RU2634098C2 - Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама - Google Patents

Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама Download PDF

Info

Publication number
RU2634098C2
RU2634098C2 RU2015152977A RU2015152977A RU2634098C2 RU 2634098 C2 RU2634098 C2 RU 2634098C2 RU 2015152977 A RU2015152977 A RU 2015152977A RU 2015152977 A RU2015152977 A RU 2015152977A RU 2634098 C2 RU2634098 C2 RU 2634098C2
Authority
RU
Russia
Prior art keywords
carried out
gas
hard alloy
alloy
nanodiamond
Prior art date
Application number
RU2015152977A
Other languages
English (en)
Other versions
RU2015152977A (ru
Inventor
Владимир Никитович Анциферов
Дмитрий Сергеевич Вохмянин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority to RU2015152977A priority Critical patent/RU2634098C2/ru
Publication of RU2015152977A publication Critical patent/RU2015152977A/ru
Application granted granted Critical
Publication of RU2634098C2 publication Critical patent/RU2634098C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof

Abstract

Изобретение относится к технологии неорганических веществ и материалов, а именно к способу получения алмазной пленки на твердосплавных изделиях из карбида вольфрама с содержанием в качестве связующего 6% кобальта. Осуществляют подготовку поверхности упомянутого твердого сплава и газофазное химическое осаждение углерода. Подготовку поверхности упомянутого твердого сплава проводят шлифованием с помощью алмазной пасты с последующей промывкой в ацетоне с использованием ультразвука и удаления кобальтовой связки в поверхностном слое упомянутого твердого сплава путем последовательной обработки в концентрированной H2SO4, смеси H2O2:H2SO4 в соотношении 1:3 и H2O2 в течение 10, 40, 20 минут соответственно. Затем проводят ультразвуковую обработку в наноалмазной суспензии, состоящей из нанопорошка оксидной керамики ZrO2-Y2O3-CeO2 и наноалмазного порошка и изопропилового спирта. Затем осуществляют газофазное химическое осаждение углерода при мощности СВЧ излучения 700 Вт, давлении в камере 25 Торр, составе газовой смеси 99:1 (H2:СН4), расходе газа 150 см3/мин и температуре образца 720°С с получением сплошной алмазной пленки на упомянутых изделиях из твердого сплава. В частных случаях осуществления изобретения ультразвуковую обработку проводят в наноалмазной суспензии, содержащей нанопорошок оксидной керамики ZrO2-Y2O3-CeO2 с размером частиц 18-21 нм и наноалмазный порошок, синтезированный CVD методом, с размером 90-120 нм. Обеспечиваются повышение зародышеобразования алмазной фазы и получение пленки на твердом сплаве из карбида вольфрама, не содержащей дополнительных примесей. 1 з.п. ф-лы, 4 ил., 1 пр.

