RU2652206C1 - Способ получения углеродной пленки - Google Patents

Способ получения углеродной пленки Download PDF

Info

Publication number
RU2652206C1
RU2652206C1 RU2016144257A RU2016144257A RU2652206C1 RU 2652206 C1 RU2652206 C1 RU 2652206C1 RU 2016144257 A RU2016144257 A RU 2016144257A RU 2016144257 A RU2016144257 A RU 2016144257A RU 2652206 C1 RU2652206 C1 RU 2652206C1
Authority
RU
Russia
Prior art keywords
temperature
zone
carbon
molding
substrate
Prior art date
Application number
RU2016144257A
Other languages
English (en)
Inventor
Наталья Николаевна Рожкова
Анна Аркадьевна Ковальчук
Олег Игоревич Коньков
Александр Владимирович Приходько
Original Assignee
Федеральное государственное бюджетное учреждение науки Федеральный исследовательский Центр "Карельский научный центр Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Федеральный исследовательский Центр "Карельский научный центр Российской академии наук" filed Critical Федеральное государственное бюджетное учреждение науки Федеральный исследовательский Центр "Карельский научный центр Российской академии наук"
Priority to RU2016144257A priority Critical patent/RU2652206C1/ru
Application granted granted Critical
Publication of RU2652206C1 publication Critical patent/RU2652206C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к полупроводниковой и сверхпроводниковой электронике и может быть использовано при изготовлении фотонных устройств, сверхъёмких аккумуляторов и суперконденсаторов, высокочувствительных химических сенсоров и разделительных мембран. Углеродсодержащий материал - природный минерал шунгит с размером частиц 0,01-1 мкм помещают в зону испарения 1 термокамеры. Испаритель нагревают до температуры возгонки 350-400°С. Затем повышают температуру до 750°С со скоростью 3-5°С/мин. Дополнительно создают зоны формовки 2 и термостабилизации 5, разделенные подложкой 3, расположенной в зоне конденсации 4. Температуру зоны испарения 1 устанавливают большей, чем температура зоны формовки 2, а температуру зоны термостабилизации 5 - меньше температуры зоны формовки 2. В результате конденсации в вакууме углерода на предварительно нагретую подложку 3 получают углеродную пленку, однородную по составу, размером 1 мм и более и толщиной 0,1 мкм и более при снижении энергоемкости процесса. 4 ил.

