RU2656493C2 - Способ отделения диоксида углерода - Google Patents

Способ отделения диоксида углерода Download PDF

Info

Publication number
RU2656493C2
RU2656493C2 RU2016127459A RU2016127459A RU2656493C2 RU 2656493 C2 RU2656493 C2 RU 2656493C2 RU 2016127459 A RU2016127459 A RU 2016127459A RU 2016127459 A RU2016127459 A RU 2016127459A RU 2656493 C2 RU2656493 C2 RU 2656493C2
Authority
RU
Russia
Prior art keywords
gaseous mixture
fraction
component
carbon dioxide
gaseous
Prior art date
Application number
RU2016127459A
Other languages
English (en)
Inventor
Джон К. ХОЛЛ
Д. Энтони ГЭЛЭССО
Джон А. МЭГНУСОН
Original Assignee
Зе Боинг Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зе Боинг Компани filed Critical Зе Боинг Компани
Application granted granted Critical
Publication of RU2656493C2 publication Critical patent/RU2656493C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/24Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/10Processes or apparatus using other separation and/or other processing means using combined expansion and separation, e.g. in a vortex tube, "Ranque tube" or a "cyclonic fluid separator", i.e. combination of an isentropic nozzle and a cyclonic separator; Centrifugal separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

Изобретение относится к нефтяной, газовой и химической промышленности и может быть использовано при разделении смесей, содержащих диоксид углерода. Разделяемая газообразная смесь содержит первый компонент, содержащий диоксид углерода, и второй компонент, содержащий углеводород. Первый компонент содержится в газообразной смеси в первом массовом процентном содержании – по меньшей мере 80%. Газообразную смесь сжимают закачиванием в емкость высокого давления до давления по меньшей мере 6,895 МПа с образованием жидкой фракции, содержащей первый компонент во втором массовом процентном содержании, которое больше первого - по меньшей мере 90%, и газообразной фракции, содержащей второй компонент. Жидкую фракцию отделяют от газообразной фракции и направляют в нефтяную скважину. Углеводород сжигают с получением электрической энергии. 7 з.п. ф-лы, 5 ил.