Description

Изобретение относится к технологии неорганических веществ и материалов.
Необходимыми условиями для получения сплошных алмазных пленок на твердосплавных материалах являются правильная подготовка поверхности, а также оптимизация параметров синтеза пленки. Так, для повышения плотности зародышеобразования известны несколько вариантов обработки поверхности твердого сплава карбида вольфрама. Прежде всего это химическое воздействие на сам сплав и его поверхностную связку в виде кобальта. Классическим вариантом обработки является поочередная обработка в смеси Мураками и кислоте Каро. А для повышения плотности зародышеобразования, а также равномерного роста алмазной пленки на твердом сплаве производят обработку в алмазных суспензиях, приготовленных из детонационных алмазов в среде ацетона, изопропилового спирта, воды. Однако данные методы не позволяют на сегодняшний день получить высокую степень зарождения алмазной фазы и добиться ее равномерного роста.
Наиболее близким к предлагаемому изобретению по совокупности признаков является способ получения алмазной пленки на твердосплавных изделиях из карбида вольфрама с содержанием в качестве связующего 6% кобальта, включающий подготовку поверхности упомянутого твердого сплава и газофазное химическое осаждение углерода (см. US 5855974 А1, 05.01.1999). Данный способ принят в качестве прототипа.
Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения - подготовка поверхности упомянутого твердого сплава, газофазное химическое осаждение углерода.
Недостатками способа, принятого за прототип, является наличие частичек металлов на поверхности твердого сплава после процесса ультразвуковой обработки, и при дальнейшем синтезе алмазной пленки происходит ухудшение ее свойств.
Задача, на решение которой направлено предлагаемое изобретение, - повышение зародышеобразования алмазной фазы и получение пленки на твердом сплаве из карбида вольфрама, не содержащей дополнительных примесей.
Поставленная задача была решена за счет того, что в известном способе получения алмазной пленки на твердосплавных изделиях из карбида вольфрама с содержанием в качестве связующего 6% кобальта, включающем подготовку поверхности упомянутого твердого сплава и газофазное химическое осаждение углерода, согласно изобретению подготовку поверхности упомянутого твердого сплава проводят шлифованием с помощью алмазной пасты с последующей промывкой в ацетоне с использованием ультразвука и удаления кобальтовой связки в поверхностном слое упомянутого твердого сплава путем последовательной обработки в концентрированной H2SO4, смеси H2O2:H2SO4 в соотношении 1:3 и Н2О2 в течение 10, 40, 20 минут соответственно, затем проводят ультразвуковую обработку в наноалмазной суспензии, состоящей из нанопорошка оксидной керамики ZrO2-Y2O3-CeO2 и наноалмазного порошка и изопропилового спирта, затем осуществляют газофазное химическое осаждение углерода при мощности СВЧ-излучения 700 Вт, давлении в камере 25 Торр, составе газовой смеси 99:1 (Н2:СН4), расходе газа 150 см3/мин и температуре образца 720°С с получением сплошной алмазной пленки на упомянутых изделиях из твердого сплава.
Предпочтительнее, при осуществлении ультразвуковой обработки в наноалмазной суспензии использование нанопорошка оксидной керамики ZrO2-Y2O3-CeO2 с размером частиц 18-21 нм и наноалмазного порошка, синтезированного CVD методом, с размером 90-120 нм.
Признаки заявляемого технического решения, отличительные от решения по прототипу: подготовку поверхности упомянутого твердого сплава проводят шлифованием с помощью алмазной пасты с последующей промывкой в ацетоне с использованием ультразвука и удаления кобальтовой связки в поверхностном слое упомянутого твердого сплава путем последовательной обработки в концентрированной H2SO4, смеси H2O2:H2SO4 в соотношении 1:3 и H2O2 в течение 10, 40, 20 минут соответственно, затем проводят ультразвуковую обработку в наноалмазной суспензии, состоящей из нанопорошка оксидной керамики ZrO2-Y2O3-CeO2 и наноалмазного порошка и изопропилового спирта, затем осуществляют газофазное химическое осаждение углерода при мощности СВЧ-излучения 700 Вт, давлении в камере 25 Торр, составе газовой смеси 99:1 (Н2:СН4), расходе газа 150 см3/мин и температуре образца 720°С с получением сплошной алмазной пленки на упомянутых изделиях из твердого сплава, ультразвуковую обработку в наноалмазной суспензии проводят с использованием нанопорошка оксидной керамики ZrO2-Y2O3-CeO2 с размером частиц 18-21 нм и наноалмазного порошка, синтезированного CVD методом, с размером 90-120 нм.
Последовательная обработка поверхности твердого сплава в концентрированной H2SO4, смеси H2O2:H2SO4 в соотношении 1:3 и H2O2 в течение 10, 40, 20 минут соответственно позволяет полностью убрать кобальтовую связку с подготавливаемой поверхности.
