RU2651791C2 - Способ получения монотерпеновых сульфокислот - Google Patents

Способ получения монотерпеновых сульфокислот Download PDF

Info

Publication number
RU2651791C2
RU2651791C2 RU2016112835A RU2016112835A RU2651791C2 RU 2651791 C2 RU2651791 C2 RU 2651791C2 RU 2016112835 A RU2016112835 A RU 2016112835A RU 2016112835 A RU2016112835 A RU 2016112835A RU 2651791 C2 RU2651791 C2 RU 2651791C2
Authority
RU
Russia
Prior art keywords
thiol
chlorine dioxide
physiologically active
terpene
monoterpene
Prior art date
Application number
RU2016112835A
Other languages
English (en)
Other versions
RU2016112835A (ru
Inventor
Ольга Михайловна Лезина
Ольга Николаевна Гребенкина
Евгений Сергеевич Изместьев
Денис Владимирович Судариков
Светлана Альбертовна Рубцова
Александр Васильевич Кучин
Original Assignee
Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук filed Critical Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук
Priority to RU2016112835A priority Critical patent/RU2651791C2/ru
Publication of RU2016112835A publication Critical patent/RU2016112835A/ru
Application granted granted Critical
Publication of RU2651791C2 publication Critical patent/RU2651791C2/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения монотерпеновых сульфокислот, заключающийся в окислении терпеновых тиолов диоксидом хлора путем добавления к раствору тиола водного или органического раствора диоксида хлора при мольном соотношении тиол : диоксид хлора - 1.0:0.5÷5.0, соответственно, при этом окисление ведут при температуре от 0°С до 30°С, в качестве исходных терпеновых тиолов используют: 10-сульфанилизопинокамфеол; 3-сульфанилмиртанол; 10-сульфанилизоборнеол; транс-вербентиол; неоментантиол; карантиол или гидроксикарантиолы, растворитель для исходного тиола выбирают из группы: спирты, простые эфиры, алифатические углеводороды, галогенированные алифатические углеводороды или азотсодержащие растворители, при этом получают соединения структурной формулы (I)
Figure 00000039
где R1 - H или
Figure 00000040
R - радикал пинановой структуры
Figure 00000041
Figure 00000042
или
Figure 00000043
или изоборнановой структуры
Figure 00000044
;
или камфановой структуры
Figure 00000045
;
или неоментановой структуры
Figure 00000046
;
или карановой структур
Figure 00000047
;
Figure 00000048
или
Figure 00000049
,
где звездочками обозначена связь, через которую осуществляется присоединение к сульфогруппе соединения формулы (I), являющихся физиологически активными веществами и полупродуктами в органическом синтезе для получения физиологически активных монотерпеновых сульфамидов, сульфохлоридов, эфиров. Технический результат заключается в расширении арсенала новых терпеновых кислот заданной структуры, востребованных в органическом синтезе физиологически активных соединений, и в расширении областей применения исходных веществ. 10 пр.

