RU2639724C1 - Способ переработки жидких радиоактивных отходов - Google Patents

Способ переработки жидких радиоактивных отходов Download PDF

Info

Publication number
RU2639724C1
RU2639724C1 RU2016149976A RU2016149976A RU2639724C1 RU 2639724 C1 RU2639724 C1 RU 2639724C1 RU 2016149976 A RU2016149976 A RU 2016149976A RU 2016149976 A RU2016149976 A RU 2016149976A RU 2639724 C1 RU2639724 C1 RU 2639724C1
Authority
RU
Russia
Prior art keywords
plasma
chemical reactor
liquid radioactive
sodium chloride
radioactive waste
Prior art date
Application number
RU2016149976A
Other languages
English (en)
Inventor
Иван Юрьевич Новоселов
Александр Григорьевич Каренгин
Алексей Александрович Каренгин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2016149976A priority Critical patent/RU2639724C1/ru
Application granted granted Critical
Publication of RU2639724C1 publication Critical patent/RU2639724C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Изобретение относится к ядерной физике, а именно к технологии переработки жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов включает подачу смеси жидких радиоактивных отходов и хлорида натрия в зону смешения плазмохимического реактора. Смесь жидких радиоактивных отходов диспергируют внутрь плазмохимического реактора путем подачи их на форсунки, расположенные в верхней части плазмохимического реактора, и одновременно с водоохлаждаемого медного электрода генерируют моноэлектродный высокочастотный факельный разряд, направленный вертикально вниз в плазмохимический реактор. При этом в качестве плазмообразующего газа используют атмосферный воздух. Обрабатывают смесь жидких радиоактивных отходов с хлоридом натрия в воздушно-плазменном потоке при массовом отношении смесь - воздух, равном 1:3, причем температуру в объеме плазмохимического реактора поддерживают не менее 800°C. Затем образующиеся продукты плазмохимической переработки в газовой фазе отводят и очищают в блоке очистки отходящих газов, а продукты плазмохимической переработки в конденсированной фазе в виде расплава хлорида натрия, включающего оксидные соединения металлов, осаждают с последующим извлечением из плазмохимического реактора. Изобретение позволяет уменьшить объем образующихся радиоактивных отходов. 1 ил.

