RU2649651C2 - Single sound absorber with volumetric sound-reflecting element - Google Patents

Single sound absorber with volumetric sound-reflecting element Download PDF

Info

Publication number
RU2649651C2
RU2649651C2 RU2014105907A RU2014105907A RU2649651C2 RU 2649651 C2 RU2649651 C2 RU 2649651C2 RU 2014105907 A RU2014105907 A RU 2014105907A RU 2014105907 A RU2014105907 A RU 2014105907A RU 2649651 C2 RU2649651 C2 RU 2649651C2
Authority
RU
Russia
Prior art keywords
sound
absorbing
reflecting
frame
layers
Prior art date
Application number
RU2014105907A
Other languages
Russian (ru)
Other versions
RU2014105907A (en
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2014105907A priority Critical patent/RU2649651C2/en
Publication of RU2014105907A publication Critical patent/RU2014105907A/en
Application granted granted Critical
Publication of RU2649651C2 publication Critical patent/RU2649651C2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to industrial acoustics. Technical result is achieved due to fact, that a single sound absorber with a sound-reflecting volumetric element consists of a rigid frame, suspended by the hooks on the cables to the production building ceiling with the located inside the frame sound-absorbing element, wherein the frame is made in the form of a rectangular parallelepiped with the ribs dimensions of L×H×B, which ratio lies in the optimal range of the quantities L:H:B = 2:1:0.5, characterized by that the sound-absorbing element is made in the form of a combined multi-layer sound-absorbing structure, consisting of symmetrically arranged perforated walls, between which three layers are arranged: central layer from sound-reflecting material, of complex profile, composed of evenly distributed hollow tetrahedrons, allowing to reflect sound waves incident in all directions, and sound-absorbing layers of materials with different density symmetrically adjacent thereto, at that, each of the perforated walls has the following perforation parameters: holes diameter of 3÷7 mm, perforation percentage of 10÷15%, and as a sound-absorbing material plates from mineral wool are used, wherein the sound absorbing element over its entire surface is lined with an acoustically transparent material.
EFFECT: technical result is increase in the noise attenuation efficiency at high frequencies by introducing into the sound-absorbing element, located inside the perforated cylindrical busing shells of the sound-reflecting layers, which perform the soundproofing function at high frequencies.
1 cl, 2 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Известны конструкции штучных звукопоглотителей, выполненных в виде объемных параллелепипедов, кубической формы, конические, полости которых заполнены звукопоглощающим материалом [1, 2, 3, 4]. В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике.Known designs of piece sound absorbers made in the form of volumetric parallelepipeds, cubic, conical, the cavities of which are filled with sound-absorbing material [1, 2, 3, 4]. Currently, fibrous sound absorbers are the most common in construction practice.

Недостатками известных штучных звукопоглотителей являются сравнительно невысокая эффективность на низких и средних частотах, а также они не отвечают возросшим требованиям, предъявляемым к дизайну помещений.The disadvantages of the known piece sound absorbers are the relatively low efficiency at low and medium frequencies, and they do not meet the increased requirements for room design.

Известен конический штучный звукопоглотитель по патенту РФ №2282004 [5], состоящий из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, каркас выполнен по форме в виде конуса с прикрепленной к его нижнему фланцу полусферой, также содержащей звукопоглощающий материал, обернутый сетчатой капроновой тканью или стеклотканью, причем заполнение звукопоглощающим материалом может быть как с воздушными полостями, расположенными на периферии полусферы, так и внутри нее в шахматном порядке по трем координатным плоскостям.Known conical piece sound absorber according to the patent of the Russian Federation No. 22822004 [5], consisting of a rigid frame suspended by hooks on cables to the ceiling of the industrial building with sound-absorbing material located inside the frame wrapped with mesh nylon fabric, the frame is made in the form of a cone attached to it the lower flange with a hemisphere also containing sound-absorbing material wrapped in a mesh nylon fabric or fiberglass, and filling with sound-absorbing material can be as with air cavities and located on the periphery of the hemisphere, as well as within it in a checkerboard pattern on the three coordinate planes.