Проведение ультразвуковой обработки в суспензиях с добавлением не металлических порошков, а нанометрового порошка оксидной керамики состава ZrO2-Y2O3-CeO2, который в процессе синтеза пленки вступает в химическую реакцию с газовой средой, становясь катализатором роста алмазной пленки и с увеличением времени синтеза разлагается и улетучивается с поверхности, позволяет повысить степень зародышеобразования алмазной фазы на твердом сплаве.
Отличительные признаки в совокупности с известными позволяют повысить зародышеобразование алмазной фазы и получить пленку на твердом сплаве из карбида вольфрама, не содержащую дополнительных примесей.
Предлагаемый способ иллюстрируется чертежами, представленными на фиг. 1-4.
На фиг. 1 показан этап зарождения пленки.
На фиг. 2 показана структура пленки на изломе.
На фиг. 3 показана структура пленки.
На фиг. 4 показана раман-спектроскопия полученной пленки.
Способ включает в себя получение сплошной алмазной пленки на твердосплавных изделиях из карбида вольфрама с содержанием в качестве связующего 6% Со путем газофазного химического осаждения углерода в микроволновом реакторе (MW CVD), с предварительной обработкой изделий в алмазно-керамической суспензии. В качестве подложек был выбран промышленный сплав ВК-6, который находит широкое распространение в обработке металлов и композитов. А содержание кобальта в твердом сплаве является оптимальным для создания необходимого пленки, без потери функциональных свойств материала подложки. Предложен новый вариант обработки поверхности твердого сплава, включающий последовательную обработку в концентрированной H2SO4 смеси H2O2:H2SO4 (1:3) и H2O2 с выдержкой на каждом этапе. Он позволяет равномерно удалить кобальт из поверхностного слоя твердого сплава без охрупчивания самого материала.
Для повышения плотности зародышеобразования предлагается использовать вместо классической суспензии из детонационных алмазов суспензию с добавлением оксидной керамики состава ZrO2 - 2.2 мол %, Y2O3 - 3 мол. %, CeO2 и алмазов, полученных MW CVD методом. Выбор керамики такого состава обусловлен высокой твердостью, которая в процессе обработки в ультразвукой среде производит физико-химическую модификацию поверхности, а также входящим в состав оксидом церия, который является катализатором углеродных реакций и в процессе осаждения пленки ускоряет ее рост (фиг. 1). Оптимальная концентрация керамического порошка в суспензии 0,2 мас. % на мл. Выбранные параметры синтеза пленки: мощность СВЧ-излучения 700 Вт, давление в камере 25 Торр, состав газовой смеси 99:1 (Н2:СН4), расход газа 150 см3/мин, температура образца 720°С, выбраны на основании многократных экспериментов и позволяют получать пленку с минимальными дефектами в структуре. Таким образом, предложенный способ позволяет повысить степень зародышеобразования алмазной фазы на твердом сплаве.
Пример осуществления изобретения
Для проведения испытаний был взят твердый сплав состава WC-6% Co, нанопорошок оксидной керамики ZrO2-Y2O3-CeO2 (синтезированный в лабораторных условиях обратным осаждением аммиаком из водно-этанольных растворов соответствующих солей) с размером частиц 18-21 нм, и алмазный порошок, синтезированный CVD методом, с размером 90-120 нм.
Предварительно создали шлифованную поверхность твердого сплава на алмазных пастах, с последующей промывкой в ацетоне, в среде ультразвука в течение 10 минут. На следующем этапе удалили кобальтовую связку в поверхностном слое твердого сплава путем обработки в концентрированной H2SO4, смеси H2O2:H2SO4 (1:3) и H2O2, в течение 10, 40, 20 минут соответственно. После готовили суспензию, состоящую из ZrO2-Y2O3-CeO2 и алмазного порошка в среде изопропилового спирта. Обработку осуществляли в ультразвуке в течение 30 минут для равномерного распределения частиц на поверхности твердого сплава. После образец подвергли термической сушке на воздухе для удаления спирта с поверхности и поместили в камеру реактора. Синтез алмазной пленки осуществляли при следующих параметрах: мощность СВЧ-излучения 700 Вт, давление в камере 25 Торр, состав газовой смеси 99:1 (Н2:CH4), расход газа 150 см3/мин, температура образца 720°С, длительность синтеза 4 часа.
Определение фазового состава полученной пленки осуществляли на КР-спектрометре Bruker при длине волны 532 нм и мощности лазерного излучения 10 мВт с обработкой полученных данных в программе Opus 6.5. Микроструктурный анализ пленки исследовали на растровом электронном микроскопе Carl Zeiss Ultra 55 (фиг. 2 и 3).
Средняя толщина пленки, рассчитанная при статистической обработке серии изображений 4.1±0.2 мкм. Средний размер алмазного зерна в пленке составляет 95±5 нм. В фазовом анализе полученной пленки присутствует узкий пик в районе 1334 см-1, с полушириной не более 12 см-1, что идентифицирует алмазную составляющую, линий, подтверждающих наличие оксидной керамики в составе, не выявлено (фиг. 4).
Способ позволяет получить сплошную алмазную пленку на твердом сплаве, без включения в ее состав частичек порошка, применяемых для повышения плотности зародышеобразования. Способ легко осуществить на стандартном оборудовании.