Description

Изобретение относится к ядерной физике, а именно к технологии обработки жидких радиоактивных отходов, и может быть использовано для иммобилизации радиоактивных отходов, образующихся после переработки отработавшего ядерного топлива.
Известен способ плазменного пиролиза жидких отходов [RU 2093754 С1, МПК6 F23G 5/00 (2006.01), опубл. 20.10.1997], заключающийся в том, что жидкие отходы вводят в плазмореакционную зону при помощи эжектора, в котором в качестве рабочей жидкости используют растворитель на основе предельных углеводородов. Процесс плазменного пиролиза ведут с помощью парового плазмотрона при давлении в реакционной зоне плазмореактора ниже атмосферного, которое обеспечивают при помощи водокольцевого вакуумного насоса. Закалку получаемых реагентов и их очистку проводят путем пропускания поочередно через центробежно-барботажные слои слабого раствора кислоты и концентрированного раствора едкой щелочи, постоянство концентрации которых поддерживают при помощи автономных рециркуляционных контуров. Нейтрализацию остаточных следов токсичных веществ проводят непосредственно во вращающемся слое дистиллированной воды водокольцевого вакуумного насоса с предварительной конденсацией части паров на его входном и осушением на его выходном каналах.
Недостатки этого способа:
- необходимость поддержания постоянного давления в плазмореакторе ниже атмосферного (на уровне 200-300 мм рт. ст.) приводит к увеличению времени ведения процесса из-за необходимости откачки воздуха после перегрузки;
- использование эжектора для ввода жидких отходов в плазмореакционную зону накладывает ограничения на их состав вследствие возможного засорения сопла и уменьшения его пропускной способности.
Известен способ отверждения жидких радиоактивных отходов [RU 2291504 С2, МПК G21F 9/16, G21F 9/04, G21F 9/20 (2006.01), опубл. 10.01.2007], при котором предварительно жидкие радиоактивные отходы в непрерывном потоке упаривают при температуре 110-160°C до превращения в пар 30-80 отн. % содержащейся в них воды. Полученную парожидкостную смесь под давлением собственного пара подвергают распылению в разогретой до температуры 600-800°C камере. Образовавшиеся твердые частицы кальцината отделяют от парогазовой фазы седиментацией при температуре не ниже 300°C и фильтрацией при температуре 110-300°C. Кальцинат остекловывают совместно с флюсующими добавками. Расплав сливают в емкость и отжигают затвердевший блок.
Недостатком известного способа является необходимость выделения в отдельную стадию процесс упаривания жидких радиоактивных отходов при температуре 110-160°C, что существенно увеличивает время переработки жидких радиоактивных отходов.
Известен способ переработки жидких радиоактивных отходов [RU 2486615 С1, МПК G21F 9/04 (2006.01), опубл. 27.06.2013], выбранный в качестве прототипа. По указанному способу жидкие радиоактивные отходы предварительно смешивают со стеклообразующими добавками и подают вместе с плазмообразующим газом в зону смешения плазменной камеры. Генерируют поток плазмы в вертикально расположенной охлаждаемой плазменной камере с помощью микроволновых генераторов плазмы. Разлагают отходы на составляющие в плазменной камере. В качестве плазмообразующего газа используют водяной пар с начальной температурой 500-600°C. Температуру в верхней части плазменной камеры поддерживают на уровне 4000-6000°C, а температуру в объеме плазменной камеры поддерживают на уровне 1200-2000°C. Формирование расплава проводят за счет прямого индукционного нагрева, при этом нижняя часть плазменной камеры погружена в расплав. Электропроводность расплава поддерживают в интервале 1-100 См/м. Отвод газообразных продуктов разложения осуществляют после барботирования их через расплав. Конечный продукт в виде расплава выгружают из зоны плавления в обогреваемый коллектор накопитель.
Этот способ имеет следующие недостатки:
- предварительное смешивание жидких радиоактивных отходов со стеклообразующими добавками приводит к существенному увеличению образующихся вторичных радиоактивных отходов;
- использование перегретого водяного пара в качестве плазмообразующего газа требует дополнительных энергозатрат на его получение;
- высокие удельные энергозатраты (4-10 кВт⋅ч/кг стекла) из-за необходимости поддержания расплава в жидком состоянии за счет прямого индукционного нагрева.
Техническим результатом изобретения является уменьшение объема радиоактивных отходов и снижение удельных энергозатрат.
Предложенный способ переработки жидких радиоактивных отходов, так же, как в прототипе, включает подачу жидких радиоактивных отходов вместе с плазмообразующим газом в зону смешения плазмохимического реактора, генерирование потока плазмы в вертикально расположенном плазмохимическом реакторе, где разлагают отходы на продукты в газовой и конденсированной фазах, отвод газообразных продуктов разложения, конечный продукт извлекают.
Согласно изобретению жидкие радиоактивные отходы смешивают с хлоридом натрия, диспергируют внутрь плазмохимического реактора путем подачи их на форсунки, расположенные в верхней части плазмохимического реактора, и одновременно с водоохлаждаемого медного электрода генерируют моноэлектродный высокочастотный факельный разряд, направленный вертикально вниз в плазмохимический реактор. При этом в качестве плазмообразующего газа используют атмосферный воздух. Обрабатывают смесь жидких радиоактивных отходов с хлоридом натрия в воздушно-плазменном потоке при массовом отношении смесь - воздух, равном 1:3, причем температуру в объеме плазмохимического реактора поддерживают не менее 800°C. Затем образующиеся продукты плазмохимической переработки в газовой фазе отводят и очищают в блоке очистки отходящих газов, а продукты плазмохимической переработки в конденсированной фазе в виде расплава хлорида натрия, включающего оксидные соединения металлов, осаждают с последующим извлечением из плазмохимического реактора.
Подача смеси жидких радиоактивных отходов и хлорида натрия в плазмохимический реактор через форсунки обеспечивает увеличение площади контакта образующихся капель с воздушно-плазменным потоком и приводит к мгновенному разложению и дегидрированию отходов. Образующиеся в процессе обработки продукты плазмохимической обработки в газовой фазе очищают в блоке очистки отходящих газов, тем самым предотвращают образование радиоактивных аэрозолей. Образующиеся продукты плазмохимической обработки в конденсированной фазе осаждают в виде расплава хлорида натрия, включающего оксидные соединения металлов, что приводит к уменьшению объема радиоактивных отходов.
Выбор температуры не менее 800°C обусловлен условиями образования расплава хлорида натрия в жидкой фазе (его температурой плавления) в объеме плазмохимического реактора. При более низких температурах хлорид натрия переходит в твердую фазу.
По сравнению с прототипом сокращены удельные энергозатраты на иммобилизацию жидких радиоактивных отходов и снижены объемы радиоактивных отходов.
На фиг. 1 представлена принципиальная схема переработки жидких радиоактивных отходов в воздушно-плазменном потоке.
Для осуществления способа переработки жидких радиоактивных отходов использовали плазменный модуль, который содержит форсунки 1, расположенные в верхней части плазмохимического реактора 2. Над реактором размещен высокочастотный факельный плазмотрон 3, в верхней части которого расположен медный водоохлаждаемый электрод 4. Водоохлаждаемый электрод 4 соединен с высокочастотным генератором 5 и служит для возбуждения в разрядной камере 6 из кварцевого стекла моноэлектродного высокочастотного факельного разряда 7 в высокочастотном факельном плазмотроне 3 и генерирования воздушно-плазменного потока 6, направленного вертикально вниз в плазмохимический реактор 2. В качестве плазмообразующего газа использован атмосферный воздух. В центральной части плазмохимического реактора 2 расположен патрубок 8 для отвода образующихся продуктов плазмохимической переработки в газовой фазе в блок очистки отходящих газов 9. В патрубке 8 установлена термопара 10. В нижней части плазмохимического реактора 2 расположен патрубок 11 для отвода образующихся продуктов плазмохимической переработки в конденсированной фазе.
Использовали следующий модельный состав жидких радиоактивных отходов: HNO3 - 18%, H2O - 81,43%, Fe - 0,07%, Mo - 0,1%, Nd - 0,11%, Y - 0,06%, Zr - 0,058%, Na - 0,04%, Ce - 0,039%, Cs - 0,036%, Co - 0,031%, Sr - 0,026%, который имитировал отходы переработки отработавшего ядерного топлива и близок к ним по физико-химическим свойствам. Предварительно подготовленную смесь модельных жидких радиоактивных отходов и хлорида натрия при массовом отношении смесь - хлорид натрия, равном 1:100, подавали на форсунки 1 с расходом 0,8 кг/мин, а также подавали на форсунки 1 сжатый воздух с расходом 0,1 кг/мин, после которых диспергированная смесь поступала в плазмохимический реактор 2.
С медного электрода 4, соединенного с высокочастотным генератором 5 (рабочая частота 13,56 МГц, колебательная мощность до 60 кВт), возбуждали в разрядной камере 6 из кварцевого стекла моноэлектродный высокочастотный факельный разряд 7. Плазмообразующим газом являлся атмосферный воздух, подаваемый тангенциально в верхнюю часть высокочастотного факельного плазмотрона 3 с расходом 2,3 кг/мин, что обеспечивало массовое соотношение смесь - воздух, равное 1:3 для установления температуры в процессе переработки в реакторе не менее 800 C. Контролировали температуру в реакторе 2 термопарой 10, установленной в патрубке 8 для отвода образующихся продуктов плазмохимической переработки в газовой фазе.
Диспергированная смесь жидких радиоактивных отходов и хлорида натрия поступала в плазмохимический реактор 2, подвергалась плазмохимической переработке в воздушно-плазменном потоке.
Продукты плазмохимической переработки в газовой фазе через патрубок 8 поступали в блок очистки отходящих газов 9 и далее направлялись в атмосферу. Продукты плазмохимической переработки в конденсированной фазе осаждались в нижней части плазмохимического реактора 2 в виде расплава хлорида натрия, включающего оксидные соединения металлов, с последующим извлечением через патрубок 11.
Экспериментально установлено, что объем продуктов плазмохимической переработки в конденсированной фазе в виде расплава хлорида натрия, включающего оксидные соединения металлов, уменьшился с 105 л до 2,1 л за 1 час переработки (≈50 раз), что существенно сократило объем жидких радиоактивных отходов. Удельные энергозатраты на процесс составили до 1,5 кВт⋅ч на 1 кг расплава.