Недостатком его является сравнительно невысокая эффективность шумоглушения на высоких частотах, из-за отсутствия звукоотражающих слоев, выполняющих функции звукоизоляции на высоких частотах.Its disadvantage is the relatively low efficiency of sound attenuation at high frequencies, due to the lack of sound-reflecting layers that perform the functions of sound insulation at high frequencies.

Известен цилиндрический резонансный штучный звукопоглотитель по патенту РФ №2303679 [6], состоящий из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, каркас выполнен цилиндрическим в виде перфорированного стакана и перфорированной круглой крышки, внутри которого расположен жестко закрепленный на оси стакана центральный стержень, на котором установлены с возможностью их фиксации круглые перегородки, внутри одной из которых расположен звукопоглощающий материал, обернутый сетчатой капроновой тканью.Known cylindrical resonant piece sound absorber according to the patent of the Russian Federation No. 23033679 [6], consisting of a rigid frame suspended by hooks on cables to the ceiling of the industrial building with a sound-absorbing material located inside the frame wrapped in a mesh nylon fabric, the frame is made cylindrical in the form of a perforated round glass and lids, inside of which is located a central rod rigidly fixed to the axis of the glass, on which round partitions are mounted with the possibility of their fixation, inside one of which is a sound-absorbing material wrapped in a mesh nylon fabric.

Недостаток - сравнительно невысокая эффективность шумоглушения на низких частотах, из-за стесненных габаритов для размещения резонансных камер.The disadvantage is the relatively low efficiency of sound attenuation at low frequencies, due to the cramped dimensions for placing resonant cameras.

Известен кубический штучный звукопоглотитель по патенту РФ №2334062 [7], состоящий из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, каркас выполнен по форме в виде двух кубических поверхностей, одна из которых - внешняя выполнена перфорированной, а другая внутренняя - акустически прозрачной, причем звукопоглощающий материал, обернутый сетчатой капроновой тканью, расположен в промежутке между каркасами, которые соединены между собой посредством резонансных вставок разного диаметра, а внутренняя полость разделена перегородкой на две резонансные полости, одна из которых заполнена звукопоглотителем.Known cubic piece sound absorber according to the patent of the Russian Federation No. 2334062 [7], consisting of a rigid frame suspended by hooks on cables to the ceiling of the industrial building with a sound-absorbing material located inside the frame wrapped in mesh nylon fabric, the frame is made in the form of two cubic surfaces, one of which - the outer one is perforated, and the other inner one is acoustically transparent, and the sound-absorbing material wrapped in a mesh nylon fabric is located in the gap between the frame and which are interconnected by means of resonance inserts of different diameters, and the inner cavity is divided by a partition into two resonant cavities, one of which is filled with a sound absorber.

Недостаток - сравнительно невысокая эффективность шумоглушения на высоких частотах, из-за отсутствия звукоотражающих слоев, выполняющих функции звукоизоляции на высоких частотах.The disadvantage is the relatively low efficiency of sound attenuation at high frequencies, due to the lack of sound-reflecting layers that perform the functions of sound insulation at high frequencies.

Известен объемный штучный звукопоглотитель по патенту РФ №2354786 [8], состоящий из жесткого каркаса, подвешиваемого на крепежном элементе к потолку производственного здания, каркас выполнен по форме в виде двух концентричных объемных поверхностей правильных многогранников Платоновых тел, одна из которых - внешняя выполнена перфорированной, а другая внутренняя - сплошной, причем звукопоглощающий материал, обернутый акустически прозрачным материалом, расположен в промежутке между поверхностями.Known volumetric sound absorber according to the patent of the Russian Federation No. 2354786 [8], consisting of a rigid frame suspended on a fastener to the ceiling of an industrial building, the frame is made in the form of two concentric volumetric surfaces of regular polyhedra of Platonic solids, one of which is external perforated, and the other inner one is continuous, and a sound-absorbing material wrapped in an acoustically transparent material is located in the gap between the surfaces.

