (водородная) пористость. Избыток бора (>0,01%) приводит к снижению эффективности циркония и тяжелых металлов и, как следствие, к снижению термостойкости и коррозионностойкости сплава, а его недостаток (<0,001%) - к повышению газовой пористости.
Для повышения эксплуатационных характеристик проводникового термокоррозионностойкого алюминиевого сплава в него может быть дополнительно введен один из редких или редкоземельных металлов из группы: ниобий, церий, иттрий, скандий при следующем соотношении компонентов, мас. %: цирконий 0,2-0,32; железо 0,15-0,42; кремний 0,02-0,1; титан, хром, ванадий, марганец в сумме 0,01-0,04; магний, медь, цинк в сумме 0,01-0,07; никель 0,005-0,1; бор 0,001-0,01; один из редких или редкоземельных металлов из группы: ниобий, церий, иттрий, скандий 0,005-0,2; алюминий остальное. Избыток редкого или редкоземельного металла (>0,2%) приводит к снижению пластичности и увеличению стоимости сплава, а его недостаток (<0,005%) - к снижению коррозионностойкости и электропроводности.
Небольшие добавки (до 0,2%) редких или редкоземельных металлов позволяют существенно увеличить прочность, пластичность, термостойкость, коррозионностойкость и электропроводность алюминиевого сплава. Например, добавка ниобия в количестве всего 0,05% повышает коррозионностойкость алюминиевого сплава в 3 раза. Добавка церия в количестве до 0,2% повышает прочность, пластичность и термостойкость алюминиевого сплава на 20%. При этом увеличивается электропроводность сплава. Добавка 0,15% иттрия увеличивает на 5% электропроводность алюминиевого сплава, а также увеличивает его прочность, пластичность и термостойкость. Добавка 0,2% скандия повышает прочность алюминиевого сплава на 30%. При этом увеличивается пластичность, электропроводность, термостойкость и коррозионностойкость сплава.
Алюминиевый сплав с улучшенной структурой и физико-механическими свойствами может быть получен также путем физического или механического способа воздействия. Физический способ получения алюминиевого сплава с ультрамелкозернистой или нанокристаллической структурой основан на литье в высокочастотном электромагнитном поле. Данный способ позволяет получать алюминиевые сплавы, не теряющие своих свойств при длительной эксплуатации в условиях высоких температур. Механический способ основан на явлении деформационного измельчения зеренной структуры металла в процессе интенсивной пластической деформации (ИПД). Методы ИПД: равноканальное угловое прессование, деформация кручением, винтовая экструзия, всесторонняя ковка. Данные методы позволяют получать алюминиевые сплавы с размером зерен от сотен до десятков нанометров, обладающие уникальным комплексом физико-механических свойств, в том числе высокоскоростной сверхпластичностью, сверхпрочностью, термостойкостью и коррозионностойкостью.
Исходной заготовкой для получения проволоки из алюминиевого сплава является катанка диаметром 9-14 мм, получаемая либо прокаткой слитков на проволочно-прокатном стане, либо из расплавленного металла методом непрерывного литья и проката. Технология получения катанки по первому способу включает в себя множество основных и промежуточных технологических операций. Это приводит к существенному повышению трудоемкости и энергозатратам, увеличению технологических потерь и, как следствие, повышению себестоимости и снижению качества катанки. Наиболее прогрессивным способом получения катанки из алюминиевого сплава является ее получение непосредственно из жидкого металла. Жидкий алюминиевый сплав в этом случае подается в кристаллизатор. На выходе из него металл кристаллизуется и в виде стержня сразу же подается на последовательно расположенные прокатные валки для получения катанки.
Примеры реализации изобретения.
В соответствии с таблицей 1 было изготовлено несколько вариантов разработанного сплава в виде катанки диаметром 9,5 мм с разным содержанием циркония и остальных компонентов. Изготовление катанки производилось на литейно-прокатном агрегате, представляющем собой одну непрерывную линию совмещенной обработки. Для повышения эксплуатационных характеристик вся изготовленная катанка подвергалась термообработке по специальной программе. Варка сплавов осуществлялась в индукционной печи из первичного алюминия с добавками циркония и других компонентов из расчета получения требуемого состава сплава. Последней добавлялась лигатура Al-Ti-B для нейтрализации вредных примесей типа галлий, удаления водорода и измельчения зерна. В таблице 2 приведены характеристики изготовленных вариантов сплава. Временное сопротивление разрыву и относительное удлинение катанки определяли по ГОСТ 1497-84. Удельное электрическое сопротивление катанки (обратная величина электропроводности) определяли по ГОСТ 7229-76. Термостойкость катанки определяли при температуре 230°C в соответствии с требованиями IEC 62004. Технологичность катанки определяли в процессе ее термообработки и волочения проволоки. Для оценки коррозионностойкости образцов проволоки, полученной из катанки, использовали измерительный комплекс американской фирмы RCS. Коррозионностойкость образцов проволоки определяли в трех коррозийных средах при температуре от 20 до 95°C. Коррозийные водные среды готовили по методикам в соответствии с ГОСТ 9.502-82. Коррозийная среда №1 (модель пластовой воды) по ГОСТ 9.502-82 содержит NaCl, MgSO4, Na2SO4, NaHCO3, СаС12 и H2O. Коррозийная среда №2 - модель пластовой воды, насыщенной CO2 в количестве 1,5 г/л. Коррозийная среда №3 - модель пластовой воды, насыщенной H2S в количестве 1,5 г/л. Из таблицы 2 видно, что содержание компонентов нового сплава в заявленных пределах обеспечивает более высокие по сравнению с прототипом эксплуатационные характеристики катанки.
Предложенный сплав позволяет изготавливать из него токопроводящие жилы проводов и кабелей, длительно работающих при повышенных температурах (до 230°C) и в агрессивной среде (нефтяных скважинах). Кроме того, высокий уровень пластических свойств расширяет технологические возможности изготовления из него деформированных изделий в виде катанки, прутков и проволоки различного сечения, имеющих сравнительно низкую себестоимость. Опытные партии катанки из нового сплава прошли всесторонние испытания с положительными результатами на кабельных заводах РФ.
Figure 00000001
Figure 00000002