Claims (1)

  1. Способ переработки жидких радиоактивных отходов, включающий подачу жидких радиоактивных отходов вместе с плазмообразующим газом в зону смешения плазмохимического реактора, генерирование потока плазмы в вертикально расположенном плазмохимическом реакторе, где разлагают отходы на продукты в газовой и конденсированной фазах, осуществляют отвод газообразных продуктов разложения, конечный продукт извлекают, отличающийся тем, что жидкие радиоактивные отходы смешивают с хлоридом натрия, диспергируют внутрь плазмохимического реактора путем подачи их на форсунки, расположенные в верхней части плазмохимического реактора, и одновременно с водоохлаждаемого медного электрода генерируют моноэлектродный высокочастотный факельный разряд, направленный вертикально вниз в плазмохимический реактор, при этом в качестве плазмообразующего газа используют атмосферный воздух, обрабатывают смесь жидких радиоактивных отходов с хлоридом натрия в воздушно-плазменном потоке при массовом отношении смесь - воздух, равном 1:3, причем температуру в объеме плазмохимического реактора поддерживают не менее 800°C, затем образующиеся продукты плазмохимической переработки в газовой фазе отводят и очищают в блоке очистки отходящих газов, а продукты плазмохимической переработки в конденсированной фазе в виде расплава хлорида натрия, включающего оксидные соединения металлов, осаждают с последующим извлечением из плазмохимического реактора.
RU2016149976A 2016-12-19 2016-12-19 Способ переработки жидких радиоактивных отходов RU2639724C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016149976A RU2639724C1 (ru) 2016-12-19 2016-12-19 Способ переработки жидких радиоактивных отходов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016149976A RU2639724C1 (ru) 2016-12-19 2016-12-19 Способ переработки жидких радиоактивных отходов

