RU2640262C2 - Способ очистки сжиженных углеводородов с применением соединений 3-(пиперазин-1-ил)пропан-1, 2 диола - Google Patents

Способ очистки сжиженных углеводородов с применением соединений 3-(пиперазин-1-ил)пропан-1, 2 диола Download PDF

Info

Publication number
RU2640262C2
RU2640262C2 RU2015101098A RU2015101098A RU2640262C2 RU 2640262 C2 RU2640262 C2 RU 2640262C2 RU 2015101098 A RU2015101098 A RU 2015101098A RU 2015101098 A RU2015101098 A RU 2015101098A RU 2640262 C2 RU2640262 C2 RU 2640262C2
Authority
RU
Russia
Prior art keywords
diol
propane
amino
mixtures
aqueous solution
Prior art date
Application number
RU2015101098A
Other languages
English (en)
Other versions
RU2015101098A (ru
Inventor
Кристоф ЛАРОШ
Джеймс М. ХИЛЛ
Original Assignee
ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи filed Critical ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи
Publication of RU2015101098A publication Critical patent/RU2015101098A/ru
Application granted granted Critical
Publication of RU2640262C2 publication Critical patent/RU2640262C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/10Purification; Separation; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treating Waste Gases (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Изобретение относится к способу очистки сжиженных углеводородов, таких как сжиженный нефтяной газ (LPG) или сжиженный природный газ (NGL). Способ обработки сжиженных углеводородов, содержащих кислые газы, для удаления упомянутых кислых газов при сведении к минимуму потери аминосоединений, включает этап контактирования упомянутых сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, причем упомянутое первое аминосоединение имеет структуру:
Figure 00000005
,
в которой R1 представляет собой водород, пропан-2,3-диол и их смеси, и R2 представляет собой пропан-2,3-диол. Технический результат - сведение к минимуму потерь аминосоединений. 8 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится в общем к способам очистки сжиженных углеводородов. Более конкретно, изобретение относится к способам удаления кислых газов из сжиженных углеводородных газовых потоков, таких как сжиженный нефтяной газ (LPG) или сжиженный природный газ (NGL), с применением соединений пиперазина.
Уровень техники
Сжиженные углеводороды, такие как NGL или LPG, представляют собой воспламеняющуюся смесь углеводородных газов, применяемых в качестве топлива с целью нагрева и в транспортных средствах. Смесь в большей степени применяется в виде аэрозольного пропеллента и охладителя, заменяя хлорфторуглероды в целях снижения разрушения озонового слоя.
Сжиженные углеводороды получают переработкой нефти или сырого природного газа и почти полностью извлекают из источников ископаемого топлива, получаемые во время переработки нефти (сырой нефти), или извлекают из потоков нефти или потоков природного газа по мере их появления из земли.
Сжиженные углеводороды могут быстро испаряться при нормальных температурах и давлениях и могут поставляться в герметизированных стальных газовых баллонах. Данные баллоны традиционно заполнены от 80% до 85% от их емкости для обеспечения возможности температурного расширения содержащейся жидкости. Соотношение между объемами пара и сжиженного газа изменяется в зависимости от состава, давления и температуры, но обычно составляет около 250:1.
Сжиженные углеводороды часто содержат множество кислых, газообразных примесей, таких как сероводород, различные меркаптаны и другие разнообразные соединения серы, диоксид углерода и карбонилсульфид (COS). В газоочистной отрасли хорошо известно, что такие примеси можно успешно удалить взаимодействием газовых или жидких углеводородных потоков с водными растворами одного или нескольких аминов. Водные растворы аминов в их способности поглощать особые кислые газы могут быть либо селективными, либо неселективными.
После такого поглощения кислые соединения удаляют из аминов, и амины возвращают в систему, за исключением объема аминосоединений, который может потеряться в процессе. Было высказано предположение, что многие разнообразные амины могли бы быть в некоторой степени полезны для удаления кислых газов. На практике, на самом деле аминами в коммерческом применении являются моноэтаноламин (МЭА), диэтаноламин (ДЭА), метилдиэтаноламин (МДЭА) и диизопропаноламин (ДИПА).