Description

Область техники
Данная заявка относится к фракционному разделению и, в частности, к системам и способам фракционного разделения газообразной смеси, содержащей диоксид углерода.
Уровень техники
Нефтяная скважина обычно забирает приблизительно 30% нефти из подземного нефтяного резервуара во время фазы первичной добычи. Дополнительные 20% нефти могут быть извлечены применением технологий вторичной добычи, например заводнением, которое повышает подземное давление. Метод Увеличения Нефтеотдачи - МУН ("Enchanted Oil Recovery - EOR") обеспечивает технология третичной добычи, приводящая к извлечению дополнительных 20% и более, нефти из подземных резервуаров.
В течение процесса использования МУН в подземный нефтяной резервуар вводят большие количества газа, тем самым принудительно извлекая дополнительную нефть из скважины. В качестве газа для метода МУН обычно используют диоксид углерода благодаря его способности смешиваться с подземной нефтью и делать нефть менее вязкой и легче поддающейся извлечению.
Большое количество инжектированного в нефтяную скважину диоксида углерода извлекается с извлекаемой нефтью. Однако извлеченный диоксид углерода обычно содержит значительные количества других компонентов, таких как водяной пар, метан, этан, пропан, бутан и пентан.
Повторное использование диоксида углерода, загрязненного данными компонентами в процессе использования метода МУН, приводит к существенному снижению эффективности работы.
Существующие технологии разделения, такие как разделение аминами, разделение растворителями и разделение молекулярным ситами, являются неэффективными для отделения диоксида углерода от газообразного потока из нефтяной скважины из-за сравнительно высокого процента в потоке диоксида углерода. Другие технологии, такие как сжигание в кислороде, впустую растрачивают запасы углеводородов в потоке.
Соответственно, специалисты в данной области продолжают исследование и разработки в области отделения диоксида углерода от газообразного потока нефтяной скважины.
Сущность изобретения
В одном варианте осуществления раскрытая система разделения может включать в себя источник газообразной смеси, причем газообразная смесь включает в себя по меньшей мере первый компонент и второй компонент, и сепарационную установку, связанную с источником с возможностью приема газообразной смеси и выполненную с возможностью по меньшей мере частичного разделения первого компонента и второго компонента, при этом сепарационная установка включает в себя по меньшей мере один вихревой сепаратор и емкость высокого давления.
В другом варианте осуществления раскрытая система вихревого разделения может включать в себя источник газообразной смеси, причем газообразная смесь включает в себя по меньшей мере первый компонент и второй компонент, и вихревой сепаратор, связанный с источником, при этом вихревой сепаратор выполнен с возможностью приема газообразной смеси и с возможностью применения вихревого потока к газообразной смеси для по меньшей мере частичного разделения первого компонента и второго компонента.
В другом объекте раскрыта система отделения, которая включает в себя источник газообразной смеси, причем газовая смесь включает в себя по меньшей мере первый компонент и второй компонент, емкость высокого давления, сообщающуюся с источником, насос, гидравлически связанный с источником и емкостью высокого давления, при этом насос выполнен с возможностью нагнетания газообразной смеси в емкость высокого давления под давлением, достаточным для разделения газообразной смеси по меньшей мере на жидкую фракцию и газообразную фракцию.
В другом варианте осуществления раскрыт способ вихревого разделения газообразной смеси. Способ может включать в себя этапы, на которых: (1) - обеспечивают наличие газообразной смеси, имеющей по меньшей мере первый компонент и второй компонент, причем первый компонент составляет первое процентное содержание от газообразной смеси, (2) - направляют газообразную смесь по схеме вихревого потока, причем схема вихревого потока осуществляет по меньшей мере частичное разделение первого компонента от второго компонента, и (3) - забирают первую фракцию газообразной смеси из схемы вихревого потока, при этом первая фракция включает в себя первый компонент и первый компонент составляет второе процентное содержание от первой фракции, причем второе процентное содержание больше первого процентного содержания.
В другом варианте осуществления раскрывается способ вихревого разделения газообразной смеси, который может включать в себя этапы, на которых: (1) - обеспечивают наличие газообразной смеси, включающей в себя диоксид углерода и метан, причем диоксид углерода содержится в газообразной смеси в первом массовом процентном содержании, (2) - направляют газообразную смесь по схеме вихревого потока, при этом схема вихревого потока осуществляет по меньшей мере частичное разделение диоксида углерода от метана, и (3) - забирают первую фракцию газообразной смеси из схемы вихревого потока, при этом первая фракция содержит диоксид углерода, составляющего от первой фракции второе массовое процентное содержание, при этом второе массовое процентное содержание больше первого массового процентного содержания.
В другом варианте осуществления раскрывается способ разделения газа от газообразной смеси сжижением. Способ может включать в себя этапы, на которых: (1) - обеспечивают наличие газообразной смеси, имеющей по меньшей мере первый компонент и второй компонент, причем первый компонент содержится в газообразной смеси в первом массовом процентном содержании, (2) - сжимают газообразную смесь для образования жидкой фракции и газообразной фракции, причем первый компонент содержится в жидкой фракции во втором массовом процентном содержании, при этом второе массовое процентное содержание больше первого массового процентного содержания, и (3) - разделяют жидкую фракцию и газообразную фракцию.
Еще в одном примере раскрытый способ разделения может включать в себя этапы, на которых: (1) - обеспечивают наличие газообразной смеси, включающей в себя диоксид углерода и метан, причем диоксид углерода содержится в газообразной смеси в первом массовом процентном содержании, (2) - сжимают газообразную смесь для образования жидкой фракции и газообразной фракции, причем диоксид углерода содержится в жидкой фракции во втором массовом процентном содержании, при этом второе массовое процентное содержание больше первого массового процентного содержания, и (3) - разделяют жидкую фракцию и газообразную фракцию.
Другие варианты осуществления раскрытых систем разделения и способов станут очевидными из последующего подробного описания, сопровождающих чертежей и прилагаемой формулы изобретения.
Краткое описание чертежей
Фиг. 1 является схемой технологического процесса одного варианта осуществления раскрытой системы для отделения диоксида углерода;
Фиг. 2 является видом в перспективе вихревого сепаратора, примененного в качестве сепарационной установки системы для разделения фиг. 1;
Фиг. 3 является вертикальным видом сбоку в разрезе емкости высокого давления, примененной в качестве сепарационной установки системы для разделения по фиг. 1;
Фиг. 4 является технологической схемой, отображающей один вариант осуществления раскрытого способа разделения диоксида углерода (вихревой способ);
и Фиг. 5 является технологической схемой, отображающей другой вариант осуществления раскрытого способа разделения диоксида углерода (способ сжижения).
Подробное описание
По фиг. 1 один вариант раскрытой системы отделения диоксида углерода в целом обозначенной позицией 10, может включать в себя сепарационную установку 12 и источник 14 технологического газа. Система 10 может дополнительно включать в себя насос 16, первую емкость 18 и вторую емкость 20.
Источник технологического газа 14 может быть источником газообразной смеси. Газообразная смесь может быть любой газообразной смесью, способной к разделению по меньшей мере на две части (или фракции) сепарационной установкой 12 способами, рассмотренными более подробно ниже.
Газообразная смесь, подаваемая источником 14 газа, может включать в себя два компонентных газа или более. В первом представлении подаваемая газообразная смесь может включать в себя три компонентных газа. Во втором представлении подаваемая газообразная смесь может включать в себя четыре компонентных газа. В третьем представлении газообразная смесь может включать в себя пять компонентных газов. В четвертом представлении газообразная смесь может включать в себя шесть или более газов.
Компонентные газы газовой смеси могут быть газами при стандартной температуре и давлении (т.е. при 0°С и 1 бар). Однако специалистам в данной области техники понятно, что без отступления от объема данного изобретения температура и давление газообразной смеси могут меняться по разным причинам (например, от температуры и давления в источнике 14). Предполагается присутствие жидкой и/или твердой фазы, которая проходит по системе 10, что не приводит к выходу за пределы объема данного изобретения.