Недостаток - сравнительно невысокая эффективность шумоглушения на высоких частотах, из-за отсутствия звукоотражающих слоев, выполняющих функции звукоизоляции на высоких частотах.The disadvantage is the relatively low efficiency of sound attenuation at high frequencies, due to the lack of sound-reflecting layers that perform the functions of sound insulation at high frequencies.

Наиболее близким техническим решением по технической сущности и достигаемому результату является штучный звукопоглотитель по патенту РФ №2485256 [9], состоящий из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, к каркасу прикреплен просечно-вытяжной стальной лист, а каркас может быть выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5, или куба с размером ребра k×L, где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2 - (прототип).The closest technical solution to the technical nature and the achieved result is a piece of sound absorber according to the patent of the Russian Federation No. 2485256 [9], consisting of a rigid frame suspended by hooks on cables to the ceiling of the industrial building with sound-absorbing material located inside the frame, wrapped with mesh nylon fabric, to the frame an expanded metal sheet is attached, and the frame can be made in the form of a rectangular parallelepiped with the dimensions of the ribs L × H × B, the ratio of which lies in the optimal and in the range of L: H: B = 2: 1: 0.5, or a cube with the edge size k × L, where min L = 100 mm; k is the proportionality coefficient lying in the range from 1 to 10 in increments of 2 - (prototype).

Недостатком прототипа является сравнительно невысокая эффективность шумоглушения на высоких частотах, так как звукопоглощающий элемент, расположенный внутри обечаек перфорированной цилиндрической втулки, выполнен однослойным и не имеет звукоотражающих слоев, выполняющих функции звукоизоляции на высоких частотах.The disadvantage of the prototype is the relatively low efficiency of sound attenuation at high frequencies, since the sound-absorbing element located inside the shells of the perforated cylindrical sleeve is single-layer and has no sound-reflecting layers that perform sound insulation functions at high frequencies.

Технический результат - повышение эффективности шумоглушения на высоких частотах путем введения в звукопоглощающий элемент, расположенный внутри обечаек, перфорированной цилиндрической втулки звукоотражающих слоев, которые выполняют функцию звукоизоляции на высоких частотах.EFFECT: increased efficiency of sound attenuation at high frequencies by introducing into the sound-absorbing element located inside the shells a perforated cylindrical sleeve of sound-reflecting layers that perform the function of soundproofing at high frequencies.

Это достигается тем, что в штучном звукопоглотителе со звукоотражающим объемным элементом, состоящим из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим элементом, причем каркас выполнен в виде прямоугольного параллелепипеда с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5, а звукопоглощающий элемент выполнен в виде комбинированной многослойной звукопоглощающей конструкции, состоящей из симметрично расположенных перфорированных стенок, между которыми расположены три слоя: центральный слой из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности, при этом каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10÷15%, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа Э3-100 или полимером типа «повиден».This is achieved by the fact that in a piece of sound absorber with a sound-reflecting volumetric element consisting of a rigid frame suspended by hooks on cables to the ceiling of a production building with a sound-absorbing element located inside the frame, the frame being made in the form of a rectangular parallelepiped with the dimensions of the ribs L × H × B, the ratio of which lies in the optimal range of L: H: B = 2: 1: 0.5, and the sound-absorbing element is made in the form of a combined multilayer sound-absorbing structure, consisting of symmetrically arranged perforated walls, between which there are three layers: the central layer of sound-reflecting material, a complex profile consisting of uniformly distributed hollow tetrahedra, which allow sound waves incident in all directions to be reflected, and sound-absorbing layers symmetrically adjoining to it from materials of different densities, each of perforated walls has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and used as sound-absorbing material litas of rockwool basalt mineral wool or URSA mineral wool or P-75 basalt wool or glass wool lined with glass wool, the sound-absorbing element over its entire surface lined with acoustically transparent material, such as E3 fiberglass -100 or "poviden" polymer.