Очистка сжиженных углеводородов влечет особые проблемы, так как амины склонны к значительному растворению в сжиженных углеводородах, приводящему к соответствующим экономическим потерям из-за необходимости пополнять утраченный(е) амин(ы). Для удаления кислых примесей из сжиженных углеводородов на многих нефтеперегонных заводах применяют водный раствор ДИПА или МДЭА. Однако концентрация данных аминов традиционно ограничена в интервале примерно 20-35 массовых процентов водного потока, в котором их подают в процесс. Работа при более высоких концентрациях, которая желательна по причинам емкости, как правило, приводит к нежелательно высоким уровням загрязнения сжиженных углеводородов амином(ами).
Проблема стоит особенно остро на нефтеперерабатывающих заводах по очистке крекированного (т.е. исключительно ненасыщенного) LPG. Часто скорость потери МДЭА является достаточной, чтобы свести на нет экономическое обоснование для замены МДЭА на ДЭА.
Патенты США №№5326385, 5877386 и 6344949 предлагают некоторый тип "осветления" LPG при помощи осуществения различных процессов. Более конкретно, патент США №5877386 предлагает применение смесей триэтаноламина с другими аминосоединениями. Дополнительно в патенте США №4959086 для удаления сероводорода из природного газа применяют изомеры аминосоединений. С целью удаления H2S также сообщалось (патент США №4808765) о применении смесей МДЭА/ДИПА.
Данные публикации представляют разумные решения проблем, возникающих при "осветлении (обессеривании)" сжиженных углеводородов путем процессов амин - кислый газ. Однако было бы предпочтительно иметь композицию амина, которая максимизирует эффективную концентрацию амина, циркулирующего в системе сжиженных углеводородов, в то время как еще и минимизирует количество амина(ов), потерянного из-за растворимости в сжиженных углеводородах.
Сущность изобретения
В соответствии с одним аспектом настоящего изобретения предложен способ очистки сжиженных углеводородов, содержащих кислые газы, для удаления кислых газов при минимизировании потери аминосоединений. Способ содержит этап контактирования сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, первое аминосоединение имеет структуру:
Figure 00000001
,
в которой R1 представляет собой водород, пропан-2,3-диол и их смеси, и R2 представляет собой пропан-2,3-диол.
Когда для очистки сжиженного нефтяного газа в процессах типа жидкость/жидкость применяют водные растворы традиционных алканоламинов, таких как метилдиэтаноламин (МДЭА), со временем можно столкнуться с существенными потерями амина. Наличие гидроксильных групп оказалось критическим для снижения данных потерь за счет улучшения липофобного характера молекулы. Поэтому триэтаноламин (TЭA), содержащий три гидроксильные группы, оставляет за молекулой выбор, даже если водный раствор МДЭА доказал свое превосходство над водными растворами ТЭА, исходя из производительности и производственной мощности удаления кислого газа. Различие в производительности и производственной мощности между МДЭА и ТЭА в основном диктуется различием в силе основания, отраженной их соответствующими значениями рКа 8,7 для МДЭА и 7,9 для ТЭА.
Поэтому алканоламиновые структуры, содержащие повышенное количество гидроксильных групп и/или азот-водородных связей по сравнению с МДЭА, сохраняя при этом низкую молекулярную массу наряду с силой основания (т.е. рКа), равной или превосходящей TЭA, были бы идеальными кандидатами для очистки сжиженного нефтяного газа в процессах типа жидкость/жидкость.
Включение фрагментов пропандиола в алканоламиновые структуры позволяет снизить растворимость в углеводородных потоках по сравнению с эквивалентными алканоламиновыми структурами, включающими в себя гидроксиэтильный фрагмент (т.е. традиционные этоксилированные алканоламины). Сила основания алканоламина, включающего в себя фрагменты пропандиола, не изменяется по сравнению с традиционными этоксилированными алканоламинами, поскольку индуктивные эффекты, вызванные наличием более одной гидроксильной группы при том же самом заместителе у атома азота, не накапливаются. Кроме того, большинство из данных структур может быть получено простой реакцией между глицидолом или 3-хлор-1,2-пропандиолом с пиперазином или замещенными производными пиперазина, как показано ниже.
Figure 00000002
В целях данного раскрытия сжиженные углеводороды являются теми низкомолекулярными углеводородами, которые могут быть насыщенными или ненасыщенными, разветвленными или неразветвленными размером от примерно C1 до С20, предпочтительно от примерно С1 до C12, более предпочтительно примерно С2-C6, такие как, например, СНГ или ШФЛУ, или их смеси.
Краткое описание чертежей
Фиг. 1 представляет собой графическую иллюстрацию относительной растворимости исследуемых аминов по сравнению с МДЭА, нанесенной относительно их значений рКа.