Claims (4)

1. Термокоррозионностойкий алюминиевый сплав, содержащий цирконий, железо, кремний, титан, хром, ванадий и марганец, отличающийся тем, что он дополнительно содержит магний, медь, цинк, никель и бор при следующем соотношении компонентов, мас. %: цирконий 0,2-0,32; железо 0,15-0,42; кремний 0,02-0,1; титан, хром, ванадий, марганец в сумме 0,01-0,04; магний, медь, цинк в сумме 0,01-0,07; никель 0,005-0,1; бор 0,001-0,01; алюминий - остальное.
2. Термокоррозионностойкий алюминиевый сплав по п. 1, отличающийся тем, что он дополнительно содержит один из редких или редкоземельных металлов из группы, включающей ниобий, церий, иттрий, скандий, при следующем соотношении компонентов, мас. %: цирконий 0,2-0,32; железо 0,15-0,42; кремний 0,02-0,1; титан, хром, ванадий, марганец в сумме 0,01-0,04; магний, медь, цинк в сумме 0,01-0,07; никель 0,005-0,1; бор 0,001-0,01; 0,005-0,2 одного из редких или редкоземельных металлов из группы, включающей ниобий, церий, иттрий, скандий, алюминий - остальное.
3. Термокоррозионностойкий алюминиевый сплав по п. 1, отличающийся тем, что он получен в виде катанки, изготовленной при литье алюминиевого сплава в высокочастотном электромагнитном поле.
4. Термокоррозионностойкий алюминиевый сплав по п. 1, отличающийся тем, что он получен в виде катанки, изготовленной методом интенсивной пластической деформации.
RU2016120393A 2016-05-25 2016-05-25 Термокоррозионностойкий алюминиевый сплав RU2636548C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120393A RU2636548C1 (ru) 2016-05-25 2016-05-25 Термокоррозионностойкий алюминиевый сплав

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120393A RU2636548C1 (ru) 2016-05-25 2016-05-25 Термокоррозионностойкий алюминиевый сплав

Publications (1)

Publication Number Publication Date
RU2636548C1 true RU2636548C1 (ru) 2017-11-23

Family

ID=63853265

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120393A RU2636548C1 (ru) 2016-05-25 2016-05-25 Термокоррозионностойкий алюминиевый сплав

Country Status (1)