На фиг.1 представлен фронтальный разрез предлагаемого штучного звукопоглотителя со звукоотражающим объемным элементом, на фиг.2 - сечение его профильной проекции.In Fig.1 shows a frontal section of the proposed piece sound absorber with a sound-reflecting volumetric element, Fig.2 is a cross section of its profile projection.

Штучный звукопоглотитель со звукоотражающим объемным элементом состоит из жесткого каркаса 1 (фиг.1), выполненного в виде прямоугольного параллелепипеда с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5. Горизонтальные 2 и вертикальные 3, равномерно расположенные и жестко скрепленные в точках пересечения, ребра образуют полость каркаса 1 для размещения комбинированной многослойной звукопоглощающей конструкции (фиг.2).A piece sound absorber with a sound-reflecting volume element consists of a rigid frame 1 (Fig. 1), made in the form of a rectangular parallelepiped with ribs L × H × B, the ratio of which lies in the optimal range of L: H: B = 2: 1: 0, 5. Horizontal 2 and vertical 3, evenly spaced and rigidly fastened at the intersection points, the ribs form the cavity of the frame 1 to accommodate a combined multilayer sound-absorbing structure (figure 2).

Каркас подвешивается за крючья 4 на тросах либо непосредственно крепится к потолку производственного здания (на чертеже не показано).The frame is suspended by hooks 4 on the cables or directly attached to the ceiling of the industrial building (not shown in the drawing).

Звукопоглощающая конструкция (фиг.2) выполнена в виде симметрично расположенных перфорированных 6 и 5 стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде трех слоев: центрального слоя 9 из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев 7 и 8 из материалов разной плотности. Каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing structure (Fig. 2) is made in the form of symmetrically arranged perforated 6 and 5 walls, between which there is a sound-absorbing element made in the form of three layers: the central layer 9 of sound-reflecting material, a complex profile consisting of uniformly distributed hollow tetrahedrons that allow reflecting incident sound waves in all directions, and sound-absorbing layers 7 and 8 symmetrically adjoining to it from materials of different densities. Each of the perforated walls has the following perforation parameters: the diameter of the holes is 3 ÷ 7 mm, the percentage of perforation is 10 ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.

Каждая из перфорированных стенок 6 и 5 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the perforated walls 6 and 5 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material applied to one or two sides of the material, and the ratio between the thicknesses of the material and vibration damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из перфорированных стенок 6 и 5 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the perforated walls 6 and 5 can be made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a polymer protective and decorative coating of the Pural type with a thickness of 50 microns or Polyester with a thickness of 25 microns, or an aluminum sheet with a thickness of 1.0 mm and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из перфорированных стенок 6 и 5 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа Э3-100 или полимером типа «повиден», или неткаными материалами, например «лутрасилом».Each of the perforated walls 6 and 5 can be made of solid, decorative vibration damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, for example fiberglass type E3-100 or polymer type "poviden", or non-woven materials, such as "lutrasil."

В качестве материала звукоотражающего слоя 9 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layer 9, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum, or soundproof boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 were used .

В качестве звукопоглощающего материала слоев 7 и 8 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа Э3-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layers 7 and 8, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene. Moreover, the sound-absorbing material is lined with an acoustically transparent material over its entire surface, for example, E3-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T), or coated with breathable fabrics or non-woven materials e.g. Lutrasil.

Кроме того, в качестве звукопоглощающего материала слоев 7 и 8 может быть использован пористый шумопоглощающий материала, например пеноалюминий, или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа «Acutex Т», или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».In addition, as the sound-absorbing material of layers 7 and 8, a porous sound-absorbing material, for example, foam aluminum, or cermet, or a shell rock with a degree of porosity in the range of optimal values: 30–45%, or metal foam, or material in the form of pressed crumbs from solid vibration-damping materials, for example elastomer, polyurethane, or plastic compound like “Agate”, “Anti-vibration”, “Shvim”, and the size of the crumbs fractions lies in the optimal range of values: 0.3 ... 2.5 mm, and they could also porous mineral piece materials were used, for example, pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or covered with breathable fabrics or non-woven materials, such as Lutrasil.

