RU2581969C1 - Kochetov acoustic absorber for noise silencers of compressor stations - Google Patents

Kochetov acoustic absorber for noise silencers of compressor stations Download PDF

Info

Publication number
RU2581969C1
RU2581969C1 RU2015100084/06A RU2015100084A RU2581969C1 RU 2581969 C1 RU2581969 C1 RU 2581969C1 RU 2015100084/06 A RU2015100084/06 A RU 2015100084/06A RU 2015100084 A RU2015100084 A RU 2015100084A RU 2581969 C1 RU2581969 C1 RU 2581969C1
Authority
RU
Russia
Prior art keywords
sound
perforated
absorbing
layers
absorber
Prior art date
Application number
RU2015100084/06A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2015100084/06A priority Critical patent/RU2581969C1/en
Application granted granted Critical
Publication of RU2581969C1 publication Critical patent/RU2581969C1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/04Silencing apparatus characterised by method of silencing by using resonance having sound-absorbing materials in resonance chambers

Abstract

FIELD: acoustics; instrumentation.
SUBSTANCE: sound absorber is designed for damping noise of compressor stations and test boxes for gas turbine engines. Sound absorber comprises a cylindrical frame in form of perforated sleeve and cover, filled with sound absorber, and outside bushing there is a layer of acoustically transparent cover, and frame comprises cover with circular collars for fixing the cylindrical bushing, covers are central rod with hooks on both ends, and cylindrical sleeve consists of two perforated shells, inner and outer, space between which is filled with sound absorbing element outside perforated cylindrical bushing there is a layer of acoustically transparent shell, wherein sound-absorbing material placed in inner cavity of sound absorber is made of unwinding roll, one end of which is rigidly fixed on central rod, and free end rests against inner shell to form in cross-section perpendicular to rod, a closed shape in form of Archimedean spiral with increasing from centre to periphery air gaps, wherein it has higher porosity in comparison to sound absorber located inside shells and covers have outer surfaces of fairings conical shape, and sound-absorbing element comprises perforated walls, between which there are layers of sound reflecting and sound-absorbing materials of different density arranged in two layers, wherein layers of sound reflecting material are made from complex profile composed of evenly distributed hollow tetrahedrons, which enable to reflect sound waves incident in all directions and which are located respectively at perforated walls, and layers of sound reflecting material are made from heat-insulating material, wherein sound-absorbing element over its entire surface is lined with acoustically transparent material.
EFFECT: high efficiency of soundproofing at high frequencies.
1 cl, 2 dwg

Description

Изобретение относится к технике глушения шума компрессорных станций и испытательных боксов для газотурбинных двигателей.The invention relates to techniques for damping the noise of compressor stations and test boxes for gas turbine engines.

Известен звукопоглотитель по патенту РФ №2394162 [1], F01N 1/00, содержащий цилиндрический каркас в виде перфорированной втулки и крышек, заполненный звукопоглотителем, а снаружи втулки расположен слой акустически прозрачной оболочки из капроновой сетки или стеклоткани.Known sound absorber according to the patent of the Russian Federation No. 2394162 [1], F01N 1/00, containing a cylindrical frame in the form of a perforated sleeve and covers, filled with a sound absorber, and on the outside of the sleeve there is a layer of acoustically transparent shell made of nylon mesh or fiberglass.

Наиболее близким техническим решением по технической сущности и достигаемому результату является одиночный звукопоглотитель по патенту РФ №2392501 [2], F01N 1/00, который выполнен цилиндрической формы, а его каркас выполнен из крышек, соединенных центральным стержнем с перфорированной цилиндрической втулкой, которая состоит из двух перфорированных обечаек.The closest technical solution to the technical nature and the achieved result is a single sound absorber according to RF patent No. 2392501 [2], F01N 1/00, which is made of a cylindrical shape, and its frame is made of covers connected by a central rod with a perforated cylindrical sleeve, which consists of two perforated shells.

Недостатком прототипа является сравнительно невысокая эффективность шумоглушения на высоких частотах, так как звукопоглощающий элемент, расположенный внутри обечаек перфорированной цилиндрической втулки, выполнен однослойным и не имеет звукоотражающих слоев, выполняющих функции звукоизоляции на высоких частотах.The disadvantage of the prototype is the relatively low efficiency of sound attenuation at high frequencies, since the sound-absorbing element located inside the shells of the perforated cylindrical sleeve is single-layer and has no sound-reflecting layers that perform sound insulation functions at high frequencies.