Description

Изобретение относится к синтезу терпеновых сульфокислот, а также к их гидратам, сольватам и солям, в частности к солям пиридиния.
Алкан- и арилсульфокислоты используются в качестве полупродуктов в органическом синтезе, в производстве некоторых химико-фармацевтических препаратов. Наличие сульфогруппы в составе лекарственного препарата увеличивает его растворимость в воде, что обуславливает снижение токсичности, придает препарату несколько иную биологическую активность, а также создает предпосылки для создания инъекционных лекарственных форм.
Терпены являются физиологически активными соединениями природного происхождения. Они обладают бактерицидным, обезболивающим и отхаркивающим действиями, используются как антисептики, фунгициды и противовирусные средства. Введение сульфогруппы в молекулу терпена позволяет расширить спектр этой активности [Л.Е. Никитина, Н.П. Артемова, В.А. Старцева. Природные и тиомодифицированные производные: монография. - Germany: LAP LAMBERT, 2012, 168 с.], а также областей использования полученных терпеноидов, в том числе, и за счет увеличения растворимости нового соединения в воде.
Известно, что сульфокамфорная кислота используется в производстве лекарственных препаратов, обладающих коронарорасширяющей способностью, антибактериальной активностью, болеутоляющим свойством (сульфокамфокаин, полусинтетические пенициллины и цефалоспорины). Четвертичные соли пиридиния проявляют антисептические, вазо- и гепатопротекторные свойства; являются поверхностно-активными веществами; применяются в органическом синтезе.
Функционализация терпеновых соединений известными методами введения сульфогруппы в молекулу (взаимодействие с концентрированной серной кислотой, олеумом, хлорсульфоновой кислотой) осложняется высокой лабильностью терпенового фрагмента: большинство терпенов в условиях реакции подвергаются многочисленным перегруппировкам и осмолению. Поэтому известно крайне мало терпеновых сульфокислот.
В источнике информации [Organic Syntheses, N.Y.: John Wiley & Sons, Inc., 1973. V. 5, P. 194; Патент РФ 2119332, 1998] описано получение сульфокамфорной кислоты с выходами 27-42% реакцией камфоры с уксусным ангидридом и концентрированной серной кислотой. Недостатками методов являются невысокие выходы и ограниченный выбор субстрата, так как большая часть циклических терпенов в данных условиях подвергается перегруппировке исходной структуры.
В источнике информации [Traynor, Kane, Betkouski, Hirshy, J. Org. Chem. 1979. V. 44. P. 1557] описано получение натриевой соли пара-ментен-1-ен-7-сульфоновой кислоты реакцией β-пинена с бисульфитом натрия и нитратом калия. Реакция требует пониженного давления и нагревания в течение 4 ч до 110°С, протекает с превращением пинановой структуры в ментановую.
Прямых аналогов получения заявленных терпеновых сульфокислот выявлено не было.
Задачей настоящего изобретения является синтез новых монотерпеновых сульфокислот, полученных эффективным способом.
Технический результат заключается в том, что способ позволяет получить терпеновые сульфокислоты в одну стадию с сохранением структуры терпенового фрагмента исходного тиола, а при оптимальных условиях способ позволяет получить высокий выход целевого продукта. Технический результат достигается получением монотерпеновых сульфокислот, включая их гидраты, сольваты и фармацевтически приемлемые соли, структурной формулы (I)
Figure 00000001
,
где R1 - Н или
Figure 00000002
;
R - радикал пинановой структуры
Figure 00000003
;
Figure 00000004
или
Figure 00000005
;
или изоборнановой структуры
Figure 00000006
или камфановой структуры
Figure 00000007
или неоментановой структуры
Figure 00000008
или карановой структур
Figure 00000009
;
Figure 00000010
или
Figure 00000011
;
где звездочками обозначена связь, через которую осуществляется присоединение к сульфогруппе соединения формулы (I), являющихся физиологически активными веществами и полупродуктами в органическом синтезе для получения физиологически активных монотерпеновых сульфамидов, сульфохлоридов, эфиров.