В качестве звукоотражающего материала может быть применен материал на основе фольги, или стеклопластика, или углепластика, или пластмассы, содержащей в качестве упрочняющего наполнителя углеродные волокна.As a sound-reflecting material, a material based on foil, or fiberglass, or carbon fiber, or plastic containing carbon fibers as a reinforcing filler can be used.

В качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used.

В качестве звукопоглощающего материала использован полиэстер.Polyester is used as a sound-absorbing material.

В качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки.As a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film.

В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷4000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. В процессе спекания частицы перлита в точках соприкосновения образуют смежные поры. Этот материал обладает хорошей звукопоглощающей способностью в широком диапазоне частот, но имеет высокую плотность, связанную с содержанием большого количества спекающих материалов.As a sound-absorbing material, a porous sound-absorbing ceramic material is used, having a bulk density of 500 ÷ 4000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. During sintering, perlite particles at adjacent points form adjacent pores. This material has good sound absorption in a wide frequency range, but has a high density associated with the content of a large number of sintering materials.

Штучный звукопоглотитель со звукоотражающим объемным элементом работает следующим образом.Piece sound absorber with a sound-reflecting volumetric element operates as follows.

Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки штучного звукопоглотителя на требуемый частотный диапазон шумоподавления и его экономически обоснованную эффективность (имеется в виду снижение шума до санитарно-гигиенических норм). Кроме того, выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.An advantage of the invention is its versatility of application for various production facilities having a wide variety of noise characteristics. At the same time, it should be noted the relative ease of setting up a piece of sound absorber for the required frequency range of noise reduction and its economically feasible efficiency (meaning reducing noise to sanitary standards). In addition, the implementation of the sound absorber of non-combustible materials makes the design fireproof.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированные стенки 5 и 6 попадает на слои 7 и 8 звукопоглощающего материала, а затем на слой 9 звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и которые расположены соответственно у перфорированных 5 и 6 стенок, а затем падает на слои 7 и 8 мягкого звукопоглощающего материала разной плотности. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated walls 5 and 6 falls on layers 7 and 8 of sound-absorbing material, and then on layer 9 of sound-reflecting material of a complex profile consisting of uniformly distributed hollow tetrahedra , allowing to reflect sound waves incident in all directions, and which are located respectively at the perforated 5 and 6 walls, and then falls on layers 7 and 8 of soft sound-absorbing material of different density tee. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the excitation frequency against the wall of the neck itself, which has the form branched network of pore sound absorbers. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Источники информацииInformation sources

1. Кочетов О.С., Сажин Б.С. Снижение шума и вибраций в производстве: теория, расчет, технические решения. М.: МГТУ им. А.Н. Косыгина, 2001. - 319 с. (рис.П. III. 10, стр.263).1. Kochetov O.S., Sazhin B.S. Noise and vibration reduction in production: theory, calculation, technical solutions. M .: MSTU im. A.N. Kosygina, 2001 .-- 319 p. (Fig. P. III. 10, p. 263).

2. Кочетов О.С. Текстильная виброакустика. Учебное пособие для вузов. М.: МГТУ им. А.Н. Косыгина, группа «Совьяж Бево» 2003. - 191 с. (рис.П.2, стр.176).2. Kochetov OS Textile vibroacoustics. Textbook for universities. M .: MSTU im. A.N. Kosygina, the group "Sauvage Bevo" 2003. - 191 p. (Fig. A.2, p. 176).

3. Кочетов О.С. Лабораторный практикум по производственной санитарии. Учебное пособие для вузов. М.: МГТУ им. А.Н. Косыгина, группа «Совьяж Бево» 2004. - 168 с. (рис.6.6, стр.120).3. Kochetov OS Laboratory workshop on industrial sanitation. Textbook for universities. M .: MSTU im. A.N. Kosygina, the group "Sovezh Bevo" 2004. - 168 p. (Fig.6.6, p. 120).