Подробное описание предпочтительных вариантов осуществления изобретения
В целом, изобретение представляет собой способ очистки сжиженных углеводородов, содержащий удаление кислых газов при сведении к минимуму потери аминосоединений. Способ содержит этап контактирования сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, первое аминосоединение имеет структуру:
Figure 00000001
,
в которой R1 представляет собой водород, пропан-2,3-диол и их смеси, и R2 представляет собой пропан-2,3-диол.
Главным недостатком аминов, обычно применяемых в предшествующем уровне техники, является их относительно высокая растворимость в СНГ. В данном изобретении обращают внимание на эту проблему, предоставляя аминосоединение с более низкой растворимостью в СНГ.
Большинство нефтеперерабатывающих заводов работает при общей концентрации амина не более примерно 35 масс.% амино-содержащей водной композиции для очистки. Работа при примерно 40 масс.%, предпочтительно даже при примерно 50 масс.% общего количества амина(ов) или более предпочтительна, поскольку высокая концентрация растворов предоставляет дополнительную производственную мощность для удаления кислого газа при низких затратах. Также, вероятно, что и концентрация серы в сырой нефти, таким образом, будет в будущем увеличиваться.
Соответственно, в целях поддержания или увеличения производства завод должен, в среднем, обработать/удалить больше серы. Тем не менее, из-за повышенных потерь аминов при более высоких концентрациях в большинстве случаев работа свыше примерно 35%-ного уровня не была экономически оправдана. Одним из преимуществ настоящего изобретения является то, что оно позволяет нефтеперерабатывающему заводу экономично работать при более высоких концентрациях общего количества амина без затрат на замену дорогого амина, которые они могли бы понести.
В соответствии с настоящим изобретением предлагается способ удаления кислого газа из сжиженного углеводородного газа. Метод основывается на использовании водного раствора аминосоединения формулы
Figure 00000001
(1),
в которой R1 представляет собой водород или пропан-2,3-диол и их смеси, и R2 представляет собой пропан-2,3-диол.
Включение фрагментов пропандиола в алканоламиновые структуры позволяет снизить растворимость в жидких углеводородных потоках по сравнению с эквивалентными этоксилированными алканоламиновыми структурами. Сила основания алканоламина, включающего в себя фрагменты пропандиола, не изменяется по сравнению с традиционными этоксилированными алканоламинами, поскольку индуктивные эффекты, вызванные наличием свыше одной гидроксильной группы при том же самом заместителе у атома азота, не накапливаются. Кроме того, большинство из данных структур может быть получено простой реакцией между глицидолом или 3-хлор-1,2-пропандиолом с пиперазином или замещенными производными пиперазина.
Figure 00000002
В целом, первый амин в способе по изобретению может содержать пиперазин-амин с одним или несколькими функционально-замещенным(и) пропандиолом(ами). Образцы соединений пиперазина в том числе включают в себя:
Figure 00000003
3-(пиперазин-1-ил)пропан-1,2-диол (ППД)
3,3’-(пиперазин-1,4-диил)бис(пропан-1,2-диол) (ПБПД)
Соединения, такие как эти, как указано выше, могут быть применены по отдельности или в смеси в качестве первого амина для осветления или иного способа удаления кислых газов из необработанного LPG. В целом, первое аминосоединение может быть синтезировано с помощью любого способа, известного специалистам в данной области техники.
В дополнение к первому аминосоединению, используемому в способе по изобретению, водный раствор, используемый для осветления LPG, может содержать второе аминосоединение. Аминосоединения, пригодные в качестве второго аминосоединения, включают в себя трисаминосоединения, такие как 2-амино-2-(гидроксиметил)пропан-1,3-диол, 2-метиламино-2-(гидроксиметил)пропан-1,3-диол, 2-диметиламино-2-(гидроксиметил)пропан-1,3-диол или их смеси; соединения аминпропандиола, такие как 3-(2-(гидроксиэтил)метиламино)пропан-1,2-диол, 3-(метиламино)бис(пропан-1,2-диол), амино-трис(пропан-1,2-диол), 3-(метиламино)пропан-1,2-диол, 3-(амино)пропан-1,2-диол, 3-(амино)бис(пропан-1,2-диол) или их смеси; алкиламины, такие как моноэтаноламин, диэтаноламин, триэтаноламин, метилдиэтаноламин, диизопропаноламин и их смеси; и смеси соединений, в пределах каждого из данных соединений, перечисленных выше.
Способ очистки