Технический результат - повышение эффективности шумоглушения на высоких частотах путем введения в звукопоглощающий элемент, расположенный внутри обечаек перфорированной цилиндрической втулки, звукоотражающих слоев, которые выполняют функцию звукоизоляции на высоких частотах.The technical result is to increase the efficiency of sound attenuation at high frequencies by introducing into the sound-absorbing element located inside the shells of the perforated cylindrical sleeve, sound-reflecting layers that perform the function of sound insulation at high frequencies.

Это достигается тем, что в звукопоглотителе для глушителей шума компрессорных станций, содержащем цилиндрический каркас в виде перфорированной втулки и крышек, заполненный звукопоглотителем, а снаружи втулки расположен слой акустически прозрачной оболочки из капроновой сетки или стеклоткани, а каркас содержит крышки с кольцевыми буртиками для крепления цилиндрической втулки, при этом крышки соединены центральным стержнем с крючками на обоих концах, а цилиндрическая втулка состоит из двух перфорированных обечаек - внешней и внутренней, пространство между которыми заполнено звукопоглощающим элементом, а снаружи перфорированной цилиндрической втулки расположен слой акустически прозрачной оболочки, выполненной из капроновой сетки или стеклоткани, при этом звукопоглощающий материал, расположенный во внутренней полости звукопоглотителя, выполнен из раскручивающегося рулона, один конец которого жестко зафиксирован на центральном стержне, а свободный конец упирается во внутреннюю обечайку с образованием в сечении, перпендикулярном стержню, замкнутой формы в виде спирали Архимеда с увеличивающимися от центра к периферии воздушными промежутками, при этом он имеет более высокую пористость по сравнению со звукопоглотителем, расположенным внутри обечаек, а крышки имеют на внешних поверхностях обтекатели конической формы, а звукопоглощающий элемент содержит перфорированные стенки, между которыми расположены слои звукоотражающего, а также звукопоглощающего материалов разной плотности.This is achieved by the fact that in the sound absorber for silencers of compressor stations containing a cylindrical frame in the form of a perforated sleeve and covers, filled with a sound absorber, and on the outside of the sleeve there is a layer of an acoustically transparent shell made of nylon mesh or fiberglass, and the frame contains covers with ring beads for attaching a cylindrical bushings, while the covers are connected by a central rod with hooks at both ends, and the cylindrical sleeve consists of two perforated shells - external and internal d, the space between which is filled with a sound-absorbing element, and on the outside of the perforated cylindrical sleeve there is a layer of an acoustically transparent shell made of nylon mesh or fiberglass, while the sound-absorbing material located in the inner cavity of the sound absorber is made of a spinning roll, one end of which is rigidly fixed to the central rod, and the free end abuts against the inner shell with the formation in the cross section perpendicular to the rod, closed in the form of a joint Archimedes ’rails with air gaps increasing from the center to the periphery, while it has a higher porosity compared to the sound absorber located inside the shells, and the covers have conical shaped fairings on the outer surfaces, and the sound-absorbing element contains perforated walls, between which sound-reflecting layers are located, as well as sound-absorbing materials of different densities.

На фиг. 1 представлен общий вид одиночного звукопоглотителя глушителя шума, на фиг. 2 - схема звукопоглощающего элемента, расположенного внутри обечаек перфорированной цилиндрической втулки.In FIG. 1 is a perspective view of a single sound absorber of a noise suppressor; FIG. 2 is a diagram of a sound-absorbing element located inside the shells of a perforated cylindrical sleeve.