В одном конкретном приложении раскрытой системы 10 источник газа 14 может быть нефтяной скважиной, а газообразная смесь, подаваемая в сепарационную установку 12, может быть газообразным потоком, выходящим из сепаратора нефтяной скважины для отделения газа от нефти. При обработке нефтяной скважины методом МУН, использующим диоксид углерода, газообразная смесь, полученная из газового источника 14, может быть, в первую очередь, диоксидом углерода со значительной концентрацией других компонентов, таких как водяной пар и углеводороды. Углеводородный компонент газовой смеси может также включать в себя углеводороды с длинной цепочкой, например этан, пропан, бутан и пентан.
В качестве одного примера газообразная смесь, подаваемая нефтяной скважиной (источник 14), может включать в себя по меньшей мере 80% по массе диоксида углерода, причем остальное составляют другие компоненты, например водяной пар и углеводороды. В качестве другого примера газообразная смесь, подаваемая нефтяной скважиной (источник 14), может включать в себя по меньшей мере 85% по массе диоксида углерода, причем остальное составляют другие компоненты, например водяной пар и углеводороды. В качестве другого примера газообразная смесь, подаваемая нефтяной скважиной (источник 14), может включать в себя по меньшей мере 90% по массе диоксида углерода, причем остальное составляют другие компоненты, например водяной пар и углеводороды. В качестве еще одного примера газообразная смесь, подаваемая нефтяной скважиной (источник 14), может включать в себя по меньшей мере 95% по массе диоксида углерода, причем остальное составляют другие компоненты, например водяной пар и углеводороды.
Источник 14 газа может быть в гидравлической связи с сепарационной установкой 12 посредством линии 22 гидравлической связи. Для облегчения транспортировки газообразной смеси от источника 14 газа к сепарационной установке 12 по линии 22 гидравлической связи может быть предусмотрен насос 16.
При этом для управления давлением, подаваемым в сепарационную установку 12 газообразной смеси, насос 16 может быть регулируемым. На данный момент специалистам в данной области техники понятно, что газообразная смесь может быть принята из источника 14 газа при сравнительно высоком давлении, особенно, когда источником газа является нефтяная скважина. Таким образом, дополнительное нагнетание насосом 16 может не потребоваться.
Сепарационная установка 12 может принимать газообразную смесь посредством линии 22 гидравлической связи и может разделять газообразную смесь по меньшей мере на первую фракцию 23 и вторую фракцию 25. Для эффективного разделения газообразной смеси по меньшей мере на первую и вторую фракции 23, 25 сепарационной установкой 12 могут быть применены различные технологии, такие как вихревой сепаратор и сжижение, которые более подробно рассмотрены ниже.
Первая фракция 23 из сепарационной установки 12 может быть отправлена по линии 24 гидравлической связи в первую емкость 18. Первая емкость 18 может быть емкостью для хранения, транспортировочным танкером или аналогичной емкостью. Из первой емкости 18 первая фракция 23 может быть отправлена по линии 28 гидравлической связи для целевого применения 30. Например, когда добывают газообразную смесь из нефтяной скважины и первая фракция представляет собой по существу чистый диоксид углерода, целевым применением 30 может быть применение в нефтяной скважине, такое как метод МУН.
Вторая фракция 25 из сепарационной установки 25 может быть отправлена по линии 26 гидравлической связи во вторую емкость 20. Вторая емкость 20 может быть емкостью для хранения, транспортировочным танкером или аналогичной емкостью. Например, когда добывают газообразную смесь из нефтяной скважины и вторая фракция 25 включает в себя углеводороды, отделенные от диоксида углерода, то целевым применением 34 может быть генератор, предназначенный для превращения углеводородов в электрическую энергию (например, сжиганием).
По фиг. 2 в одном варианте осуществлении раскрытой системы отделения диоксида углерода сепарационной установкой 12 может быть вихревой сепаратор 40 (или может его включать в себя). Вихревой сепаратор 40 может быть любым аппаратом или системой, предназначенной для превращения газообразной смеси (линия 22 гидравлической связи) в вихревой поток, чтобы разделить газообразную смесь по меньшей мере на первую фракцию 23 и вторую фракцию 25. Таким образом, вихревой сепаратор 40 может быть выполнен с возможностью приема газообразной смеси по линии 22 гидравлической связи и принуждения газообразной смеси к движению по схеме вихревого потока текучей среды.
По меньшей мере два компонентных газа газообразной смеси, подаваемой по линии 22 гидравлической связи, могут иметь разницу в молекулярной массе, достаточную для обеспечения отделения, вызванного вихрем. В качестве первого примера по меньшей мере один компонентный газ газообразной смеси может иметь молекулярную массу, которая составляет до 70% молекулярной массы другого компонентного газа газообразной смеси. В качестве второго примера по меньшей мере один компонентный газ газообразной смеси может иметь молекулярную массу, которая составляет до 60% молекулярной массы другого компонентного газа газообразной смеси. В качестве третьего примера по меньшей мере один компонентный газ газообразной смеси может иметь молекулярную массу, которая составляет до 50% молекулярной массы другого компонентного газа газообразной смеси. В качестве четвертого примера по меньшей мере один компонентный газ газообразной смеси может иметь молекулярную массу, которая составляет до 40% молекулярной массы другого компонентного газа газовой смеси. В качестве пятого примера по меньшей мере один компонентный газ газообразной смеси может иметь молекулярную массу, которая составляет до 37% молекулярной массы другого компонентного газа газообразной смеси.
Когда газообразную смесь извлекают из нефтяной скважины и она в основном состоит из диоксида углерода, как отмечалось выше, первая фракция 23 может быть по существу чистым диоксидом углерода, а вторая фракция 25 может включать в себя компоненты с более легкими молекулярными массами, такие как водяной пар и метан. В качестве одного примера первая фракция 23 может включать в себя по меньшей мере 95% по массе диоксида углерода. В качестве другого примера первая фракция 23 может включать в себя по меньшей мере 96% по массе диоксида углерода. В качестве другого примера первая фракция 23 может включать в себя по меньшей мере 97% по массе диоксида углерода. В качестве следующего примера первая фракция 23 может включать в себя по меньшей мере 98% по массе диоксида углерода. В качестве еще одного примера первая фракция 23 может включать в себя по меньшей мере 99% по массе диоксида углерода. Не ограничиваясь какой-либо конкретной теорией, можно полагать, что преобразование газообразной смеси в вихревой поток может привести к разделению компонентов газообразной смеси со сравнительно более высокой молекулярной массой (например, диоксид углерода) и компонентов со сравнительно более низкими молекулярными массами (например, водяной пар и метан). Во время вихревого отделения более высокий импульс более тяжелых компонентов может оттеснить их радиально наружу относительно более легких компонентов, тем самым обеспечивая возможности для разделения более тяжелых компонентов и более легких компонентов.
Также, не будучи ограниченными какой-либо конкретной теорией, можно полагать, что охлаждение газообразной смеси, когда она расширяется в вихревом сепараторе 40 в соответствии с эффектом Джоуля-Томсона, можно дополнительно обеспечить отделение по меньшей мере одного компонента от газообразной смеси. Например, достаточное охлаждение газообразной смеси может привести к изменению фазы диоксид углерода (например, к превращению в жидкость), в то время как другие компоненты газообразной смеси остаются в газообразной фазе, упрощая тем самым отделение.
Температура, давление и скорость потока газообразной смеси, входящей в вихревой сепаратор, могут быть управляемыми параметрами и могут быть регулируемыми для достижения заданного разделения.
В одной конструкции вихревой сепаратор 40 может быть статическим аппаратом или системой. Статический вихревой сепаратор 40 может быть по существу свободным от движущихся частей и может быть выполнен с возможностью осуществления вихревого потока газообразной смеси с учетом формы и конфигурации вихревого сепаратора 40, а также углом и направлением, с которыми газообразная смесь входит в вихревой сепаратор 40 по линии 22 гидравлической связи. В качестве одного специфического, но не ограничительного примера, вихревой сепаратор 40 может быть выполнен в виде статического центробежного сепаратора, имеющего, в общем, корпус 42 в виде усеченного конуса, имеющий первый конусный конец 44 и широкий второй конец 46. Первый конец 44 корпуса 42 может образовывать первое выходное отверстие, связанное с линией 24 гидравлической связи. Второй конец 46 корпуса 42 может включать в себя входное отверстие 50 и второе выходное отверстие 52. Входное отверстие 50 может быть выполнено так, что газообразная смесь входит в тело 42 по окружности, направляя тем самым газообразную смесь по схеме вихревого потока. Второе выходное отверстие 52 может быть выровнено по оси с корпусом 42 и может быть, в общем, отцентрировано относительно корпуса 42. Второе выходное отверстие 52 может включать в себя трубу или что-то аналогичное ей, простирающееся по оси по меньшей мере частично в корпусе 42.