4. Кочетов О.С. Звукопоглощающие конструкции для снижения шума на рабочих местах производственных помещений. Журнал «Безопасность труда в промышленности», №11, 2010, стр.46-50. (рис.1; стр.48 и рис.2; стр.48).4. Kochetov O.S. Sound-absorbing structures to reduce noise in the workplace of industrial premises. The journal "Occupational Safety in Industry", No. 11, 2010, pp. 46-50. (fig. 1; p. 48 and fig. 2; p. 48).

5. Кочетов О.С., Кочетова М.О., Ходакова Т.Д., Елин A.M. Конический штучный звукопоглотитель // Патент на изобретение №2282004. Опубликовано 20.08.2006. Бюллетень изобретений №23.5. Kochetov O.S., Kochetova M.O., Khodakova T.D., Elin A.M. Conical piece sound absorber // Patent for invention No. 2282004. Published on August 20, 2006. Bulletin of inventions No. 23.

6. Кочетов О.С., Кочетова М.О., Ходакова Т.Д. Цилиндрический резонансный штучный звукопоглотитель // Патент на изобретение №2303679. Опубликовано 27.07.2007. Бюллетень изобретений №21.6. Kochetov O.S., Kochetova M.O., Khodakova T.D. Cylindrical resonant piece sound absorber // Patent for invention No. 2303679. Published on July 27th, 2007. Bulletin of inventions No. 21.

7. Кочетов О.С., Кочетова М.О., Ходакова Т.Д. Кубический штучный звукопоглотитель // Патент на изобретение №2334062. Опубликовано 20.09.2008. Бюллетень изобретений №26.7. Kochetov O.S., Kochetova M.O., Khodakova T.D. Cubic piece sound absorber // Patent for invention No. 2334062. Published on September 20, 2008. Bulletin of inventions No. 26.

8. Кочетов О.С., Кочетова М.О., Кочетов С.С., Кочетов Сергей Сергеевич. Объемный штучный звукопоглотитель// Патент на изобретение №2354786. Опубликовано 10.05.2009. Бюллетень изобретений №13.8. Kochetov O.S., Kochetova M.O., Kochetov S.S., Kochetov Sergey Sergeevich. Volumetric piece sound absorber // Patent for invention No. 2354786. Published on May 10th, 2009. Bulletin of inventions No. 13.

9. Кочетов О.С. Штучный звукопоглотитель // Патент на изобретение №2485256. Опубликовано 20.06.2013. Бюллетень изобретений №17.9. Kochetov O.S. Piece sound absorber // Patent for invention No. 2485256. Published 06/20/2013. Bulletin of inventions No. 17.

Claims (1)

Штучный звукопоглотитель со звукоотражающим объемным элементом, состоящий из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим элементом, причем каркас выполнен в виде прямоугольного параллелепипеда с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5, отличающийся тем, что звукопоглощающий элемент выполнен в виде комбинированной многослойной звукопоглощающей конструкции, состоящей из симметрично расположенных перфорированных стенок, между которыми расположены три слоя: центральный слой из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и симметрично прилегающих к нему звукопоглощающих слоев из материалов разной плотности, при этом каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий 3÷7 мм, процент перфорации 10÷15%, а в качестве звукопоглощающего материала используются плиты из минеральной ваты, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом.A piece sound absorber with a sound-reflecting volume element, consisting of a rigid frame suspended by hooks on cables to the ceiling of a production building with a sound-absorbing element located inside the frame, the frame made in the form of a rectangular parallelepiped with ribs L × H × B, the ratio of which lies in the optimal interval values L: H: B = 2: 1: 0.5, characterized in that the sound-absorbing element is made in the form of a combined multilayer sound-absorbing structure, consisting of symmetrically arranged perforated walls, between which there are three layers: the central layer of sound-reflecting material, a complex profile consisting of evenly distributed hollow tetrahedra, which allow sound waves incident in all directions to be reflected, and sound-absorbing layers symmetrically adjoining to it from materials of different densities, each of which perforated walls has the following perforation parameters: hole diameter 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and plates are used as sound-absorbing material and mineral wool, the sound absorbing member across its surface faced with acoustically transparent material.
RU2014105907A 2014-02-19 2014-02-19 Single sound absorber with volumetric sound-reflecting element RU2649651C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014105907A RU2649651C2 (en) 2014-02-19 2014-02-19 Single sound absorber with volumetric sound-reflecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014105907A RU2649651C2 (en) 2014-02-19 2014-02-19 Single sound absorber with volumetric sound-reflecting element