Description

Изобретение относится к полупроводниковой и сверхпроводниковой электронике, преимущественно к способам изготовления функциональных устройств пленочной наноэлектроники на основе природного углерода.
Известен способ получения пленок на основе углерода, заключающийся в испарении углерода через расплавленную ванну, для чего на поверхности графитового стержня расплавляют навеску из вольфрама или молибдена, до образования расплавленной ванны. Наличие расплава обеспечивает получение интенсивного и равномерного парового потока углерода. Вследствие конвективного перемешивания расплав имеет практически одинаковую температуру по всему объему, что в сочетании с высокими эмиссионными свойствами расплава способствует поддержанию равномерно распределенного сильноточного дугового разряда без катодных микропятен и получению плотного и равномерного потока высокоионизированной плазмы. В результате получают конденсированный материал в виде пленки на основе углерода (Авторское свидетельство СССР, №1710596, опубл. 07.02.1992 г.).
Однако данный способ является технологически сложным и энергоемким, требующим дополнительных затрат на получение графитовых стержней и использование W и Мо.
Известен способ получения кристаллических фуллеренов, включающий возгонку фуллеренов путем их нагревания в зоне испарения до температуры, превышающей температуру зоны кристаллизации. Последующее повышение температуры в зоне кристаллизации осуществляют через регулярные интервалы времени. Согласно способу создают дополнительную зону формовки, над которой располагают формирующий элемент с возможностью перемещения со скоростью роста кристаллов. Температуру зоны формовки устанавливают выше температуры зоны кристаллизации. Способ включает создание положительного градиента температур на границе между зоной формовки и формирующим элементом, а также установление давления насыщенных паров в термокамере больше критического. Возможно нанесение на формирующий элемент материала с пониженной к фуллерену адгезией и одновременное с ним нанесение материала с повышенной к фуллерену адгезией. В результате получают аллотропную форму углерода в виде кристаллического образца С60 с размерами: диаметр 3 мм, высота 2 мм (Патент РФ №2135648, опубл. 1999 г.).
Недостатком предлагаемого метода является технологическая сложность, заключающаяся в необходимости перемещения формирующего элемента во время процесса нагрева термокамеры. Также использование искусственно полученного порошка фуллеренов в качестве исходного материала делает метод дорогостоящим.
За прототип принят способ получения графеновой пленки, включающий осаждение в вакууме углерода из углеродсодержащего газа на подложку, покрытую катализатором. Подложку с катализатором предварительно нагревают до температуры, превышающей разложение углеродсодержащего газа, после чего производят последовательно напуск углеродсодержащего газа до давления 1-10-4 торр. Откачивание реактора производят через 1-300 с после напуска углеродсодержащего газа с одновременным охлаждением его до комнатной температуры со скоростью 10-100°С/мин. В результате на поверхности подложки формируется пленка в виде аллотропной формы углерода - графена, состоящая из зерен толщиной в 1 или несколько монослоев (Патент РФ №2500616, опубл. 2013 г.).
Однако предлагаемый способ является энергоемким, требующим нагрева до температуры 400-2000°С. Также в предлагаемом способе на подложку необходимо нанести катализатор, выбранный из ряда: Fe, Ni, Cu, или комбинацию металлов, включающую по крайней мере два из вышеупомянутых, что требует дополнительного времени и делает процесс более затратным. Использование в качестве углеродсодержащего компонента газа, выбранного из ряда: ацетилен, метан, этан, пропан, бутан, этилен, гексан, или комбинацию этих газов с инертным газом, усложняет и удорожает процесс. Способ позволяет получать графеновую пленку толщиной только в несколько монослоев (<5 нм).
Заявляемое изобретение направлено на решение задачи - создания экономичного способа получения качественной углеродной пленки при упрощении технологического процесса.
Техническим результатом является увеличение размера и толщины пленок, экономичность способа.
Заявленный технический результат достигается тем, что в способе получения углеродной пленки в термокамере, включающем осаждение в вакууме углерода из углеродсодержащего компонента на предварительно нагретую подложку, согласно изобретению в качестве углеродсодержащего компонента используют углерод природного минерала шунгита, с размером частиц 0,01-1 мкм, который помещают в зону испарения термокамеры и осуществляют в начале нагрев испарителя до температуры возгонки 350-400°С, с последующим повышением температуры до 750°С со скоростью 3-5°С/мин, дополнительно создают зоны формовки и термостабилизации, разделенные подложкой, которую располагают в зоне конденсации, устанавливают температуру зоны формовки в диапазоне (330-340)°С и поддерживают ее постоянной в течение процесса осаждения, устанавливают температуру зоны испарения больше температуры зоны формовки и температуру зоны термостабилизации меньше температуры зоны формовки.
Природный минерал шунгит представляет собой гибридный материал, состоящий из двух взаимопроникающих сеток наноразмерных частиц углерода и кремнезема, включающий примеси алюмосиликатов, карбонатов, сульфидов металлов. Формирование гибридного шунгитового материала происходило в водной среде в относительно мягких условиях, т.е. изначально материал представлял коллоидную систему, конденсация которой привела к образованию геля, твердеющего с образованием конденсационных (слабых) и кристаллизационных (прочных) включений. Для получения углеродной пленки создают шунгитовый порошок с размером частиц 0,01-1 мкм по известной технологии (Патент РФ №2448899, опубл. 2012 г.).