Таким образом, когда газообразная смесь входит в тело 42 вихревого сепаратора 40 через входное отверстие 50, газообразная смесь может расширяться (охлаждаться) и может быть преобразована в вихревой поток. Газообразная смесь может разделиться на первую фракцию 23, которая может выйти из вихревого сепаратора 40 по линии 24 гидравлической связи, и вторую фракцию 25, которая может выйти из вихревого сепаратора 40 по линии 26 гидравлической связи. В другой конструкции вихревой сепаратор 40 может быть динамическим аппаратом или системой. Динамический вихревой сепаратор 40 может включать в себя крыльчатку, рабочее колесо, турбину или аналогичный элемент, который может быть соединен или не соединен с валом, приводящимся в действие двигателем, и который принудительно преобразовывает газообразную смесь в вихревой поток. Также предусмотрено применение как динамического вихревого сепаратора, так и статического вихревого сепаратора.
По фиг. 3 в другом варианте осуществления раскрытой системы отделения диоксида углерода сепарационная установка 12 может быть емкостью 60 высокого давления (или может ее включать в себя), в которой давление газообразной смеси может быть повышено с возможностью ее сжижения. В частности, повышением давления газообразной смеси в емкости 60 высокого давления газообразную смесь можно разделить по меньшей мере на первую фракцию 62 и вторую фракцию 64. Первая фракция 62 может находиться в жидкой фазе, а вторая фракция 64 может находиться в газообразной фазе. Первая фракция 62 может выходить из емкости 60 высокого давления по линии 24 гидравлической связи, а вторая фракция 64 может выходить из емкости 60 высокого давления по линии 26 гидравлической связи.
Емкость 60 высокого давления может быть любой емкостью, предназначенной для хранения газообразной смеси при повышенных давлениях. В одной конструкции емкость 60 высокого давления может быть предназначена на давление по меньшей мере 80 атм. В другой конструкции емкость 60 высокого давления предназначена на давление по меньшей мере 90 атм. В другой конструкции емкость 60 высокого давления рассчитана на давление по меньшей мере 100 атм. В другой конструкции емкость 60 высокого давления рассчитана на давление по меньшей мере 150 атм. Еще в одной конструкции емкость 60 высокого давления может быть предназначена на давление по меньшей мере 200 атм.
Когда газообразную смесь извлекают из нефтяной скважины и она в основном состоит из диоксида углерода, как отмечалось выше, первая фракция 62 может быть по существу чистым диоксидом углерода, а вторая фракция 64 может включать в себя компоненты с более легкими молекулярными массами, такие как водяной пар и метан. В качестве одного примера первая фракция 62 может включать в себя по меньшей мере 95% по массе диоксида углерода. В качестве другого примера первая фракция 62 может включать в себя по меньшей мере 96% по массе диоксида углерода. В качестве следующего примера первая фракция 62 может включать в себя по меньшей мере 97% по массе диоксида углерода. В качестве следующего примера первая фракция 62 может включать в себя по меньшей мере 98% по массе диоксида углерода. В качестве еще одного примера первая фракция 62 может включать в себя по меньшей мере 99% по массе диоксида углерода.
Давление, требуемое для сжижения газа внутри емкости 60 высокого давления, может зависеть от множества факторов, включающих в себя состав газообразной смеси и концентрацию различных компонентов, которые составляют газообразную смесь. Когда газообразную смесь извлекают из нефтяной скважины и она в основном состоит из диоксида углерода, как отмечалось выше, то для ее сжижения могут быть достаточными сравнительно низкие давления.
Диоксид углерода конденсируется в жидкость при относительно низком парциальном давлении по сравнению со многими другими газами, такими как углеводороды. Например, чистый диоксид углерода может конденсироваться в жидкость при около 1000 фунтах/дюйм2 (68 атм). В качестве другого примера газообразная смесь, содержащая около 90% по массе диоксида углерода (остальное метан), может сжижаться при около 1300 фунтах/дюйм2 (88 атм). Таким образом, не ограничиваясь какой-либо конкретной теорией, можно полагать, что сжижение может быть сравнительно низким по стоимости способом отделения диоксида углерода от газообразной смеси, особенно, когда газообразная смесь включает в себя сравнительно высокую концентрацию диоксида углерода, благодаря относительно низким давлениям, требующимся для достижения сжижения.
Таким образом, емкость 60 высокого давления может быть накачана до давления, достаточного для конденсации по меньшей мере одного компонента (например, диоксида углерода) газообразной смеси. В одном варианте емкость 60 высокого давления может быть накачана до давления по меньшей мере 1000 фунтов/дюйм2 (68 атм). В другом варианте емкость 60 высокого давления может быть накачана до давления по меньшей мере 1300 фунтов/дюйм2 (88 атм). В следующем варианте емкость 60 высокого давления может быть накачана до давления по меньшей мере 1400 фунтов/дюйм2 (95 атм). В следующем варианте емкость 60 высокого давления может быть накачана до давления по меньшей мере 1600 фунтов/дюйм2 (109 атм). В следующем варианте емкость 60 высокого давления может быть накачана до давления по меньшей мере 1800 фунтов/дюйм2 (122 атм). Еще в одном варианте емкость 60 высокого давления может быть накачана самое большее до давления в 2000 фунтов/дюйм2 (136 атм). Также раскрытыми являются способы для разделения газообразной смеси на первую фракцию и вторую фракцию. Раскрытые способы отделения могут быть применены для отделения диоксида углерода от, например, газообразного потока, выходящего из газонефтяного сепаратора нефтяной скважины, хотя также предполагаются различные другие применения раскрытых способов.
По фиг. 4 один вариант осуществления раскрытого способа отделения газообразной смеси, обозначенный в целом позицией 100, может начинаться в блоке 102 с этапа получения газообразной смеси. Как описано выше, газообразной смесью может быть смесь, содержащая диоксид углерода и извлеченная из нефтяной скважины во время использования метода МУН. Предусмотрено также применение других газообразных смесей.
Как представлено в блоке 104, газообразная смесь может быть направлена в вихревой поток. Для придания газообразной смеси вихревого потока могут быть применены различные аппараты и системы. Например, могут быть применены статические или динамические вихревые сепараторы.
При нахождении газообразной смеси в вихревом потоке первая фракция (например, фракция, содержащая диоксид углерода) газообразной смеси может быть отделена от второй фракции (например, фракции, содержащей легкие углеводороды), как показано в блоке 106. После отделения первая фракция может быть отправлена в первую емкость (блок 108), а вторая фракция может быть отправлена во вторую емкость (блок 110).
По желанию этапы, представленные в блоках 104 и 106, могут быть повторены один раз или более, например, применением множества последовательных вихревых сепараторов для дополнительной очистки первой фракции, второй фракции или обеих фракций. По фиг. 5 другой вариант осуществления раскрытого способа разделения газообразной смеси, в целом обозначенный позицией 200, может начинаться в блоке 202 с этапа получения газообразной смеси. Как описано выше, газообразной смесью может быть смесь, содержащая диоксид углерода, извлеченная из нефтяной скважины во время использования метода МУН, и она может иметь сравнительно высокую концентрацию (например, 80% по весу или более) диоксида углерода. Предусматривается также применение других газообразных смесей.
Как показано в блоке 204, газообразная смесь может быть сжата до давления, достаточного для образования жидкой фазы и газообразной фазы. Например, для достижения заданного давления газообразная смесь может быть сжата подачей ее в емкость высокого давления.
При сжатой газовой смеси, как показано в блоке 206, первая, жидкая фракция (например, фракция, содержащая диоксид углерода) газообразной смеси может быть отделена от второй, газообразной фракции (например, фракции, содержащей легкие углеводороды). После отделения первая фракция может быть отправлена в первую емкость (блок 208), а вторая фракция может быть отправлена во вторую емкость (блок 210).
Соответственно, раскрытые системы и способы могут обеспечить разделение одного или более компонентов газообразной смеси от одного или более других компонентов газообразной смеси без уничтожения (например, сжигания) каких-либо компонентов. Таким образом, разделенные первая и вторая фракции могут быть использованы в различных целевых применениях, например методе МУН, и выработке энергии.
Несмотря на то, что были показаны и описаны различные варианты осуществления раскрытых систем и способов отделения диоксида углерода, после ознакомления с описанием изобретения у специалистов в данной области техники могут появиться модификации. Данная заявка включает в себя такие модификации и ограничена только объемом формулы изобретения.