Получение терпеновых сульфокислот осуществляется окислением терпеновых тиолов в водно-органическом растворителе диоксидом хлора (схема 1) путем добавления к раствору тиола водного или органического раствора диоксида хлора при мольном соотношении реагентов равном 1.0:0.5÷5.0 соответственно, при температуре от 0 до 30°С. Согласно изобретению в качестве субстратов используют терпеновые тиолы, а именно 10-сульфанилизопинокамфеол (1), 3-сульфанилмиртанол (2), 10-сульфанилизоборнеол (3), транс-вербен- (4), неоментан- (5), каран- (6) и гидроксикарантиолы (7, 8). Растворитель для приготовления раствора исходного тиола выбирают из группы спиртов, простых эфиров, алифатических углеводородов, галогенированных алифатических углеводородов, азотсодержащих растворителей; растворитель для экстракции диоксида хлора выбирают из группы галогенированных алифатических углеводородов, простых эфиров, алифатических углеводородов, азотсодержащих растворителей, спиртов или воду.
Схема 1. Окисление тиолов
Figure 00000012
В качестве исходных субстратов брали оптически чистые тиолы, полученные по известным методикам: 10-сульфанилизопинокамфеол (1) [О.А. Банина, Д.В. Судариков, Ю.В. Крымская, Л.Л. Фролова, А.В. Кучин. Синтез хиральных гидрокситиолов на основе кислородсодержащих производных α- и β-пинена. ХПС. 2015. Т.2. С. 231], 3-сульфанилмиртанол (2) [
Figure 00000013
,
Figure 00000014
,
Figure 00000015
, J. Tamariz, P. Joseph-Nathan, L.G. Zepeda, Highly diastereoselective nucleophilic additions using a novel myrtenal-derived oxathiane as a chiral auxiliary, Tetrahedron: Asymmetry. 2001. V. 12. P. 3095], 10-сульфанилизоборнеол (3) [B.M. Eschler, R.K. Haynes, M.D. Ironside, S.K remmydas, D.D. Ridley, T.W. Hambley. J. Org. Chem. 1991. V. 56. P. 4760], неоментантиол (5) [L.A. Subluskey, L.C. King. Isobornylisothiouronium salts. J. Am. Chem. Soc. 1951. V. 73. Is. 6. P. 2647], транс-вербентиол (4) [И.А. Вакуленко, В.А. Старцева, Л.Е. Никитина, Н.П. Артемова, Л.Л. Фролова, А.В. Кучин, ХПС. 2005. Т.6. С. 585], карантиол (6) [A. Banach,
Figure 00000016
, P. Ozimek. Phosphorus, Sulfur, and Silicon and the Related Elements. 2014. V. 189 (2). P. 274] и гидроксикарантиолы (7, 8) [О.A. Банина, Д.В. Судариков, П.А. Слепухин, Л.Л. Фролова, А.В. Кучин. Стереоселективный синтез гидрокситиолов карановой структуры и дисульфидов на их основе, ХПС. 2016. Т. 52(2). С. 240].
Водный раствор ClO2 - промышленный продукт, концентрацию которого определяли титрованием по известной методике [Т.А. Туманова, И.Е. Флис. Физико-химические основы отбелки. М.: Лесная промышленность, 1972, 236].
Способ позволяет получить терпеновые сульфокислоты в одну стадию с сохранением структуры терпенового фрагмента исходного тиола с высоким выходом. Для подбора оптимальных условий синтеза сульфоновых кислот варьировались природа растворителя, соотношение тиол : диоксид хлора и время реакции. Были опробованы такие растворители как вода, пиридин, дихлорметан, метанол, гексан. Соотношение тиол : диоксид хлора изменялось от 1:0.5 до 1:5, время реакции - от 1 до 4 ч.
Оптимальными являются условия при использовании в качестве растворителя для исходного тиола - пиридин, а для диоксида хлора - воду при соотношении субстрат: реагент равном 1:2÷1:3. Использование данных условий приводит к повышению выхода целевого продукта до 96% (от теоретического). Реакция протекает при комнатной температуре (18-27°С) в течение короткого промежутка времени (1 ч).
ИК-спектры регистрировали на ИК-Фурье-спектрометре Shimadzu IR Prestige 21 в тонком слое. Спектры ЯМР 1Н и 13С регистрировали на спектрометре Bruker Avance-300 (300.17 МГц для 1Н и 75.48 МГц для 13С) в растворах CDCl3 (внутренний стандарт - сигнал хлороформа) и D2O с добавлением 4,4-диметил-4-силапентан сульфоната натрия (DSS) в качестве внутреннего стандарта. Полное отнесение сигналов 1Н и 13С выполняли с помощью двумерных гомо- (1Н-1Н COSY, 1Н-1Н NOESY) и гетероядерных экспериментов (1Н-13С HSQC, НМВС). Масс-спектры регистрировали на высокоэффективном жидкостном хроматографе с масс-селективным детектором Thermo finnigan LCQ Fleet (растворитель - CH3OH). Детектирование проводили по положительным и отрицательным ионам.
Получение новых соединений показано на следующих примерах.
Figure 00000017
Пример 1. Растворяли 0.05 г (0.27 ммоль) 10-сульфанилизопинокамфеола (1) в пиридине (С=0.02 моль/л). Добавляли к нему водный раствор ClO2 в мольном соотношении (1): ClO2=1:2.