На фиг. 1 схематически изображена термокамера для реализации предлагаемого способа. На фиг. 2 представлена зависимость температуры области испарения от времени нагрева. На фиг. 3 представлена фотография (а) образца на основе углеродсодержащей пленки и ее 3D-проекция (б). На фиг. 4 представлен спектр комбинационного рассеяния образца.
Термокамера состоит из цилиндра, в основании которого создается зона испарения 1, обеспечивающая возгонку углерода природного минерала шунгита, над которой в крышке цилиндра расположена зона формовки 2. Подложка 3, на которой в зоне конденсации 4 происходит формирование углеродной пленки из углерода шунгита, примыкает вплотную к крышке цилиндра с зоной формовки 2. Над подложкой 3 создают зону термостабилизации 5, где устанавливают охладитель, представляющий собой медный цилиндр.
Способ осуществляют следующим образом. В качестве термокамеры (фиг. 1) используют цилиндрический стакан, выполненный из меди с размерами: диаметром 20 мм, высотой 25 мм, толщиной стенки 1 мм. Теромокамеру закрепляют вплотную к поверхности термического нагревателя (на фиг. 1 не показан). В качестве нагревателя используют вольфрамовый ленточный нагреватель с геометрическими размерами 20×5×0,1 мм. Температуру нагрева контролируют по термопаре Pt-Pt/Ro. В качестве зоны формовки 2 используют медное кольцо с внутренним диаметром, равным 3 мм и толщиной стенки 2 мм. Кольцо закрепляют в верхней части термокамеры. Нагрев кольца осуществляют ленточным вольфрамовым нагревателем с геометрическими размерами 40×2×0,1 мм, обернутым вокруг него. Температуру нагрева кольца контролируют по термопаре Pt-Pt/Ro. Подложкой 3 служит кварцевое стекло толщиной 0,5 см. Подложку располагают непосредственно на поверхности кольца 3 и полностью перекрывают его внутреннее отверстие. Последовательность действий при осуществлении способа следующая. В термокамеру, в зону испарения 1 на дне термокамеры, помещают углеродсодержащий компонент в виде порошка углерода природного минерала шунгита с размером частиц 0,01-1 мкм в количестве 400 мг. Термокамеру располагают на поверхности нагревателя. В верхней части термокамеры помещают медное кольцо (зона формовки 2) с закрепленной на нем подложкой 3. На подложке располагают охладитель - медный цилиндр (зона термостабилизации 5). Всю конструкцию помещают под колпак вакуумной камеры и откачивают до давления 10-6 мм рт.ст. Создают градиент температур между границей зоны формовки 2 и подложкой 3. Далее проводят нагрев зоны формовки 2 до температуры в пределах 330-340°С. Эту температуру поддерживают постоянной на протяжении всего эксперимента. Экспериментально установлено, что при температурах зоны формовки выше и ниже указанных пределов не образуется качественной углеродной пленки. Затем проводят нагрев термокамеры с дискретностью 3-5°С/мин. Экспериментально установлено, что оптимальной является скорость 3-5°С/мин. При скорости более 5°С/мин происходит возгонка агрегатов углерода природного минерала шунгита, в результате чего образуется пленка с рыхлой поверхностью. При скорости менее 3°С/мин наблюдаются сильные эффекты окисления за счет остаточных газов.
По достижении в зоне испарения 1 температуры 350-400°С начинает происходить возгонка порошка углерода природного минерала шунгита и в зоне формовки 2 концентрируются его пары. Пары проходят от дна термокамеры (зона 1) к зоне формовки 2 и оседают на поверхности подложки 3 в зоне конденсации 4. Таким образом, происходит рост углеродной пленки в пределах внутреннего отверстия медного кольца (зона формовки 2). За время процесса температура зоны термостабилизации 5 не превышала 100°С. Весь процесс продолжают до достижения температуры 750°С в зоне испарения 1. После этого отключают нагреватель термокамеры. После охлаждения термокамеры до температуры 300°С отключают нагреватель зоны формовки 2 и происходит охлаждение всей конструкции до комнатной температуры. После этого снимают медное кольцо 2 вместе с подложкой 3. В зоне формовки 2 во внутреннем отверстии кольца образовывался пленочный образец с размерами: диаметр 8 мм, высота ~3 мкм. Полученная углеродная пленка имеет однородный состав и превышает толщину графеновой пленки по сравнению с прототипом в 103 раз.
На фиг. 3 представлена фотография (а) полученного образца и его 3D-проекция (б). 3D-проекция образца получена на цветном лазерном сканирующем 3D-микроскопе серии VK-9700 (Keyece).
Для оценки структурных особенностей (идентификации структуры углерода и ее дефектности) проводилось изучение спектров комбинационного рассеяния света на дисперсионном рамановском спектрометре Nicolet Almega XR (Thermo Scientific). Съемка происходила при длине волны излучения 532 нм и ширине спектрального окна от 100 до 3500 см-1, с последующим разложением полученных спектров при помощи программного обеспечения «Omnic». На фиг. 4 представлен спектр комбинационного рассеяния образца. Сравнение основных пиков комбинационного рассеяния спектра образца со спектром графена выявило совпадение G-линий обоих материалов.
Полученные спектры подтверждают, что в примере реализации получена углеродная пленка с характеристиками, близкими к графеновым структурам. Таким образом, заявляемый способ позволяет получать качественные однородные по составу пленки, превышающие толщину и размеры пленки, полученные в прототипе, в 1000 раз. Преимуществом заявляемого способа также является упрощение процесса и уменьшение стоимости целевого продукта за счет использования углерода природного минерала шунгита и снижения энергоемкости процесса.
Углеродсодержащие пленки, полученные предлагаемым способом, могут найти применение как основа для создания проводящих и сверхпроводящих материалов в тонкопленочном исполнении в фотонных устройствах нового поколения, как сверхъемкие аккумуляторы и суперконденсаторы, высокочувствительные химические сенсоры и разделительные мембраны.