Claims (11)

1. Способ разделения, содержащий этапы, на которых:
обеспечивают наличие газообразной смеси, содержащей по меньшей мере первый компонент, содержащий диоксид углерода, и второй компонент, содержащий по меньшей мере углеводород, причем первый компонент содержится в газообразной смеси в первом массовом процентном содержании;
сжимают газообразную смесь с образованием жидкой фракции, содержащей первый компонент, и газообразной фракции, содержащей второй компонент, причем первый компонент содержится в жидкой фракции во втором массовом процентном содержании, а второе массовое процентное содержание больше первого массового процентного содержания; и
отделяют жидкую фракцию от газообразной фракции.
2. Способ по п. 1, в котором первое массовое процентное содержание составляет по меньшей мере 80%.
3. Способ по п. 1, в котором второе массовое процентное содержание составляет по меньшей мере 90%.
4. Способ по п. 1, в котором этап сжатия включает в себя сжатие газообразной смеси до давления по меньшей мере 6,895 МПа.
5. Способ по любому из предыдущих пунктов, дополнительно содержащий этап, на котором жидкую фракцию отправляют в нефтяную скважину.
6. Способ по п. 1, в котором газообразная фракция содержит второй компонент, при этом второй компонент представляет собой углеводород.
7. Способ по п. 6, дополнительно содержащий этап, на котором указанный углеводород сжигают с получением электрической энергии.
8. Способ по п. 1, в котором этап сжатия содержит закачивание газообразной смеси в емкость высокого давления.
RU2016127459A 2012-03-29 2013-03-28 Способ отделения диоксида углерода RU2656493C2 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261617574P 2012-03-29 2012-03-29
US201261617554P 2012-03-29 2012-03-29
US61/617,574 2012-03-29
US61/617,554 2012-03-29
US13/767,115 US9205357B2 (en) 2012-03-29 2013-02-14 Carbon dioxide separation system and method
US13/767,115 2013-02-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2013113872/05A Division RU2595702C2 (ru) 2012-03-29 2013-03-28 Система и способ отделения диоксида углерода