Publications (1)

Publication Number Publication Date
RU2639724C1 true RU2639724C1 (ru) 2017-12-22

Family

ID=63857473

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149976A RU2639724C1 (ru) 2016-12-19 2016-12-19 Способ переработки жидких радиоактивных отходов

Country Status (1)

Country Link
RU (1) RU2639724C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864535A2 (de) * 1997-03-12 1998-09-16 Nukem Nuklear GmbH Verfahren und Vorrichtung zum Eindampfen salzhaltiger Lösungen
RU2279726C2 (ru) * 2004-07-15 2006-07-10 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ переработки органических радиоактивных отходов
KR20070046579A (ko) * 2005-10-31 2007-05-03 한국전력공사 원자력 발전소 증기발생기의 화학세정폐액 처리 장치
RU2486615C1 (ru) * 2011-12-22 2013-06-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ переработки жидких радиоактивных отходов и устройство для его осуществления
RU2013127063A (ru) * 2013-06-13 2014-12-20 Дмитрий Николаевич Тимофеев Устройство остекловывания высокоактивных отходов ядерного производства

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864535A2 (de) * 1997-03-12 1998-09-16 Nukem Nuklear GmbH Verfahren und Vorrichtung zum Eindampfen salzhaltiger Lösungen
RU2279726C2 (ru) * 2004-07-15 2006-07-10 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ переработки органических радиоактивных отходов
KR20070046579A (ko) * 2005-10-31 2007-05-03 한국전력공사 원자력 발전소 증기발생기의 화학세정폐액 처리 장치
RU2486615C1 (ru) * 2011-12-22 2013-06-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ переработки жидких радиоактивных отходов и устройство для его осуществления
RU2013127063A (ru) * 2013-06-13 2014-12-20 Дмитрий Николаевич Тимофеев Устройство остекловывания высокоактивных отходов ядерного производства

Similar Documents

Publication Publication Date Title
JP2012518262A (ja) プラズマ反応器
US7597873B2 (en) Process and apparatus for the recovery of metal oxide particles
WO2012023858A1 (en) An apparatus, a system and a method for producing hydrogen
RU2190030C2 (ru) Способ получения магния
CN107051349A (zh) 化学液体的等离子体处理方法及设备
CN101733405B (zh) 纳米粉末材料的射频辉光放电感应耦合等离子体制备方法
CN107501315B (zh) 一种有效处理有机硅浆渣的方法和装置
CN109956483A (zh) 一种化工行业废盐的无害化与资源化方法
CN106524188A (zh) 带节能预加热系统的等离子体废液处理系统
RU2639724C1 (ru) Способ переработки жидких радиоактивных отходов
CN105727725B (zh) 一种光电解诱导自由基脱VOCs的方法及装置
CN201164788Y (zh) 一种酸根废气处理装置
CN110240135A (zh) 一种高砷磷矿预脱砷的方法及系统
CN105152171A (zh) 多晶硅生产过程中含氯硅烷浆料连续回收专用系统及方法
CN112547753B (zh) 一种赤泥综合利用方法及装置
JP2002263475A (ja) 金属を含む有機化合物廃液の処理方法とその処理装置
RU2422493C1 (ru) Способ крекинга углеводородов и плазменный реактор для его осуществления
CN104379501A (zh) 制备乙炔和合成气的方法
RU2486615C1 (ru) Способ переработки жидких радиоактивных отходов и устройство для его осуществления
RU2414993C2 (ru) Способ получения нанопорошка с использованием индукционного разряда трансформаторного типа низкого давления и установка для его осуществления
RO126941B1 (ro) Procedeu şi instalaţie pentru tratarea termică cu plasmă a unui amestec gazos
KR20220038903A (ko) 불화수소를 포함하는 공정폐수로부터 불화칼슘을 형성하는 공정폐수 재활용방법 및 그를 포함하는 불화칼슘블록성형방법
JP2001232180A (ja) 高周波プラズマによる化合物分解装置、化合物分解方法及び化合物分解システム
RU2413011C1 (ru) Плазмохимический реактор для обработки минеральных руд
DK3007805T3 (en) PROCEDURE FOR TREATING AT LEAST ONE GAS SHOPPING OUTPUT

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191220