Claims (1)

  1. Способ получения углеродной пленки в термокамере, включающий конденсацию в вакууме углерода из углеродсодержащего компонента на предварительно нагретую подложку, отличающийся тем, что в качестве углеродсодержащего компонента используют углерод природного минерала шунгита с размером частиц 0,01-1 мкм, который помещают в зону испарения термокамеры и осуществляют вначале нагрев испарителя до температуры возгонки 350-400°С с последующим повышением температуры до 750°С со скоростью 3-5°С/мин, дополнительно создают зоны формовки и термостабилизации, разделенные подложкой, расположенной в зоне конденсации, и устанавливают температуру зоны испарения больше температуры зоны формовки, а температуру зоны термостабилизации - меньше температуры зоны формовки.
RU2016144257A 2016-11-10 2016-11-10 Способ получения углеродной пленки RU2652206C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016144257A RU2652206C1 (ru) 2016-11-10 2016-11-10 Способ получения углеродной пленки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016144257A RU2652206C1 (ru) 2016-11-10 2016-11-10 Способ получения углеродной пленки

Publications (1)

Publication Number Publication Date
RU2652206C1 true RU2652206C1 (ru) 2018-04-25

Family

ID=62045483

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016144257A RU2652206C1 (ru) 2016-11-10 2016-11-10 Способ получения углеродной пленки

Country Status (1)

Country Link
RU (1) RU2652206C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794042C1 (ru) * 2022-07-11 2023-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Способ формирования углеродных пленок плазменным осаждением атомов углерода в метане

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135648C1 (ru) * 1997-06-11 1999-08-27 Санкт-Петербургский государственный технический университет Способ получения кристаллических фуллеренов
RU2240978C2 (ru) * 2002-09-10 2004-11-27 Рак Валентин Александрович Способ получения фуллеренов
RU2448899C2 (ru) * 2010-08-05 2012-04-27 Учреждение Российской академии наук Институт геологии Карельского научного центра Российской академии наук Способ переработки шунгита
RU2500616C2 (ru) * 2011-11-03 2013-12-10 Учреждение Российской академии наук Институт проблем технологии микроэлектроники и особочистых материалов РАН (ИПТМ РАН) Способ получения графеновой пленки