Publications (1)

Publication Number Publication Date
RU2656493C2 true RU2656493C2 (ru) 2018-06-05

Family

ID=47900937

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2016127459A RU2656493C2 (ru) 2012-03-29 2013-03-28 Способ отделения диоксида углерода
RU2013113872/05A RU2595702C2 (ru) 2012-03-29 2013-03-28 Система и способ отделения диоксида углерода

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2013113872/05A RU2595702C2 (ru) 2012-03-29 2013-03-28 Система и способ отделения диоксида углерода

Country Status (6)

Country Link
US (1) US9205357B2 (ru)
EP (2) EP3075432B1 (ru)
CN (1) CN103357239B (ru)
CA (2) CA2808805C (ru)
MX (1) MX337404B (ru)
RU (2) RU2656493C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586938A (zh) * 2021-07-20 2021-11-02 柏宗宪 一种二氧化碳驱油用气体增压装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10041672B2 (en) * 2013-12-17 2018-08-07 Schlumberger Technology Corporation Real-time burner efficiency control and monitoring
MY175330A (en) * 2014-10-23 2020-06-19 Petroliam Nasional Berhad Petronas Cryogenic centrifugal system and method
FI126833B (en) * 2014-12-30 2017-06-15 Outotec Finland Oy Dewatering of sulfur
EP3356736B1 (en) 2015-09-28 2022-08-10 Services Pétroliers Schlumberger Burner monitoring and control systems
IT201600081329A1 (it) * 2016-08-02 2018-02-02 Saipem Spa Processo, dispositivo separatore e impianto per la separazione di una miscela gassosa
CN107879315A (zh) * 2016-09-29 2018-04-06 浙江览锐智能科技有限公司 一种臭氧管的匀流式除湿进气装置
MY195530A (en) * 2019-05-30 2023-01-30 Petroliam Nasional Berhad Petronas A System and Method for Handling a Multiple Phase Hydrocarbon Feed
CN111537549B (zh) * 2020-06-08 2021-04-13 北京大学 一种相态连续变化的二氧化碳驱油封存与压裂装置和实验方法
CN111715001B (zh) * 2020-06-16 2022-06-21 上海建工四建集团有限公司 一种用于净化带粉尘有压气体的方法
CN114871078A (zh) * 2022-05-18 2022-08-09 三一技术装备有限公司 烘箱新风系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2001132884A (ru) * 2001-03-12 2003-08-10 Александр Николаевич Уварычев Способ совместного производства электрической и тепловой энергии и газопаротурбинная установка для его реализации
EA200700046A1 (ru) * 2004-07-16 2007-08-31 Статойл Аса Способ и установка для сжижения диоксида углерода
RU89505U1 (ru) * 2009-03-02 2009-12-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (ООО "Газпром ВНИИГАЗ") Хранилище газов в горных выработках - "вниигаз"
WO2010026057A1 (en) * 2008-09-04 2010-03-11 Alstom Technology Ltd. Liquefaction of gaseous carbon-dioxide remainders during anti-sublimation process
WO2011009163A1 (en) * 2009-07-20 2011-01-27 Calix Limited Method and system for extracting carbon dioxide from an industrial source of flue gas at atmospheric pressure
WO2011127552A1 (en) * 2010-04-16 2011-10-20 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Auto-refrigerated gas separation system for carbon dioxide capture and compression