Claims (2)

1. Способ получения алмазной пленки на твердосплавных изделиях из карбида вольфрама с содержанием в качестве связующего 6% кобальта, включающий подготовку поверхности упомянутого твердого сплава и газофазное химическое осаждение углерода, отличающийся тем, что подготовку поверхности упомянутого твердого сплава проводят шлифованием с помощью алмазной пасты с последующей промывкой в ацетоне с использованием ультразвука и удаления кобальтовой связки в поверхностном слое упомянутого твердого сплава путем последовательной обработки в концентрированной H2SO4, смеси H2O2:H2SO4 в соотношении 1:3 и H2O2 в течение 10, 40, 20 минут соответственно, затем проводят ультразвуковую обработку в наноалмазной суспензии, состоящей из нанопорошка оксидной керамики ZrO2-Y2O3-CeO2 и наноалмазного порошка и изопропилового спирта, затем осуществляют газофазное химическое осаждение углерода при мощности СВЧ излучения 700 Вт, давлении в камере 25 Торр, составе газовой смеси 99:1 (H2:СН4), расходе газа 150 см3/мин и температуре образца 720°С с получением сплошной алмазной пленки на упомянутых изделиях из твердого сплава.
2. Способ по п. 1, отличающийся тем, что ультразвуковую обработку проводят в наноалмазной суспензии, содержащей нанопорошок оксидной керамики ZrO2-Y2O3-CeO2 с размером частиц 18-21 нм и наноалмазный порошок, синтезированный CVD методом, с размером 90-120 нм.
RU2015152977A 2015-12-09 2015-12-09 Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама RU2634098C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015152977A RU2634098C2 (ru) 2015-12-09 2015-12-09 Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015152977A RU2634098C2 (ru) 2015-12-09 2015-12-09 Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама

Publications (2)

Publication Number Publication Date
RU2015152977A RU2015152977A (ru) 2017-06-15
RU2634098C2 true RU2634098C2 (ru) 2017-10-23

Family

ID=59068125

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152977A RU2634098C2 (ru) 2015-12-09 2015-12-09 Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама

Country Status (1)