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135648C1 (ru) * 1997-06-11 1999-08-27 Санкт-Петербургский государственный технический университет Способ получения кристаллических фуллеренов
RU2240978C2 (ru) * 2002-09-10 2004-11-27 Рак Валентин Александрович Способ получения фуллеренов
RU2448899C2 (ru) * 2010-08-05 2012-04-27 Учреждение Российской академии наук Институт геологии Карельского научного центра Российской академии наук Способ переработки шунгита
RU2500616C2 (ru) * 2011-11-03 2013-12-10 Учреждение Российской академии наук Институт проблем технологии микроэлектроники и особочистых материалов РАН (ИПТМ РАН) Способ получения графеновой пленки

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ВОЮЦКИЙ С.С. Курс колоидной химии, Москва, Химия, 1964, с. 17. *
ВОЮЦКИЙ С.С. Курс колоидной химии, Москва, Химия, 1964, с. 17. РОЖКОВА Н.Н. Наноуглерод шунгитов, Петрозаводск, КНЦ РАН, 2011, сс. 23-25. *
РОЖКОВА Н.Н. Наноуглерод шунгитов, Петрозаводск, КНЦ РАН, 2011, сс. 23-25. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794042C1 (ru) * 2022-07-11 2023-04-11 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Способ формирования углеродных пленок плазменным осаждением атомов углерода в метане

Similar Documents

Publication Publication Date Title
Muratore et al. Physical vapor deposition of 2D Van der Waals materials: a review
JP4866527B2 (ja) 昇華精製方法
CN108083339B (zh) 一种制备单层二维过渡金属硫化物材料的方法
JP2017523121A (ja) グラフェンを含む黒鉛生成物のプラズマ合成のための装置および方法
EP0581496A2 (en) Molecular beam epitaxy (MBE) effusion source utilizing heaters to achieve temperature gradients
RU2500616C2 (ru) Способ получения графеновой пленки
US20110223094A1 (en) Method for synthesis of high quality graphene
KR20150058322A (ko) 그래핀 나노리본을 제조하는 방법
JP2019529323A (ja) 改良化学蒸着(ap−cvd)により銅基板にグラフェンを製造する方法およびシステム
JP3929397B2 (ja) 有機el素子の製造方法及び装置
KR101797655B1 (ko) 그래핀 합성 장치
Cheragizade et al. Synthesis and characterization of PbS mesostructures as an IR detector grown by hydrogen-assisted thermal evaporation
WO2019227395A1 (en) Fine grained 3C-SiC thick films and a process for preparing the same
RU2652206C1 (ru) Способ получения углеродной пленки
CN111206230B (zh) 一种新型二维硫化铬材料的制备方法
CN107385508B (zh) 重复利用三氧化钼制备单层二硫化钼薄膜的方法
Sartinska Catalyst-free synthesis of nanotubes and whiskers in an optical furnace and a gaseous model for their formation and growth
KR102103884B1 (ko) 실리콘카바이드 단결정의 제조 장치 및 제조 방법
RU111140U1 (ru) Установка, печь и нагреватель печи для изготовления композиционного оптического материала селенид цинка/сульфид цинка
CN114182230A (zh) 一种制备二维碲烯薄膜的化学气相沉积方法
RU2135648C1 (ru) Способ получения кристаллических фуллеренов
KR101585194B1 (ko) 규소층을 포함하는 기판의 표면 위에 그래핀층을 형성하는 방법
RU2558812C1 (ru) Способ получения покрытия из карбида кремния на кварцевом изделии
JP2017145151A (ja) 非晶質炭素材の黒鉛結晶化処理方法および黒鉛を回収する際に生成する生成物並びに黒鉛
TWI616401B (zh) 微米粉體與其形成方法