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853507A (en) 1947-12-31 1974-12-10 Atomic Energy Commission Cold trap unit
US3359707A (en) 1960-06-15 1967-12-26 Jean Olivier Auguste Louis Method and apparatus for removing co2 and moisture from stale air
GB1125505A (en) 1966-06-23 1968-08-28 Distillers Co Carbon Dioxide Production of carbon dioxide and argon
US3660967A (en) 1970-09-08 1972-05-09 Union Carbide Corp Purification of fluid streams by selective adsorption
US4094652A (en) 1975-10-23 1978-06-13 W. R. Grace & Co. Electrodesorption system for regenerating a dielectric adsorbent bed
US4322394A (en) 1977-10-31 1982-03-30 Battelle Memorial Institute Adsorbent regeneration and gas separation utilizing microwave heating
US4312641A (en) 1979-05-25 1982-01-26 Pall Corporation Heat-reactivatable adsorbent gas fractionator and process
US4249915A (en) * 1979-05-30 1981-02-10 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from air
US4832711A (en) 1982-02-25 1989-05-23 Pall Corporation Adsorbent fractionator with automatic temperature-sensing cycle control and process
US4484933A (en) 1983-06-14 1984-11-27 Union Carbide Corporation Process for drying gas streams
US4551197A (en) 1984-07-26 1985-11-05 Guilmette Joseph G Method and apparatus for the recovery and recycling of condensable gas reactants
GB2171927B (en) 1985-03-04 1988-05-25 Boc Group Plc Method and apparatus for separating a gaseous mixture
JPS62136222A (ja) 1985-12-10 1987-06-19 Nippon Steel Corp 混合ガスから特定のガスを吸着分離する方法
US4664190A (en) * 1985-12-18 1987-05-12 Shell Western E&P Inc. Process for recovering natural gas liquids
ES2003265A6 (es) 1987-04-21 1988-10-16 Espan Carburos Metal Procedimiento para la obtencion de co2 y n2 a partir de los gases generados en un motor o turbina de combustion interna
US4784672A (en) 1987-10-08 1988-11-15 Air Products And Chemicals, Inc. Regeneration of adsorbents
US5059405A (en) 1988-12-09 1991-10-22 Bio-Gas Development, Inc. Process and apparatus for purification of landfill gases
DE4003533A1 (de) 1989-02-07 1990-08-09 Pero Kg Verfahren und vorrichtung zur rueckgewinnung von in einem adsorber adsorbierten umweltbelastenden stoffen
US5232474A (en) 1990-04-20 1993-08-03 The Boc Group, Inc. Pre-purification of air for separation
US5100635A (en) 1990-07-31 1992-03-31 The Boc Group, Inc. Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
US5749230A (en) 1991-01-18 1998-05-12 Engelhard/Icc Method for creating a humidity gradient within an air conditioned zone
JPH0779946B2 (ja) 1991-09-13 1995-08-30 工業技術院長 ガス吸着・脱離制御方法
US5221520A (en) 1991-09-27 1993-06-22 North Carolina Center For Scientific Research, Inc. Apparatus for treating indoor air
US5233837A (en) 1992-09-03 1993-08-10 Enerfex, Inc. Process and apparatus for producing liquid carbon dioxide
US5261250A (en) 1993-03-09 1993-11-16 Polycold Systems International Method and apparatus for recovering multicomponent vapor mixtures
US6332925B1 (en) 1996-05-23 2001-12-25 Ebara Corporation Evacuation system
US6027548A (en) 1996-12-12 2000-02-22 Praxair Technology, Inc. PSA apparatus and process using adsorbent mixtures
DE19727376C2 (de) 1997-06-27 2002-07-18 Daimler Chrysler Ag Verfahren zur Adsorption von organischen Stoffen in der Luft
US6183539B1 (en) 1998-07-01 2001-02-06 Zeochem Co. Molecular sieve adsorbent for gas purification and preparation thereof
DE69908886T2 (de) 1998-11-02 2003-12-04 Inst Francais Du Petrole Verfahren zur Herstellung eines Zeoliths des EUO-Typs mittels Vorläufern des Strukturbildners und dessen Verwendung als Isomerisierungskatalysator von Aromaten mit acht Kohlenstoffatomen
WO2000038831A1 (en) 1998-12-31 2000-07-06 Hexablock, Inc. Magneto absorbent
US6293999B1 (en) 1999-11-30 2001-09-25 Uop Llc Process for separating propylene from propane
JP2001205045A (ja) 2000-01-25 2001-07-31 Tokyo Electric Power Co Inc:The 二酸化炭素除去方法および二酸化炭素除去装置
US6621848B1 (en) 2000-04-25 2003-09-16 The Boeing Company SECOIL reprocessing system
US6502328B1 (en) 2000-05-17 2003-01-07 Arrow Pneumatics, Inc. Seal for holding a microwave antenna at a pressurized tank of a gas drying system and method
JP3591724B2 (ja) 2001-09-28 2004-11-24 株式会社東芝 炭酸ガス吸収材および炭酸ガス分離装置
US7122496B2 (en) 2003-05-01 2006-10-17 Bp Corporation North America Inc. Para-xylene selective adsorbent compositions and methods
US7291271B2 (en) 2003-12-09 2007-11-06 Separation Design Group, Llc Meso-frequency traveling wave electro-kinetic continuous adsorption system
JP2009502483A (ja) 2005-07-28 2009-01-29 グローバル リサーチ テクノロジーズ,エルエルシー 空気からの二酸化炭素除去
US7591866B2 (en) * 2006-03-31 2009-09-22 Ranendra Bose Methane gas recovery and usage system for coalmines, municipal land fills and oil refinery distillation tower vent stacks
US7695553B2 (en) 2006-06-30 2010-04-13 Praxair Technology, Inc. Twin blowers for gas separation plants
US7736416B2 (en) 2007-02-26 2010-06-15 Hamilton Sundstrand Corporation Thermally linked molecular sieve beds for CO2 removal
US20100000221A1 (en) * 2007-04-30 2010-01-07 Pfefferle William C Method for producing fuel and power from a methane hydrate bed using a gas turbine engine
CA2688545C (en) 2007-05-18 2013-08-06 Exxonmobil Research And Engineering Company Temperature swing adsorption of co2 from flue gas utilizing heat from compression
EP2164601B1 (en) 2007-05-18 2016-10-05 ExxonMobil Research and Engineering Company Process for removing a target gas from a mixture of gases by thermal swing adsorption
US8616294B2 (en) * 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
CN101808713B (zh) 2007-08-28 2013-05-22 联邦科学及工业研究组织 用于从流体中提取组分的制品以及包括该制品的方法和系统
WO2009042244A1 (en) 2007-09-28 2009-04-02 The Trustees Of Columbia University In The City Of New York Methods and systems for generating hydgrogen and separating carbon dioxide
CA2715874C (en) 2008-02-19 2019-06-25 Global Research Technologies, Llc Extraction and sequestration of carbon dioxide
US8591627B2 (en) 2009-04-07 2013-11-26 Innosepra Llc Carbon dioxide recovery
WO2009141895A1 (ja) 2008-05-20 2009-11-26 イビデン株式会社 排ガス浄化装置
WO2009149292A1 (en) 2008-06-04 2009-12-10 Global Research Technologies, Llc Laminar flow air collector with solid sorbent materials for capturing ambient co2
US8535417B2 (en) 2008-07-29 2013-09-17 Praxair Technology, Inc. Recovery of carbon dioxide from flue gas
EP2149769A1 (en) * 2008-07-31 2010-02-03 BP Alternative Energy International Limited Separation of carbon dioxide and hydrogen
WO2010059268A1 (en) 2008-11-19 2010-05-27 Murray Kenneth D Carbon dioxide control device to capture carbon dioxide from vehicle combustion waste
DE102008062497A1 (de) 2008-12-16 2010-06-17 Linde-Kca-Dresden Gmbh Verfahren und Vorrichtung zur Behandlung eines kohlendioxidhaltigen Gasstroms aus einer Großfeuerungsanlage
WO2010074565A1 (en) * 2008-12-22 2010-07-01 Twister B.V. Method of removing carbon dioxide from a fluid stream and fluid separation assembly
WO2010079177A2 (en) * 2009-01-08 2010-07-15 Shell Internationale Research Maatschappij B.V. Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants
US8500856B2 (en) 2009-05-08 2013-08-06 Nippon Steel & Sumitomo Metal Corporation Hybrid adsorbent method of capturing carbon dioxide in gas and apparatus for capturing carbon dioxide in gas
WO2011018620A2 (en) * 2009-08-12 2011-02-17 Bp Alternative Energy International Limited Separation of carbon dioxide from a mixture of gases
GB0915954D0 (en) 2009-09-11 2009-10-28 Airbus Operations Ltd Desiccant regeneration
EP2490789B1 (en) 2009-10-19 2014-08-06 Lanxess Sybron Chemicals Inc. Process for carbon dioxide capture via ion exchange resins
JP5816186B2 (ja) 2009-10-28 2015-11-18 ミードウエストベコ・コーポレーション 蒸発排出物制御システムからの排出物を減少させるための方法及びシステム
ES2763206T3 (es) 2010-04-30 2020-05-27 Peter Eisenberger Método para captura de dióxido de carbono
JP5485812B2 (ja) 2010-06-24 2014-05-07 株式会社西部技研 二酸化炭素回収装置
JP2013533426A (ja) 2010-07-28 2013-08-22 サーガス エーエス 炭素捕捉を有するジェットエンジン
US9551526B2 (en) * 2010-09-03 2017-01-24 Twister B.V. Refining system and method for refining a feed gas stream
CN102179153B (zh) * 2011-04-08 2013-04-17 上海华畅环保设备发展有限公司 烟道气二氧化碳捕集系统尾气旋转流净化方法与装置
CN103702690B (zh) 2011-07-21 2015-11-25 信山科艺有限公司 利用电场再生的空气净化器
US10118122B2 (en) 2011-08-29 2018-11-06 The Boeing Company CO2 collection methods and systems
US9103549B2 (en) 2012-08-23 2015-08-11 The Boeing Company Dual stream system and method for producing carbon dioxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2001132884A (ru) * 2001-03-12 2003-08-10 Александр Николаевич Уварычев Способ совместного производства электрической и тепловой энергии и газопаротурбинная установка для его реализации
EA200700046A1 (ru) * 2004-07-16 2007-08-31 Статойл Аса Способ и установка для сжижения диоксида углерода
WO2010026057A1 (en) * 2008-09-04 2010-03-11 Alstom Technology Ltd. Liquefaction of gaseous carbon-dioxide remainders during anti-sublimation process
RU89505U1 (ru) * 2009-03-02 2009-12-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (ООО "Газпром ВНИИГАЗ") Хранилище газов в горных выработках - "вниигаз"
WO2011009163A1 (en) * 2009-07-20 2011-01-27 Calix Limited Method and system for extracting carbon dioxide from an industrial source of flue gas at atmospheric pressure
WO2011127552A1 (en) * 2010-04-16 2011-10-20 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Auto-refrigerated gas separation system for carbon dioxide capture and compression