Country Link
RU (1) RU2634098C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2111846C1 (ru) * 1993-11-30 1998-05-27 Кеннаметал Инк. Инструмент с алмазным покрытием и способ его изготовления
US5855974A (en) * 1993-10-25 1999-01-05 Ford Global Technologies, Inc. Method of producing CVD diamond coated scribing wheels
US5912053A (en) * 1994-08-11 1999-06-15 Saint-Gobain Norton Industrial Ceramics Corporation Method of making a composite body coated with CVD diamond film
US5935323A (en) * 1995-04-24 1999-08-10 Toyo Kohan Co., Ltd. Articles with diamond coating formed thereon by vapor-phase synthesis
US20020094379A1 (en) * 2000-10-13 2002-07-18 Chien-Min Sung Cast diamond tools and formation thereof by chemical vapor deposition
RU2503522C2 (ru) * 2009-09-11 2014-01-10 Элемент Сикс Лимитед Композитная вставка с поликристаллическими алмазами

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855974A (en) * 1993-10-25 1999-01-05 Ford Global Technologies, Inc. Method of producing CVD diamond coated scribing wheels
RU2111846C1 (ru) * 1993-11-30 1998-05-27 Кеннаметал Инк. Инструмент с алмазным покрытием и способ его изготовления
US5912053A (en) * 1994-08-11 1999-06-15 Saint-Gobain Norton Industrial Ceramics Corporation Method of making a composite body coated with CVD diamond film
US5935323A (en) * 1995-04-24 1999-08-10 Toyo Kohan Co., Ltd. Articles with diamond coating formed thereon by vapor-phase synthesis
US20020094379A1 (en) * 2000-10-13 2002-07-18 Chien-Min Sung Cast diamond tools and formation thereof by chemical vapor deposition
RU2503522C2 (ru) * 2009-09-11 2014-01-10 Элемент Сикс Лимитед Композитная вставка с поликристаллическими алмазами

Also Published As

Publication number Publication date
RU2015152977A (ru) 2017-06-15

Similar Documents

Publication Publication Date Title
Williams et al. Enhanced diamond nucleation on monodispersed nanocrystalline diamond
Birrell et al. Interpretation of the Raman spectra of ultrananocrystalline diamond
Iakoubovskii et al. High-resolution electron microscopy of detonation nanodiamond
US20150104804A1 (en) Method for Manufacturing Cubic Diamond Nanocrystals
JPH01246116A (ja) 針状,繊維状,多孔質状ダイヤモンドまたはそれらの集合体の製造法
JPH02289493A (ja) ダイヤモンドおよびその気相合成法
JP2584805B2 (ja) ダイヤモンド粒子の合成方法
US10125418B2 (en) Method for the preparation of Ag/C nanocomposite films by laser-induced carbonization of alkane
Buijnsters et al. Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth
WO2016193464A1 (fr) Production de dihydrogène avec photocatalyseur supporté sur nanodiamants
US20140161710A1 (en) Method and system for controlled synthesis of nanodiamonds
Varga et al. Study of diamond film nucleation by ultrasonic seeding in different solutions
CN108687339A (zh) 低氧含量的钛或钛合金球形粉末及其制备方法和用途
Fang et al. A novel technique for the synthesis of nanodiamond powder
FR2855166A1 (fr) Procede de production d'une poudre d'alpha-alumine
Barreto et al. Preparation and characterization of sintered polycrystalline diamond (PCD) with 15 wt% Nb binder
RU2634098C2 (ru) Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама
Zolotukhin et al. Morphology and Raman spectra peculiarities of chemical vapor deposition diamond films
Sheu et al. Laboratory investigation of hydrogenated diamond surfaces: Implications for the formation and size of interstellar nanodiamonds
Feoktistov et al. Aerosol deposition of detonation nanodiamonds used as nucleation centers for the growth of nanocrystalline diamond films and isolated particles
CN111212814A (zh) 硼构造体以及硼粉末
JP7429408B2 (ja) 酸化ガリウムの製造方法
Dvornik et al. Control of carbon content in ultrafine cemented carbide by heat treatment in reducing atmospheres containing carbon oxides
CN110872119B (zh) 一种超细金刚石微粉合成方法
KR20100026151A (ko) 탄소 나노튜브를 형성하기 위한 촉매 및 탄소 나노튜브 제조 방법

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201210