Способ по данному изобретению может быть легко осуществлен контактированием сжиженного углеводородного потока, такого как NGL, LPG или их смеси, с водными смесями по изобретению с использованием обычного оборудования для обеспечения контакта типа жикость/жидкость и в условиях эксплуатации в переделах обычных ограничений такого оборудования. В то время как в рамках данной области техники должна быть предпочтительно выполнена некоторая оптимизация условий, следует ожидать, что снижение потерь растворимости аминов будут испытывать даже при существующих условиях работы. Дополнительным преимуществом настоящего изобретения, следовательно, является то, что оно не требует значительных замен или модификаций в оборудовании, упаковке, условиях работы и тому подобном. Соответственно, настоящее изобретение особенно полезно для нефтеперерабатывающих заводов, которые нуждаются в более мощном по производительности способе удалении кислого газа, но не желают оплачивать громадные капитальные обновления.
Еще одним преимуществом данного изобретения является то, что рабочие параметры не строго критичны. В качестве общей рекомендации можно сказать, что чем выше концентрация в системе, тем выше будут потери амина. Характерные концентрации раскрыты ниже. Несмотря на то, что не известно о конкретном верхнем пределе концентрации, предполагается, что концентрация поддерживается не более примерно 95 масс. % смеси амина, оставшееся составляет вода, для того чтобы избежать эксплуатационных проблем, таких как недостаточное удаление H2S. Полезным подходом к определению максимальной используемой концентрации в данной системе является постепенное увеличение концентрации до тех пор, пока не обнаружат проблемы, затем концентрацию снижают до тех пор, пока проблемы не исчезнут.
Также нет необходимости в указании минимальной концентрации, данная концентрация может быть выявлена путем рутинного (стандартного) эксперимента. Предполагается, однако, в качестве отправной точки, что концентрация составляет, по меньшей мере, примерно 5 масс. %. Полагают, что в большинстве случаев пригодный интервал концентраций будет от примерно 10 до примерно 90 масс. %, предпочтительно от примерно 25 до примерно 75 масс. %, и более предпочтительно от примерно 35 до примерно 65 масс. % смеси амина, остальное является водой.
Абсорбирующий водный раствор, применяемый в способе по настоящему изобретению, может также содержать кислоту, такую как борная кислота, серная кислота, соляная кислота, фосфорная кислота и их смеси. Концентрация кислоты может варьировать в количестве, эффективном от 0,1 до 25 масс. % и наиболее предпочтительно от 0,1 до 12 масс. %. Добавление кислоты может помочь в восстановлении композиции амина после того, как кислый газ удаляется из системы.
Рабочая температура контактирования LPG со смесью, содержащей амин, не критична, но будет обычно находиться в интервале от примерно 50°F (19°С) до примерно 190°F (73°С), предпочтительно от примерно 70°F (27°С) до примерно 160°F (61,5°С) и более предпочтительно от примерно 80°F (30,8°С) до примерно 140°F (53,8°С). В общих чертах, более низкие температуры предпочтительны для того, чтобы минимизировать потери растворимости. Поскольку большинство заводов не обладают в большей степени гибкостью в этом отношении, именно то, что значительное снижение потери амина будет выполняться при любой заданной рабочей температуре, является преимуществом настоящего изобретения.
Рабочие примеры
Следующие примеры предоставляют неограничивающую иллюстрацию признаков изобретения.
Раствор гептана (10 г), толуола (0,1 г) и исследуемого амина (2,5 г) смешивают при 20°С в течение 1 часа. Смесь декантируют в течение 15 минут, и не содержащую осадка гептановую фазу анализируют газовой хроматографией с использованием толуола в качестве внутреннего стандарта. Анализ осуществляют трижды, и площади пиков исследуемого амина усредняют (ГЭП означает 2- (гидроксиэтил)пиперазин). Результаты представлены ниже:
Амин МДЭА ТЭА ДИПА Пиперазин ГЭП ППД
Площадь вычисления 9210 40 2082 13748 21092 132
Значение рКа исследуемых аминов было записано с помощью автоматизированной системы титрования Mettler Toledo, используя 50 масс. %-ные водные растворы аминов и 0,5 N соляной кислоты. Результаты представлены ниже:
Амин МДЭА ТЭА ДИПА Пиперазин ГЭП ППД
рКа 8,7 7,9 8,8 9,8 9,5 9,5
Несмотря на то, что настоящее изобретение было описано со ссылкой на его предпочтительный вариант осуществления, как раскрыто в описании и на чертежах выше, возможны многие другие варианты осуществления настоящего изобретения, не выходящие за рамки изобретения. Таким образом, толкование объема изобретения должно осуществляться в отношении прилагаемой формулы изобретения.