Country Link
RU (1) RU2636548C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108015283A (zh) * 2018-01-24 2018-05-11 山东建筑大学 一种制备纳米级可再生抗菌医用多孔钛镁骨骼材料的方法
RU2770131C2 (ru) * 2018-04-30 2022-04-14 Дженерал Кейбл Текнолоджиз Корпорейшн Сварочные проволоки, полученные из улучшенных алюминиево-магниевых сплавов
CN115305419A (zh) * 2022-07-29 2022-11-08 江苏财发铝业股份有限公司 一种耐腐蚀铝合金材料及其加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU514806A1 (ru) * 1974-08-21 1976-05-25 Институт Нефте- И Углехимического Синтеза При Иркутском Государственном Университете Им.А.А.Жданова Способ получени 4-окси-2-бутиновой кислоты
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
RU2458151C1 (ru) * 2010-12-09 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
RU2458170C1 (ru) * 2011-01-31 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
RU2544331C1 (ru) * 2014-01-23 2015-03-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU514806A1 (ru) * 1974-08-21 1976-05-25 Институт Нефте- И Углехимического Синтеза При Иркутском Государственном Университете Им.А.А.Жданова Способ получени 4-окси-2-бутиновой кислоты
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
RU2458151C1 (ru) * 2010-12-09 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
RU2458170C1 (ru) * 2011-01-31 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
RU2544331C1 (ru) * 2014-01-23 2015-03-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108015283A (zh) * 2018-01-24 2018-05-11 山东建筑大学 一种制备纳米级可再生抗菌医用多孔钛镁骨骼材料的方法
CN108015283B (zh) * 2018-01-24 2023-06-16 山东建筑大学 一种制备纳米级可再生抗菌医用多孔钛镁骨骼材料的方法
RU2770131C2 (ru) * 2018-04-30 2022-04-14 Дженерал Кейбл Текнолоджиз Корпорейшн Сварочные проволоки, полученные из улучшенных алюминиево-магниевых сплавов
US11559860B2 (en) 2018-04-30 2023-01-24 General Cable Technologies Corporation Welding wires formed from improved aluminum-magnesium alloys
CN115305419A (zh) * 2022-07-29 2022-11-08 江苏财发铝业股份有限公司 一种耐腐蚀铝合金材料及其加工工艺

Similar Documents

Publication Publication Date Title
JP6140032B2 (ja) 銅合金板材およびその製造方法並びに通電部品
CN106636806B (zh) 一种细小晶粒中等强度铝合金及其制备方法与应用
RU2636548C1 (ru) Термокоррозионностойкий алюминиевый сплав
RU2446222C1 (ru) Термостойкий сплав на основе алюминия и способ получения из него деформированных полуфабрикатов
CN108315581B (zh) 一种高强度高软化温度的低铍铜合金及其制备方法
JP2016505713A (ja) 耐熱性アルミニウムベース合金および製造方法
JP2016505713A5 (ru)
RU2639284C2 (ru) Термокоррозионно-стойкий алюминиевый сплав
Jabłoński et al. Effect of iron addition to aluminium on the structure and properties of wires used for electrical purposes
RU2541263C2 (ru) Проводниковый термостойкий сплав на основе алюминия
US1945288A (en) Zinc base alloy
JP2011162826A (ja) アルミニウム合金線
JP6389414B2 (ja) 銅合金板材の製造方法
JP2020516777A (ja) ケーブル導体用アルミニウム合金
CN105568190A (zh) Al-5.6Zn-2.1Mg-1.2Cu-0.1Zr-0.1Er合金双级时效工艺
RU2657678C1 (ru) Способ получения катанки из термостойкого сплава на основе алюминия
CN101638758A (zh) Ag-Cu原位纤维复合材料及其制备方法
Naumova et al. Investigation of the structure and properties of eutectic alloys of the Al–Ca–Ni system containing REM
RU2441090C2 (ru) Проводниковый термостойкий сплав на основе алюминия
CN103225049A (zh) 一种改善中强铝合金导电率的处理工艺
RU2696797C2 (ru) Алюминиево-циркониевый сплав
WO2018004373A1 (ru) Термостойкий сплав на основе алюминия&lt;/font
RU2648339C2 (ru) Проводниковый алюминиевый сплав и изделие из него
JP6473465B2 (ja) アルミニウム合金導体電線及びその製造方法
Knych et al. Selected aspects of evolution properties of oxygen free copper for high-advanced electrotechnical application