Одиночный звукопоглотитель для глушителей шума компрессорных станций состоит из каркаса, который содержит крышки 1 и 2 с кольцевыми буртиками 3 для крепления цилиндрической втулки, при этом крышки соединены центральным стержнем 4 с крючками на обоих концах, а цилиндрическая втулка состоит из двух перфорированных обечаек - внешней 7 и внутренней 8, пространство между которыми заполнено звукопоглотителем 9. Снаружи перфорированной цилиндрической втулки расположен слой акустически прозрачной оболочки 11, выполненной, например, из капроновой сетки или стеклоткани. Звукопоглощающий материал 10, расположенный во внутренней полости звукопоглотителя, выполнен из раскручивающегося рулона, один конец которого жестко зафиксирован на центральном стержне 4, а свободный конец упирается во внутреннюю обечайку 8 с образованием в сечении, перпендикулярном стержню 4, замкнутой формы в виде спирали Архимеда с увеличивающимися от центра к периферии воздушными промежутками (не показано), при этом он имеет более высокую пористость по сравнению со звукопоглотителем 9, расположенным внутри обечаек 7 и 8. При этом крышки 1 и 2 имеют на внешних поверхностях обтекатели 5 и 6 конической формы для снижения гидравлического сопротивления при установке одиночного звукопоглотителя в системах глушения шума компрессорных станций, а цилиндрическая втулка фиксируется крышками 1 и 2 посредством гаек 12 на стержне 4.A single sound absorber for compressor station noise suppressors consists of a frame that contains covers 1 and 2 with annular collars 3 for fastening a cylindrical sleeve, with the covers being connected by a central rod 4 to hooks at both ends, and the cylindrical sleeve consists of two perforated shells - external 7 and inner 8, the space between which is filled with a sound absorber 9. Outside of the perforated cylindrical sleeve there is a layer of an acoustically transparent shell 11 made, for example, of kapron mesh or fiberglass. Sound-absorbing material 10, located in the inner cavity of the sound absorber, is made of a spinning roll, one end of which is rigidly fixed on the central shaft 4, and the free end abuts against the inner shell 8 with the formation in the cross section perpendicular to the shaft 4 of a closed shape in the form of an Archimedes spiral with increasing from the center to the periphery by air gaps (not shown), while it has a higher porosity compared to the sound absorber 9 located inside the shells 7 and 8. In this case, the cover 1 and 2 are the outer surfaces 5 and 6 fairings conical shape to reduce the hydraulic resistance when installed in a single absorber sound attenuation systems, compressor stations, and a cylindrical sleeve fixed cover members 1, 2 by means of nuts 12 on the rod 4.

Боковые замкнутые поверхности обечаек 7 и 8 могут иметь в сечении не только круг в случае цилиндрической формы, а также форму треугольника, многогранника, эллипса, или любую комбинацию из этих фигур.The lateral closed surfaces of the shells 7 and 8 can have in cross section not only a circle in the case of a cylindrical shape, but also the shape of a triangle, a polyhedron, an ellipse, or any combination of these figures.

Обечайки 7 и 8 выполнены из перфорированного листа из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм.Shells 7 and 8 are made of perforated stainless steel sheet or galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating such as Pural 50 microns thick or Polyester 25 microns thick, or an aluminum sheet 1.0 mm thick and thick coatings 25 microns.

В качестве звукопоглощающего материала звукопоглотителя 9 используется пористый шумопоглощающий материал, например пеноалюминий или металлокерамика, или металлопоролон, или в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм (не показано).As the sound-absorbing material of the sound absorber 9, a porous sound-absorbing material is used, for example, foam aluminum or cermets, or metal foam, or in the form of pressed crumbs of solid vibration-damping materials, for example elastomer, polyurethane, or plastic compound such as “Agate”, “Anti-vibration”, “Shvim”, and the size of the crumbs fractions lies in the optimal range of values: 0.3 ... 2.5 mm (not shown).

В качестве звукопоглощающего материала 10, расположенного во внутренней полости одиночного звукопоглотителя, используется минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена.As sound-absorbing material 10 located in the inner cavity of a single sound absorber, rockwool-type mineral wool, or URSA-type mineral wool, or P-75 type cotton wool, or glass wool lined with glass wool, or foamed polymer are used, for example polyethylene or polypropylene.

Звукопоглощающий элемент (фиг. 2) для акустических экранов, штучных звукопоглотителей, перегородок выполнен в виде симметрично расположенных перфорированных 13 и 18 стенок, между которыми расположены слои звукоотражающего 14 и 17 материала, а также звукопоглощающего 15 и 16 материалов разной плотности, расположенные в два слоя, причем слои звукоотражающего материала выполнены сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны и которые расположены соответственно у перфорированных 13 и 18 стенок, а каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing element (Fig. 2) for acoustic screens, piece sound absorbers, partitions is made in the form of symmetrically arranged perforated 13 and 18 walls, between which are layers of sound-reflecting 14 and 17 materials, as well as sound-absorbing 15 and 16 materials of different densities, located in two layers moreover, the layers of sound-reflecting material are made of a complex profile consisting of uniformly distributed hollow tetrahedrons, which allow reflecting sound waves incident in all directions and which are located respectively, for perforated 13 and 18 walls, and each of the perforated walls has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole can be made in the form of round, triangular, square holes , rectangular or diamond-shaped profile, while in the case of non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as the conditional diameter.