Claims (11)

1. Способ обработки сжиженных углеводородов, содержащих кислые газы, для удаления упомянутых кислых газов при сведении к минимуму потери аминосоединений, включающий этап контактирования упомянутых сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, причем упомянутое первое аминосоединение имеет структуру:
Figure 00000004
,
в которой R1 представляет собой водород, пропан-2,3-диол и их смеси, и R2 представляет собой пропан-2,3-диол.
2. Способ по п. 1, в котором упомянутый абсорбирующий водный раствор содержит от примерно 0,1 масс.% до 90 масс.% упомянутого первого аминосоединения и дополнительно содержит от примерно 1 масс.% до 90 масс.% второго аминосоединения.
3. Способ по п. 1, в котором упомянутый абсорбирующий водный раствор содержит от примерно 0,1 масс.% до 50 масс.% упомянутого первого аминосоединения и от примерно 5 масс.% до 50 масс.% второго аминосоединения.
4. Способ по п. 1, в котором R1 представляет собой водород.
5. Способ по п. 1, в котором R1 и R2 представляют собой пропан-2,3-диол.
6. Способ по п. 1, в котором упомянутые кислые газы включают в себя один или более газов, выбранных из группы, состоящей из СО2, H2S, меркаптосоединения, COS, СS2 и их смесей.
7. Способ по п. 1, в котором упомянутый водный раствор содержит второе аминосоединение, содержащее соединение пиперазина, выбранное из группы, состоящей из пиперазина, 2-метилпиперазина, 2-гидроксиэтилпиперазина и их смесей.
8. Способ по п. 1, в котором упомянутый абсорбирующий водный раствор содержит второе аминосоединение, выбранное из группы, состоящей из триэтаноламина, диэтаноламина, метилдиэтаноламина, диизопропаноламина, 2-амино-2-(гидроксиметил)пропан-1,3-диола, 2-метиламино-2-(гидроксиметил)пропан-1,3-диола, 2-диметиламино-2-(гидроксиметил)пропан-1,3-диола, 3-(2-(гидроксиэтил)метиламино)пропан-1,2-диола, 3-(метиламино)бис(пропан-1,2-диола), 3-(амино)трис(пропан-1,2-диола), 3-(метиламино)пропан-1,2-диола, 3-(амино)пропан-1,2-диола, 3-(амино)бис(пропан-1,2-диола) и их смесей.
9. Способ по п. 1, в котором упомянутый абсорбирующий водный раствор содержит кислоту, упомянутая кислота выбрана из группы, состоящей из борной кислоты, соляной кислоты, серной кислоты, фосфорной кислоты и их смесей.
RU2015101098A 2012-06-15 2013-06-11 Способ очистки сжиженных углеводородов с применением соединений 3-(пиперазин-1-ил)пропан-1, 2 диола RU2640262C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261660175P 2012-06-15 2012-06-15
US61/660,175 2012-06-15
PCT/US2013/045141 WO2013188375A1 (en) 2012-06-15 2013-06-11 Process for the treatment of liquefied hydrocarbons using 3-(piperazine-1-yl) propane-1,2-diol compounds