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586938A (zh) * 2021-07-20 2021-11-02 柏宗宪 一种二氧化碳驱油用气体增压装置

Also Published As

Publication number Publication date
MX337404B (es) 2016-03-03
EP2644253A3 (en) 2015-01-14
RU2013113872A (ru) 2014-10-10
CA2808805C (en) 2018-08-28
RU2595702C2 (ru) 2016-08-27
EP2644253A2 (en) 2013-10-02
CN103357239A (zh) 2013-10-23
EP3075432B1 (en) 2019-09-18
CA2958697A1 (en) 2013-09-29
EP2644253B1 (en) 2016-05-25
CN103357239B (zh) 2017-04-26
CA2958697C (en) 2019-12-03
EP3075432A1 (en) 2016-10-05
US20130255486A1 (en) 2013-10-03
MX2013003586A (es) 2013-10-16
US9205357B2 (en) 2015-12-08
CA2808805A1 (en) 2013-09-29

Similar Documents

Publication Publication Date Title
RU2656493C2 (ru) Способ отделения диоксида углерода
AU2010230052B2 (en) Improved configurations and methods for high pressure acid gas removal
RU2721211C2 (ru) Способ и система для обработки текучей среды, добытой из скважины
EA014650B1 (ru) Способ получения природного газа, очищенного от соединений серы
EA035969B1 (ru) Способ получения жидкого диоксида углерода под низким давлением из системы генерации мощности
US11441410B2 (en) System and method for oil production separation
DK2411118T3 (en) A method and apparatus for treating a naturfødegas to obtain treated gas and a fraction of C5 + hydrocarbons
US20230323764A1 (en) System and Method for Recycling Miscible NGLs for Oil Recovery
US20220316304A1 (en) Offshore oil and gas power generation with carbon capture and beneficial use of co2
US10393015B2 (en) Methods and systems for treating fuel gas
CN108291766B (zh) 液化co2污染的含烃气流的方法
KR101665335B1 (ko) 이산화탄소 처리 시스템 및 방법
WO2017209757A1 (en) Two column hydrocarbon recovery from carbon dioxide enhanced oil recovery streams
AU2016363566B2 (en) Method of liquefying a contaminated hydrocarbon-containing gas stream
WO2023102466A1 (en) System and method for separating gases from oil production streams
WO2024077296A1 (en) System and method to stabilize crude oil
CA3186453A1 (en) Systems and methods for processing fluids for recovery of viscous hydrocarbons from a subterranean formation by a cyclic solvent process
CN111433329A (zh) 天然气处理装置以及天然气处理方法
Istadi Overview of Gas Plant Processing