Каждая из перфорированных стенок 13 и 18 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the perforated walls 13 and 18 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or Gerlen-D type material, deposited on their surface from one or two sides, and the ratio between the thicknesses of the material and vibration damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из перфорированных стенок 13 и 18 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the perforated walls 13 and 18 can be made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a polymer protective and decorative coating of the Pural type with a thickness of 50 μm or Polyester with a thickness of 25 μm, or an aluminum sheet with a thickness of 1.0 mm and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

В качестве материала звукоотражающих слоев 14, 17 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.As the material of the sound-reflecting layers 14, 17, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum.

В качестве материала звукоотражающих слоев 14, 17 могут быть применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layers 14, 17, sound-proofing plates based on glass noise staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 can be used.

Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п., с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates, which are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc., with cement or another binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T), or covered with breathable fabrics or non-woven materials, such as Lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемым к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Кроме этого, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0. Коэффициент звукопоглощения α равен отношению не отразившейся (поглощенной внутри и прошедшей сквозь) от поверхности энергии колебания воздуха к полной энергии, воздействующей на поверхность.In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0. The sound absorption coefficient α is equal to the ratio of the energy of the air vibration not reflected (absorbed inside and passed through) from the surface to the total energy acting on the surface.

В качестве звукопоглощающего материала слоев 15 и 16 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As sound-absorbing material of layers 15 and 16, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool, or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene. The surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, such as Lutrasil.

Каждая из перфорированных стенок 13 и 18 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например «лутрасилом».Each of the perforated walls 13 and 18 can be made of solid, decorative vibration damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, for example fiberglass type EZ-100 or polymer type "poviden", or non-woven materials, such as "lutrasil."

Звукопоглотитель для глушителей шума компрессорных станций работает следующим образом.Sound absorber for silencers of compressor stations works as follows.

Звукопоглощение на низких и средних частотах осуществляется за счет мембранного возбуждения стенок корпуса и, косвенно, внутренних объемов воздуха в воздушных промежутках звукопоглощающего материала 10, расположенного по спирали Архимеда.Sound absorption at low and medium frequencies is due to membrane excitation of the walls of the housing and, indirectly, the internal volumes of air in the air gaps of the sound-absorbing material 10 located in a spiral of Archimedes.

В качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As a sound-reflecting material, a material based on a magnesian binder with a reinforcing fiberglass or fiberglass was used.

В качестве звукопоглощающего материала использован полиэстер.Polyester is used as a sound-absorbing material.

В качестве звукопоглощающего материала использован пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон, или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочки из тонкой стеклоткани или алюминизированной лавсановой пленки.As a sound-absorbing material, a porous fibrous or foamy sound-absorbing material is used, which is made on the basis of basalt or glass fibers, or open-cell polyurethane foam with a protective sound-transparent sheath made of thin fiberglass or aluminized lavsan film.

В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. В процессе спекания частицы перлита в точках соприкосновения образуют смежные поры. Этот материал обладает хорошей звукопоглощающей способностью в широком диапазоне частот, но имеет высокую плотность, связанную с содержанием большого количества спекающих материалов.As a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials. During sintering, perlite particles at adjacent points form adjacent pores. This material has good sound absorption in a wide frequency range, but has a high density associated with the content of a large number of sintering materials.

Звукопоглощающий элемент работает следующим образом.Sound-absorbing element operates as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого излучающего интенсивный шум объекта, пройдя через перфорированные стенки 13 и 18, попадает на слои 14 и 17 звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны и которые расположены соответственно у перфорированных 13 и 18 стенок, а затем падает на слои 15 и 16 мягкого звукопоглощающего материала разной плотности, расположенные в два слоя (например, выполненного из базальтового или стеклянного волокна). В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя.Sound energy from equipment located in the room, or other object emitting intense noise, passing through the perforated walls 13 and 18, enters the layers 14 and 17 of the sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, allowing to reflect sound waves incident in all directions and which are located respectively at the perforated 13 and 18 walls, and then falls onto layers 15 and 16 of soft sound-absorbing material of different densities located in two layers (for example, flax from basalt or glass fiber). In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the excitation frequency against the wall of the neck itself, which has the form branched network of pore sound absorbers.

Источники информацииInformation sources

1. Кочетов О.С. Одиночный звукопоглотитель для глушителя шума // Патент РФ на изобретение №2394162, опубл. 10.07.2010, бюл. №19.1. Kochetov OS A single sound absorber for a noise muffler // RF patent for the invention No. 2394162, publ. 07/10/2010, bull. No. 19.