Publications (2)

Publication Number Publication Date
RU2015101098A RU2015101098A (ru) 2016-08-10
RU2640262C2 true RU2640262C2 (ru) 2017-12-27

Family

ID=48670858

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015101098A RU2640262C2 (ru) 2012-06-15 2013-06-11 Способ очистки сжиженных углеводородов с применением соединений 3-(пиперазин-1-ил)пропан-1, 2 диола

Country Status (11)

Country Link
US (1) US9518240B2 (ru)
EP (1) EP2861699B1 (ru)
JP (1) JP6077650B2 (ru)
AR (1) AR092332A1 (ru)
BR (1) BR112014029839A2 (ru)
CA (1) CA2876683A1 (ru)
CO (1) CO7160054A2 (ru)
MX (1) MX345138B (ru)
PT (1) PT2861699T (ru)
RU (1) RU2640262C2 (ru)
WO (1) WO2013188375A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6185576B2 (ja) * 2012-06-15 2017-08-23 ダウ グローバル テクノロジーズ エルエルシー 3−(アミノ)プロパン−1,2−ジオール化合物を用いた液化炭化水素の処理のためのプロセス
PT2861698T (pt) * 2012-06-15 2017-02-23 Dow Global Technologies Llc Resumo
JP7030490B2 (ja) * 2017-03-03 2022-03-07 東ソー株式会社 高分子膜、及びその製造方法、並びに二酸化炭素の分離方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877386A (en) * 1995-10-05 1999-03-02 Union Carbide Chemicals & Plastics Technology Corporation Method for sweetening of liquid petroleum gas by contacting with tea and another amine
US20060138384A1 (en) * 2003-02-14 2006-06-29 Christoph Grossman Absorbing agent and method for eliminating acid gases from fluids
EA200601957A1 (ru) * 2003-02-07 2007-02-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Удаление загрязнителей из природного газа с помощью охлаждения
RU2341324C2 (ru) * 2003-03-21 2008-12-20 Дау Глобал Текнолоджиз Инк. Улучшенная композиция и способ для удаления карбонилсульфида из содержащего его кислотного газа
US20100192770A1 (en) * 2009-02-02 2010-08-05 Basf Se Cyclic-amine-comprising absorption medium for removing acid gases