Перемешивали в течение 1 ч. Растворители отгоняли на роторном испарителе. Для удаления остатков пиридина согласно [С.К. Огородников, Т.М. Лестева, В.Б. Коган. Азеотропные смеси. Ред. В.Б. Коган. Л.: Химия, 1971, 428] снова добавляли толуол и воду и повторно выпаривали под вакуумом. Экстрагировали водой и бензолом. Водную фазу отделяли, отгоняли на роторном испарителе, остаток представляет собой дигидрат (1S,2S,3S,5R)-3-гидрокси-6,6-диметилбицикло[3.1.1]гептаи-2-ил-метансульфоновой кислоты (1а). Выход в пересчете на сухой продукт 0.059 г (94%). ИК-спектр (KBr, v, см-1): 3435 ш (ОН), 2931 с, 1469, 1217 с, 1157 с, 1124 с (SO2), 1084 (SO2), 1037 с (С-О), 758 с, 732 с, 536. Спектр ЯМР 1Н (D2O, δ, м.д.): 0.90 с (3Н, Н8), 1.57 д (1Н, Н J 9.9 Гц), 1.22 с (3Н, H9), 1.67-1.74 м (1Н, Н), 1.94-1.99 м (2Н, H1, Н5), 2.16-2.20 (1H, H), 2.36-2.45 м (1Н, H), 2.51-2.58 м (1Н, Н2), 3.01-3.08 дд (1H, H10α, J 14.7, 6 Гц), 3.14-3.20 дд ((1H, H10β, J 15.3, 6 Гц), 4.20-4.27 дт (1H, H3, J 9.4, 4.7 Гц), 8.30 уш.с (6H, ОН, Н2O). Спектр ЯМР 13С (D2O, δ, м.д.): 22.8 (С8), 26.6 (С9), 32.7 (С7), 36.9 (С4), 37.7 (С6), 40.9 (С5), 45.4 (С1), 48.4 (С2), 56.8 (С10), 69.7 (С3). Найдено, %: С 44.80; Н 8.25; S 11.66. C10H18O4S⋅2H2O. Вычислено, %: С 44.44; Н 8.15; S 11.85.
Пример 2. (1S,2S,3S,5R)-3-Гидрокси-6,6-диметилбицикло[3.1.1]гептан-2-ил-метансульфоновая кислота (1а) получена по методике, описанной в примере 1. Растворитель - метанол. Выход 0.024 г (38%).
Figure 00000018
Пример 3. (1S,2R,3S,5R)-2-(Гидроксиметил)-6,6-диметилбицикло[3.1.1]-гептан-3-сульфоновая кислота (2а) получена окислением тиола (2) по методике, описанной в примере 1. Выход 96%. ИК-спектр (KBr, v, см-1): 3383 ш (ОН), 3065 с, 2935 с, 1631, 1539, 1485, 1225 с, 1197 с, 1157 с (SO2), 1035 с, 997 с, 968 с (SO2), 756 с, 684 с, 607. Спектр ЯМР 1Н (D2O, δ, м.д.): 0.95 с (3Н, H8), 1.08 (1Н, Н, J 9.9 Гц), 1.23 с (3Н, Н9), 1.96 м (1Н, Н5), 2.13-2.18 м (2Н, Н, Н1), 2.30-2.38 м (2Н, Н, Н), 2.43-2.50 м (1H, H2), 3.07 м (1H, Н3), 3.66 т (1Н, H10α, J 10.6 Гц), 3.84 м (1Н, Н10β), 4.94 уш.с (1Н, ОН). Спектр ЯМР 13С (D2O, δ, м.д.): 22.2 (С8), 26.7 (С9), 28.7 (С4), 29.9 (С7), 37.8 (С6), 40.1 (С5), 40.8 (С1), 45.4 (С2), 52.9 (С3), 64.9 (С10). Масс-спектр (ESI, 5 кВ), m/z (Iотн (%)): 232.19 (100) [М-2Н], 230 (50), 214 (32.5).
Figure 00000019
Пример 4. ((1R,2S,4S)-2-Гидрокси-(7,7-диметилбицикло[2.2.1]гептан-1-ил)метансульфоновая кислота (3а) получена по методике, описанной в примере 1. Соотношение (3): ClO2=1:3. Время синтеза 3 ч. Выход 57%. ИК-спектр (KBr, v, см-1): 3431 уш. с (ОН), 3074 с, 1631, 1443 с, 1251 (SO2), 1199, 1172 (SO2), 1035 (ОН), 970 (SO2), 756, 678 с, 601. Спектр ЯМР 1Н (D2O, δ, м.д.): 0.83 с (3Н, H8), 0.99 (3Н, H9), 1.07-1.08 м (1Н, H), 1.40-1.41 м (1H, Н), 1.73-1.75 м (5Н, H3, Н4, H, Н), 2.86 д (1Н, H10α, J 14.3 Гц), 3.30 д (1Н, H10β, J 14.3 Гц), 4.04-4.06 м (1Н, Н2). Спектр ЯМР 13С (D2O, δ, м.д.): 19.3 (С8), 19.8 (С9), 26.7 (С5), 38.1 (С3), 44.1 (С4), 47.8 (С7), 49.8 (С7), 50.1 (С10), 76.6 (С2).
Figure 00000020
Пример 5. (E)-((1S,4R)-3,3-Диметилбицикло[2.2.1]гептан-2-илиден)-метансульфоновая кислота (3б) получена по методике, описанной в примере 1. Соотношение (3): ClO2=1:3. Время синтеза 4 ч. Получена в смеси с кислотой (3а) в соотношении (3а) : (3б)=2:1. Содержание по ЯМР 34%. Данные ЯМР спектров кислоты (36) получены путем вычитания из спектра смеси соединений (3а) и (3б). Спектр ЯМР 1Н (D2O, δ, м.д.): 1.03 с (3Н, Н8), 1.05 с (3Н, Н9), 1.2-1.73 м (6Н, Н, Н, Н, Н, Н, Н), 1.96 м (1Н, H4), 3.58 д (1Н, Н1, J 4.4 Гц), 5.99 с (1Н, Н10), 8.17 т (2Н, НРу, J 6.6 Гц), 8.70 т (1H, НРу, J 7.97 Гц), 8.86 д (2Н, НРу, J 5.5 Гц). Спектр ЯМР 13С (D2O, δ, м.д.): 22.9 (С5), 24.7 (С8), 27.0 (С6), 27.8 (С9), 36.8 (С7), 42.7 (С1), 46.7 (С4), 47.8 (С3), 117.8 (С10), 127.5 (СPy), 141.1 (СРу), 147.3 (СРу), 169.7 (С2). [C10H16SO3]HNC5H5. Масс-спектр (ESI, 5 кВ), m/z (Iотн (%)): 296.11 [М+Ру+Н]+ (96), 591 [2(М+Ру)+Н]+.
Figure 00000021
Пример 6. (1R,5R)-4,6,6-триметилбицикло[3.1.1]гепт-3-ен-2-сульфоновая кислота (4а) получена из тиола (4) по методике, описанной в примере 1. Выход 86%. Выделена и идентифицирована в виде соли пиридиния [C10H16SO3]HNC5H5. ИК-спектр (KBr, v, см-1): 3431 ш (ОН), 3061, 2515 ш (N+H), 1631, 1537, 1485, 1294 с (SO2), 1151 с (SO2), 1051, 1028 с (SO2), 819, 758, 721, 684. Спектр ЯМР 1Н (CDCl3, δ, м.д., J, Гц): 0.84 с (3Н, H8), 0.96-1.09 (1H, Н), 1.15 с (3Н, Н9), 1.68 с (3Н, H10), 1.94-2.06 м (2Н, H1, Н), 2.30-2.40 м (1H, Н5), 5.29-5.35 м (1Н, H3), 5.49-5.57 м (Н, Н4), 8.02 т (2Н, HРу, J 6.87 Гц), 8.44 т (1Н, НPy, J 7.97 Гц), 9.00 д (2Н, НPy, J 5.5 Гц) 14.64 с (1Н, ОН). Спектр ЯМР 13С (CDCl3, δ, м.д.): 19.70 (С8), 22.80 (С10), 25.00 (С7), 25.49 (С9), 46.32 (С1), 46.86 (С6), 48.15 (С5), 71.00 (С4), 109.45 (С3), 127.82 (СPy), 142.95 (СPy), 145.08 (СPy), 156.70 (С2).