2. Кочетов О.С. Одиночный звукопоглотитель Кочетова // Патент РФ на изобретение №2392501, опубл. 20.06.2010, бюл. №17.2. Kochetov OS Single sound absorber Kochetova // RF patent for the invention No. 2392501, publ. 06/20/2010, bull. Number 17.

Claims (1)

Звукопоглотитель для глушителей шума компрессорных станций, содержащий цилиндрический каркас в виде перфорированной втулки и крышек, заполненный звукопоглотителем, а снаружи втулки расположен слой акустически прозрачной оболочки из капроновой сетки или стеклоткани, а каркас содержит крышки с кольцевыми буртиками для крепления цилиндрической втулки, при этом крышки соединены центральным стержнем с крючками на обоих концах, а цилиндрическая втулка состоит из двух перфорированных обечаек - внешней и внутренней, пространство между которыми заполнено звукопоглощающим элементом, а снаружи перфорированной цилиндрической втулки расположен слой акустически прозрачной оболочки, выполненной из капроновой сетки или стеклоткани, при этом звукопоглощающий материал, расположенный во внутренней полости звукопоглотителя, выполнен из раскручивающегося рулона, один конец которого жестко зафиксирован на центральном стержне, а свободный конец упирается во внутреннюю обечайку с образованием в сечении, перпендикулярном стержню, замкнутой формы в виде спирали Архимеда с увеличивающимися от центра к периферии воздушными промежутками, при этом он имеет более высокую пористость по сравнению со звукопоглотителем, расположенным внутри обечаек, а крышки имеют на внешних поверхностях обтекатели конической формы, звукопоглощающий элемент содержит перфорированные стенки, между которыми расположены слои звукоотражающего, а также звукопоглощающего материалов разной плотности, расположенные в два слоя, причем слои звукоотражающего материала выполнены сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны и которые расположены соответственно у перфорированных стенок, а слои звукоотражающего материала выполнены из теплоизоляционного материала, а в качестве звукопоглощающего материала использован пористый шумопоглощающий материал, пеноалюминий, или металлокерамика, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, эластомера, полиуретана или пластиката типа «Агат», «Антивибрит», «Швим», отличающийся тем, что в качестве звукоотражающего материала применен материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом, а в качестве звукопоглощающего материала использован полиэстер, или пористый волокнистый или пенистый звукопоглощающий материал, который выполнен на основе базальтовых или стеклянных волокон или открытоячеистого пенополиуретана с защитной звукопрозрачной оболочкой из тонкой стеклоткани или алюминизированной лавсановой пленки, или в качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов. A sound absorber for compressor station noise suppressors, comprising a cylindrical frame in the form of a perforated sleeve and covers, filled with a sound absorber, and a layer of an acoustically transparent shell made of nylon mesh or fiberglass located outside the sleeve, and the frame contains covers with ring beads for attaching the cylindrical sleeve, while the covers are connected the central rod with hooks at both ends, and the cylindrical sleeve consists of two perforated shells - external and internal, the space between which it is filled with a sound-absorbing element, and on the outside of the perforated cylindrical sleeve there is a layer of an acoustically transparent shell made of nylon mesh or fiberglass, while the sound-absorbing material located in the internal cavity of the sound absorber is made of a spinning roll, one end of which is rigidly fixed to the central shaft, and the end abuts against the inner shell with the formation in a section perpendicular to the rod of a closed shape in the form of a spiral of Archimedes with air gaps from the center to the periphery, while it has a higher porosity compared to the sound absorber located inside the shells, and the covers have conical shaped cowls on the external surfaces, the sound-absorbing element contains perforated walls, between which are layers of sound-reflecting and sound-absorbing materials of different density, arranged in two layers, the layers of sound-reflecting material made of a complex profile, consisting of uniformly distributed hollows tetrahedra, which allow reflecting sound waves incident in all directions and which are located respectively near the perforated walls, and the layers of sound-reflecting material are made of heat-insulating material, and porous sound-absorbing material, foam aluminum, or cermet, or metal-porol, or material in the form of pressed crumbs from solid vibration-damping materials, elastomer, polyurethane or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", characterized by m that a material based on a magnesian binder with a reinforcing fiberglass or fiberglass is used as a sound-reflecting material, and polyester, or a porous fibrous or foamy sound-absorbing material, which is made on the basis of basalt or glass fibers or an open-cell polyurethane foam with a protective soundproofing material, is used as a sound-absorbing material. from thin fiberglass or aluminized lavsan film, or porosity is used as sound-absorbing material th sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts binding materials.
RU2015100084/06A 2015-01-12 2015-01-12 Kochetov acoustic absorber for noise silencers of compressor stations RU2581969C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015100084/06A RU2581969C1 (en) 2015-01-12 2015-01-12 Kochetov acoustic absorber for noise silencers of compressor stations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015100084/06A RU2581969C1 (en) 2015-01-12 2015-01-12 Kochetov acoustic absorber for noise silencers of compressor stations