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808765A (en) 1987-07-17 1989-02-28 The Dow Chemical Company Sulfur removal from hydrocarbons
GB8824943D0 (en) 1988-10-25 1988-11-30 Shell Int Research Removing hydrogen sulphide from gas mixture
NL9300322A (nl) 1992-02-24 1993-09-16 Shell Int Research Werkwijze voor het behandelen van zuur vloeibaar gemaakt petroleumgas.
US6344949B1 (en) 1999-07-13 2002-02-05 International Business Machines Corporation Flying height adjustment for air bearing sliders
WO2008030511A2 (en) * 2006-09-06 2008-03-13 Coley Pharmaceuticial Group, Inc. Substituted 3,4,6,7-tetrahydro-5h, 1,2a,4a,8-tetraazacyclopenta[cd]phenalenes
FR2934172B1 (fr) 2008-07-28 2011-10-28 Inst Francais Du Petrole Solution absorbante a base de n,n,n'n'-tetramethylhexane -1,6-diamine et procede d'elimination de composes acides d'un effluent gazeux
JP6185576B2 (ja) * 2012-06-15 2017-08-23 ダウ グローバル テクノロジーズ エルエルシー 3−(アミノ)プロパン−1,2−ジオール化合物を用いた液化炭化水素の処理のためのプロセス
PT2861698T (pt) * 2012-06-15 2017-02-23 Dow Global Technologies Llc Resumo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877386A (en) * 1995-10-05 1999-03-02 Union Carbide Chemicals & Plastics Technology Corporation Method for sweetening of liquid petroleum gas by contacting with tea and another amine
EA200601957A1 (ru) * 2003-02-07 2007-02-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Удаление загрязнителей из природного газа с помощью охлаждения
US20060138384A1 (en) * 2003-02-14 2006-06-29 Christoph Grossman Absorbing agent and method for eliminating acid gases from fluids
RU2341324C2 (ru) * 2003-03-21 2008-12-20 Дау Глобал Текнолоджиз Инк. Улучшенная композиция и способ для удаления карбонилсульфида из содержащего его кислотного газа
US20100192770A1 (en) * 2009-02-02 2010-08-05 Basf Se Cyclic-amine-comprising absorption medium for removing acid gases

Also Published As

Publication number Publication date
WO2013188375A1 (en) 2013-12-19
JP6077650B2 (ja) 2017-02-08
US9518240B2 (en) 2016-12-13
CN104379704A (zh) 2015-02-25
EP2861699A1 (en) 2015-04-22
CA2876683A1 (en) 2013-12-19
CO7160054A2 (es) 2015-01-15
AR092332A1 (es) 2015-04-15
PT2861699T (pt) 2016-12-27
MX2014015431A (es) 2015-03-05
US20150126793A1 (en) 2015-05-07
RU2015101098A (ru) 2016-08-10
EP2861699B1 (en) 2016-10-19
JP2015521663A (ja) 2015-07-30
BR112014029839A2 (pt) 2017-06-27
MX345138B (es) 2017-01-18

Similar Documents

Publication Publication Date Title
RU2635620C2 (ru) Водная композиция с алканоламином и способ удаления кислых газов из газовых смесей
US10449483B2 (en) Gas sweetening solvents containing quaternary ammonium salts
RU2643358C2 (ru) Способ обработки сжиженных газообразных углеводородов с использованием 2-амино-2-(гидроксиметил)пропан-1,3-диоловых соединений
JP2019514684A (ja) 硫化水素を選択的に除去するためのモルホリン系ヒンダードアミン化合物の使用
JP2014522867A (ja) 気体混合物から硫化水素を除去するためのアミノピリジン誘導体
RU2640262C2 (ru) Способ очистки сжиженных углеводородов с применением соединений 3-(пиперазин-1-ил)пропан-1, 2 диола
AU2016382612A1 (en) Process for increased selectivity and capacity for the hydrogen sulfide capture from acid gases
RU2636517C2 (ru) Способ обработки сжиженных углеводородов с использованием 3-(амино)пропан-1,2-диольных соединений
CN107580523B (zh) 水性烷醇胺组合物和从气态混合物中选择性去除硫化氢的方法
CN111093803B (zh) 用于选择性去除硫化氢的吸收剂和方法
JP2022521383A (ja) 酸性ガスを流体ストリームから、ピペラジン環を含む液体吸収剤で除去する方法
CN104379704B (zh) 使用3-(哌嗪-1-基)丙-1,2-二醇化合物处理液化烃的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200612