Figure 00000022
Пример 7. (1S,2S,5R)-2-изопропил-5-метилциклогексан-1-сульфоновая кислота (5а) получена окислением тиола (5) по методике, описанной в примере 1. Выход 78%. ИК-спектр (KBr, ν, см-1): 3410 с (ОН), 2953 с, 1182 с (SO2), 1070 (SO2), 1014, 885, 582.
Спектр ЯМР 1Н (D2O, δ, м.д., J, Гц): 0.83 д (3Н, Н7, J 6.1 Гц), 0.90 д (3Н, H10, J 6.6 Гц), 0.88-0.97 м (1H, Н), 0.99 д (3Н, Н9, J 6.6 Гц), 1.13-1.38 м (2Н, Н, Н2), 1.62-1.95 м (5Н, H, H, Н, Н5, Н8), 2.25 д.д (1Н, H, J 13.8, 2.2 Гц), 3.39-3.45 м (1Н, Н1). Спектр ЯМР 13С (D2O, δ, м.д.): 20.87 (С10), 21.39 (С9), 21.84 (С7), 23.74 (C3), 26.07 (С5), 29.10 (С8), 34.90 (С4), 37.78 (С6), 47.29 (С2), 58.82 (С1).
Figure 00000023
Пример 8. (1R,3S,4R,6S)-4,7,7-триметилбицикло[4.1.0]гептан-3-сульфоновая кислота (6а) получена окислением тиола (6) по методике, описанной в примере 1. Выделена и идентифицирована в виде соли [C10H18SO3]HNC5H5. Выход 76%. ИК-спектр (KBr, ν, см-1): 3437 ш (ОН), 2983, 2515 ш (N+H), 1631, 1543, 1487, 1215 с (SO2), 1159 с (SO2), 1035, 999 с (SO2), 756,684. Спектр ЯМР 1Н (CDCl3, δ, м.д., J, Гц): 0.25-0.35 (1Н, Н1), 0.42-0.64 (1H, Н6), 0.66-0.82 м (Н, Н), 0.75 д (6Н, H8, H10, J 6.6 Гц), 0.94 д (3Н, Н9, J 7.2 Гц), 0.89-1.00 м (1Н, Н), 1.75-1.89 м (1Н, Н), 1.98-2.14 м (2Н, H, Н3), 0.94 д.д.д (1Н, Н4, J 11.8, 7.4, 3.9 Гц), 8.12 т (2Н, HPy, J6.87 Гц), 8.65 т (1H, HPy, J 7.97 Гц), 8.96 д (2Н, HPy, J 5.5 Гц), 9.46 с (1H, N+H). Спектр ЯМР 13С (CDCl3, δ, м.д.): 14.89 (С8), 17.41 (С7), 17.51 (С9), 18.37 (С2), 19.18 (С1), 22.23 (С6), 26.20 (С3), 26.27 (С5), 27.95 (С10), 59.00 (С4), 127.84 (СРу), 142.21 (СРу), 146.29 (CPy).
Figure 00000024
Пример 9. (1R,3S,4S,6S)-4-гидрокси-4,7,7-триметилбицикло[4.1.0]-гептан-3-сульфоновая кислота (7а) получена окислением тиола (7) по методике, описанной в примере 1. Выход 92%. ИК-спектр (KBr, ν, см-1): 3423 ш (ОН), 2983, 2648 ш (N+H), 1631, 1539, 1485, 1249 с (SO2), 1207, 1157 с (SO2), 1035, 999 с (SO2), 756, 682. Спектр ЯМР 1Н (CDCl3, δ, м.д., J, Гц): 0.61 т (1Н, Н1, J 8.5 Гц), 0.77-0.98 м (2Н, Н6), 0.84 с (3Н, Н8), 0.91 с (3Н, Н9), 1.24 д.д (1Н, Н, J 15.7, 6.3 Гц), 1.38 с (3Н, Н10), 2.00 д.д (1Н, H, J 16.0, 8.8 Гц), 2.22-2.35 м (1Н, Н), 2.95 д.д (1H, Н4, J 12.0, 2.0 Гц), 7.98 т (2Н, HРу), 8.45 т (1Н, HРу) 8.96 д (2Н, HРу), 10.57 уш. с (1Н, Н11). Спектр ЯМР 13С (CDCl3, δ, м.д.): 14.84 (С8), 17.81 (С1), 18.59 (С7), 20.74 (С5), 23.62 (С6), 26.47 (С10), 27.85 (С9), 35.44 (С2), 67.81 (С4), 71.15 (С3), 127.27 (СРу), 142.06 (СРу), 145.86 (СРу).
Figure 00000025
Пример 10. (1R,3R,4R,6S)-4-гидрокси-4,7,7-триметилбицикло[4.1.0]-гептан-3-сульфоновая кислота (8а) получена окислением тиола (8) но методике, описанной в примере 1. Выход 96%. Выделена в виде соли [C10H16(OH)SO3]HNC5H5. ИК-спектр (KBr, v, см-1): 3410 уш.с (ОН), 2933 с, 2700 с (N+H), 1633, 1543, 1487 с, 1249 (SO2), 1211, 1161 (SO2), 1035 (SO2), 1001, 756, 682 с, 601. Спектр ЯМР 1Н (CDCl3, δ, м.д., J, Гц): 0.60 т (1Н, Н1, J 8.5 Гц), 0.75 т.д (1Н, H6, J 9.2, 5.2 Гц), 0.92 с (3Н, H8), 0.96 с (3Н, Н9), 1.20 д.д (1H, Н, J 14.3, 3.9 Гц), 1.39 с (3Н, Н10), 1.93 д.д (1H, Н, J 14.0, 10.2 Гц), 2.10-2.26 м (1Н, Н), 2.27-2.43 м (1Н, Н), 2.70 д.д (1Н, Н4, J 11.8, 7.4 Гц), 7.98 т (2Н, НPy), 8.45 т (1H, НPy), 8.96 д (2Н, НPy). Спектр ЯМР, 13С (CDCl3, δ, м.д.): 15.33 (С8), 17.78 (С7), 18.30 (С1), 19.77 (С6), 20.97 (С5), 22.39 (С10), 28.46 (С9), 35.53 (С2), 64.46 (С4), 70.53 (C3), 127.27 (СРу), 142.06 (СРу), 145.86 (СРу).
Терпены являются физиологически активными соединениями природного происхождения; обладают бактерицидным, обезболивающим и отхаркивающим действиями, благодаря чему используются как антисептики, фунгициды и противовирусные средства. Введение сульфогруппы в молекулу терпена позволяет расширить спектр этой активности [Л.Е. Никитина, Н.П. Артемова, В.А. Старцева. Природные и тиомодифицированные производные: монография. - Germany: LAP LAMBERT, 2012, 168 с.], а также областей использования полученных терпеноидов, в том числе за счет увеличения растворимости нового соединения в воде и, как следствие, снижения его токсичности и возможности создания инъекционных лекарственных форм. Дальнейшая модификация терпеновых сульфокислот, согласно приведенным ниже примерам, позволит получать новые физиологически активные соединения с заданными свойствами.
Figure 00000026
Figure 00000027
где R - терпенил, R1, R2, R3 - алкил.