Publications (1)

Publication Number Publication Date
RU2581969C1 true RU2581969C1 (en) 2016-04-20

Family

ID=56195094

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015100084/06A RU2581969C1 (en) 2015-01-12 2015-01-12 Kochetov acoustic absorber for noise silencers of compressor stations

Country Status (1)

Country Link
RU (1) RU2581969C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2632562C1 (en) * 2017-01-13 2017-10-05 Олег Савельевич Кочетов Sound absorber
WO2017194492A1 (en) * 2016-05-09 2017-11-16 Arcelik Anonim Sirketi A hermetic compressor with reduced noise level

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949830A (en) * 1975-06-20 1976-04-13 George Koch Sons, Inc. Fan silencer
US4319660A (en) * 1980-09-02 1982-03-16 The United States Of America As Represented By The Secretary Of The Army Mechanical noise suppressor for small rocket motors
RU2392501C1 (en) * 2009-01-16 2010-06-20 Олег Савельевич Кочетов Single sound absorber by kochetov
RU2480561C1 (en) * 2011-12-02 2013-04-27 Олег Савельевич Кочетов Acoustic structure of workshop
RU2501918C1 (en) * 2012-08-16 2013-12-20 Олег Савельевич Кочетов Sound-absorbing elements of rooms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949830A (en) * 1975-06-20 1976-04-13 George Koch Sons, Inc. Fan silencer
US4319660A (en) * 1980-09-02 1982-03-16 The United States Of America As Represented By The Secretary Of The Army Mechanical noise suppressor for small rocket motors
RU2392501C1 (en) * 2009-01-16 2010-06-20 Олег Савельевич Кочетов Single sound absorber by kochetov
RU2480561C1 (en) * 2011-12-02 2013-04-27 Олег Савельевич Кочетов Acoustic structure of workshop
RU2501918C1 (en) * 2012-08-16 2013-12-20 Олег Савельевич Кочетов Sound-absorbing elements of rooms

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194492A1 (en) * 2016-05-09 2017-11-16 Arcelik Anonim Sirketi A hermetic compressor with reduced noise level
RU2632562C1 (en) * 2017-01-13 2017-10-05 Олег Савельевич Кочетов Sound absorber

Similar Documents

Publication Publication Date Title
RU2583463C1 (en) Sound-absorbing coating
RU2561393C1 (en) Kochetov(s sound absorber for lining manufacturing facilities
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2581969C1 (en) Kochetov acoustic absorber for noise silencers of compressor stations
RU2583442C2 (en) Sound absorbing structure
RU2603875C2 (en) Multi-section noise suppressor
RU2587515C1 (en) Kochetov element for compressor stations silencer
RU2603858C1 (en) Helical-type kochetov sound absorbing element
RU2661423C2 (en) Single piece sound absorber for the compressor stations noise silencers
RU2579021C1 (en) Acoustic panel
RU2604263C2 (en) Element of kochetov noise suppressor
RU2646995C2 (en) Kochetov's single sound absorber
RU2656438C1 (en) Sound-absorbing structure for manufacturing buildings
RU2646252C1 (en) Sound-absorbing lining
RU2671266C2 (en) Element of kochetov noise suppressor
RU2574196C2 (en) Kochetov(s single acoustic absorber
RU2663533C1 (en) Perforated ring type sound absorbing element
RU2530434C1 (en) Kochetov's acoustic panel
RU2643889C1 (en) Multi-section noise suppressor
RU2630805C2 (en) Multi-section muffler by kochetov for reducing exhaust noise of gas-dynamic plants
RU2645376C1 (en) Acoustic device
RU2667213C2 (en) Multi-section noise suppressor
RU2661426C1 (en) Noise silencer of ejection type
RU2651985C1 (en) Sound absorbing element
RU2671265C1 (en) Symmetrical sound-absorbing element