Publications (2)

Publication Number Publication Date
RU2014105907A RU2014105907A (en) 2015-08-27
RU2649651C2 true RU2649651C2 (en) 2018-04-04

Family

ID=54015304

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014105907A RU2649651C2 (en) 2014-02-19 2014-02-19 Single sound absorber with volumetric sound-reflecting element

Country Status (1)

Country Link
RU (1) RU2649651C2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU690137A1 (en) * 1977-03-01 1979-10-05 Государственный Институт По Проектированию "Киевпроект" Single-piece noise-absorbing element
US20020129992A1 (en) * 2001-03-15 2002-09-19 Wang Samw Hong Jen Acoustic absorber for absorbing noises in buildings
DE20303913U1 (en) * 2003-03-12 2003-09-11 Szynajowski Vladimir Felt sound absorber panel for concrete walls has multiple layers atatched to frame to reduce echo resonance in room
RU2327842C1 (en) * 2006-09-15 2008-06-27 Олег Савельевич Кочетов Single-piece sound absorber
RU2485256C2 (en) * 2009-03-25 2013-06-20 Олег Савельевич Кочетов Single-piece sound absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU690137A1 (en) * 1977-03-01 1979-10-05 Государственный Институт По Проектированию "Киевпроект" Single-piece noise-absorbing element
US20020129992A1 (en) * 2001-03-15 2002-09-19 Wang Samw Hong Jen Acoustic absorber for absorbing noises in buildings
DE20303913U1 (en) * 2003-03-12 2003-09-11 Szynajowski Vladimir Felt sound absorber panel for concrete walls has multiple layers atatched to frame to reduce echo resonance in room
RU2327842C1 (en) * 2006-09-15 2008-06-27 Олег Савельевич Кочетов Single-piece sound absorber
RU2485256C2 (en) * 2009-03-25 2013-06-20 Олег Савельевич Кочетов Single-piece sound absorber

Also Published As

Publication number Publication date
RU2014105907A (en) 2015-08-27

Similar Documents

Publication Publication Date Title
RU2592871C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2583463C1 (en) Sound-absorbing coating
RU2561389C1 (en) Sound-absorbing structure
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2561394C1 (en) Kochetov(s sound-absorbing element
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2547529C1 (en) Kochetov's sound-absorbing structure
RU2583442C2 (en) Sound absorbing structure
RU2659124C2 (en) Single piece spherical sound absorber for mobile vehicles
RU2581969C1 (en) Kochetov acoustic absorber for noise silencers of compressor stations
RU2558817C1 (en) Kochetov's piece noise absorber
RU2649651C2 (en) Single sound absorber with volumetric sound-reflecting element
RU2646252C1 (en) Sound-absorbing lining
RU2627517C1 (en) Sound-absorbing structure
RU2587515C1 (en) Kochetov element for compressor stations silencer
RU2658932C2 (en) Single piece sound absorber with volumetric sound-reflecting element
RU2648723C2 (en) Single-piece volumetric sound absorber
RU2576264C1 (en) Kochetov(s noise absorber with sound reflecting layer
RU2576263C1 (en) Single-piece kochetov(s sound absorber with reflecting element
RU2661423C2 (en) Single piece sound absorber for the compressor stations noise silencers
RU2658963C2 (en) Ship cabin single-piece sound absorber
RU2015134966A (en) SOUND-ABSORBING INDUSTRIAL ROOM
RU2663533C1 (en) Perforated ring type sound absorbing element
RU2596222C1 (en) Kochetov sound absorber for lining manufacturing facilities

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20170220

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20170519

HE9A Changing address for correspondence with an applicant