Claims (14)

  1. Способ получения монотерпеновых сульфокислот, включая их гидраты, сольваты и фармацевтически приемлемые соли, заключающийся в окислении терпеновых тиолов диоксидом хлора путем добавления к раствору тиола водного или органического раствора диоксида хлора при мольном соотношении тиол : диоксид хлора - 1.0:0.5÷5.0, соответственно, при этом окисление ведут при температуре от 0°С до 30°С, в качестве исходных терпеновых тиолов используют: 10-сульфанилизопинокамфеол; 3-сульфанилмиртанол; 10-сульфанилизоборнеол; транс-вербентиол; неоментантиол; карантиол или гидроксикарантиолы, растворитель для исходного тиола выбирают из группы: спирты, простые эфиры, алифатические углеводороды, галогенированные алифатические углеводороды или азотсодержащие растворители, при этом получают соединения структурной формулы (I)
  2. Figure 00000028
  3. где R1 - H или
    Figure 00000029
  4. R - радикал пинановой структуры
  5. Figure 00000030
    Figure 00000031
    или
    Figure 00000032
  6. или изоборнановой структуры
  7. Figure 00000033
    ;
  8. или камфановой структуры
  9. Figure 00000034
    ;
  10. или неоментановой структуры
  11. Figure 00000035
    ;
  12. или карановой структур
  13. Figure 00000036
    ;
    Figure 00000037
    или
    Figure 00000038
    ,
  14. где звездочками обозначена связь, через которую осуществляется присоединение к сульфогруппе соединения формулы (I), являющихся физиологически активными веществами и полупродуктами в органическом синтезе для получения физиологически активных монотерпеновых сульфамидов, сульфохлоридов, эфиров.
RU2016112835A 2016-04-04 2016-04-04 Способ получения монотерпеновых сульфокислот RU2651791C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016112835A RU2651791C2 (ru) 2016-04-04 2016-04-04 Способ получения монотерпеновых сульфокислот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016112835A RU2651791C2 (ru) 2016-04-04 2016-04-04 Способ получения монотерпеновых сульфокислот

Publications (2)

Publication Number Publication Date
RU2016112835A RU2016112835A (ru) 2017-10-09
RU2651791C2 true RU2651791C2 (ru) 2018-04-24

Family

ID=60047919

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016112835A RU2651791C2 (ru) 2016-04-04 2016-04-04 Способ получения монотерпеновых сульфокислот

Country Status (1)

Country Link
RU (1) RU2651791C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2695361C1 (ru) * 2019-04-29 2019-07-23 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Холестеролсульфохлорид и способ его получения
RU2708617C1 (ru) * 2019-02-20 2019-12-10 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Сульфопроизводные на основе бета-пинена и способ их получения

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675238C1 (ru) * 2018-02-14 2018-12-18 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук Способ получения хиральных S-монотерпенилцистеинов
RU2689381C1 (ru) * 2018-02-14 2019-05-28 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии Коми Научного Центра Уральского Отделения Российской Академии Наук Хиральные S-монотерпенилцистеины

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2119332C1 (ru) * 1995-05-23 1998-09-27 Ивдельский гидролизный завод Способ получения сульфокамфорной кислоты

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2119332C1 (ru) * 1995-05-23 1998-09-27 Ивдельский гидролизный завод Способ получения сульфокамфорной кислоты

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A Simple Resolution Procedure Using the Staudinger Reaction for the Preparation of P-Stereogenic Phosphine Oxides. Andersen, Neil G.; Ramsden, Philip D.; Che, Daqing; Parvez, Masood; Keay, Brian A. Department of Chemistry, University of Calgary, Calgary, AB, T2N 1N4, Can.). Journal of Organic Chemistry, 66(22), 7478-7486 (English) 2001. Publisher: American Chemical Society.DOI: 10.1021/jo015909u . *
A stereo configuration-activity study of 3-iodo-4-(2-methylcyclohexyloxy)-6-phenethylpyridin-2(2H)-ones as potency inhibitors of HIV-1 variants. Wu, haotong; Yin, Qianqian; Zhao, Liang; Fan, Ningning; Tang, Xiaowan; Zhao, Jianxiong; Sheng, Tao; Guo, Ying; Tian, Chao; Zhang, Zhili; Xu, Weisi; Liu, Zhenming; Jiang, Shibo; Ma, Liying; Liu, Junyi; Wang, Xiaowei (Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, Peop. Rep. China). Organic & Biomolecular Chemistry, 14(4), 1413-1420 (English). *
P-Stereogenic Phosphine Oxides. Andersen, Neil G.; Ramsden, Philip D.; Che, Daqing; Parvez, Masood; Keay, Brian A. (Department of Chemistry, The; University of Calgary, Calgary, AB, T2N 1N4, Can.). Organic Letters,; 1(12), 2009-2011 (English) 1999.DOI: 10.1021/ol991174s. *
Reaction of monoterpene hydroxy thiols with chlorine dioxide. Lezina, O. M.; Grebenkina, O. N.; Sudarikov, D. V.; Krymskaya, Yu. V.; Rubtsova, S. A.; Kutchin, A. V. (Institute of Chemistry, Komi Research Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Russia). Russian Journal of Organic Chemistry, 51(10), 1359-1367 English) 2015. DOI: 10.1134/S1070428015100012. *
Reaction of monoterpene hydroxy thiols with chlorine dioxide. Lezina, O. M.; Grebenkina, O. N.; Sudarikov, D. V.; Krymskaya, Yu. V.; Rubtsova, S. A.; Kutchin, A. V. (Institute of Chemistry, Komi Research Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Russia). Russian Journal of Organic Chemistry, 51(10), 1359-1367 English) 2015. DOI: 10.1134/S1070428015100012. A stereo configuration-activity study of 3-iodo-4-(2-methylcyclohexyloxy)-6-phenethylpyridin-2(2H)-ones as potency inhibitors of HIV-1 variants. Wu, haotong; Yin, Qianqian; Zhao, Liang; Fan, Ningning; Tang, Xiaowan; Zhao, Jianxiong; Sheng, Tao; Guo, Ying; Tian, Chao; Zhang, Zhili; Xu, Weisi; Liu, Zhenming; Jiang, Shibo; Ma, Liying; Liu, Junyi; Wang, Xiaowei (Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, Peop. Rep. China). Organic & Biomolecular Chemistry, 14(4), 1413-1420 (English). Structures of the cmphene sultones. Wolinsky, Joseph; Dimmel, Donald R *
STN Online CA : RN 43009-80-9, RN 43009-81-0, Reaction of 3,4-epoxycaranes with sodium sulfite and hydrogen sulfite. Myslinski, Eugeniusz; Michalek, Emilia (N. Copernicus Univ., Torun, Pol.). Roczniki Chemii, 47(2), 285-9 (Polish) 1973. *
Structures of the cmphene sultones. Wolinsky, Joseph; Dimmel, Donald R.; Gibson, Thomas W. (Purdue Univ., Lafayette, IN, USA). Journal of Organic Chemistry, 32(7), 2087-97 (English) 1967.DOI: 10.1021/jo01282a008. *
Sultone rearrangements. II. Deuterated analogs of 10-isobornyl sultone. Exo-3,2-methyl shifts and discrete 2-norbornyl cations. Dimmel, Donald R.; Fu, Wallace Y. (Dep. Chem., Marquette Univ., Milwaukee, WI, USA). Journal of Organic Chemistry, 38(21), 3782-8 (English) 1973.DOI: 10.1021/jo00961a030. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708617C1 (ru) * 2019-02-20 2019-12-10 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Сульфопроизводные на основе бета-пинена и способ их получения
RU2695361C1 (ru) * 2019-04-29 2019-07-23 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Холестеролсульфохлорид и способ его получения

Also Published As

Publication number Publication date
RU2016112835A (ru) 2017-10-09

Similar Documents

Publication Publication Date Title
RU2651791C2 (ru) Способ получения монотерпеновых сульфокислот
ES2784881T3 (es) Proceso para la producción de cannabidiol y delta-9-tetrahidrocannabinol
BRPI0817909B1 (pt) Métodos de obtenção e de preparação de uma composição diastereomericamente pura, compostos, e método para produzir os referidos compostos
ES2626702T3 (es) Reactivos electrófilos para monohalometilación, su preparación y usos
Han et al. Diastereoselective [3+ 2] cycloaddition of 3-ylideneoxindoles with in situ generated CF 2 HCHN 2: syntheses of CF 2 H-containing spirooxindoles
US20210070724A1 (en) Method for producing 2-acetyl-4h,9h-naphtho[2,3-b]furan-4,9-dione
ES2881882T3 (es) Método para producir ácido N-retinoilaminoalcanosulfónico
RU2708617C1 (ru) Сульфопроизводные на основе бета-пинена и способ их получения
Stakanovs et al. Convergent biomimetic semisynthesis of disesquiterpenoid rumphellolide J
Lezina et al. Reaction of monoterpene hydroxy thiols with chlorine dioxide
RU2043988C1 (ru) 4-оксоазетидин-2-сульфоновые кислоты или их соли в качестве промежуточных продуктов в синтезе бета-лактамовых антибиотиков и способ их получения
Bonini et al. Synthesis of 1-alkene-1, 3-sultones from 2, 3-epoxy-alkanesulfonyl chlorides
RU2780452C1 (ru) Хиральные γ-кетосульфонильные производные пинановой структуры и способ их получения
RU2657730C1 (ru) Сульфопроизводные α-пинена
CN115536511B (zh) 1,4-二醛酮化合物、其合成方法及应用
RU2203265C2 (ru) Способ получения 5,8-дигидрокси-2,3,6-триметокси-7-этил-1,4-нафтохинона
EP3581577B1 (en) 15-oxosteroid compound and method for producing same
JPS6254104B2 (ru)
Frischmuth et al. Strigol synthetic studies the problem of stereocontrol at C-2′
CN105541581B (zh) 一种立体专一性合成四取代烯烃类化合物及其方法
EP0353053A2 (en) Catalytic process for producing optically active alpha-hydroxycarboxylates
ES2708344T3 (es) Procedimiento para la preparación de hidrocloruro de 4-cianoperidina
CN107936040A (zh) 一种替格瑞洛中间体的合成工艺
CN110078674A (zh) 一种2-烃基胺基嘧啶酮的制备方法
RU2529025C1 (ru) Способ получения производных 2,2-адамантиленспирооксирана