RU2625006C1 - Способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров - Google Patents

Способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров Download PDF

Info

Publication number
RU2625006C1
RU2625006C1 RU2015150974A RU2015150974A RU2625006C1 RU 2625006 C1 RU2625006 C1 RU 2625006C1 RU 2015150974 A RU2015150974 A RU 2015150974A RU 2015150974 A RU2015150974 A RU 2015150974A RU 2625006 C1 RU2625006 C1 RU 2625006C1
Authority
RU
Russia
Prior art keywords
pathogens
primers
eria
pcr
amplification
Prior art date
Application number
RU2015150974A
Other languages
English (en)
Inventor
Алексей Алексеевич Кубанов
Анастасия Владимировна Рунина
Ольга Анатольевна Образцова
Кирилл Владимирович Рог
Ксения Ильинична Плахова
Арво Тоомасович Лейнсоо
Борис Леонидович Шаскольский
Екатерина Игоревна Дементьева
Дмитрий Александрович Грядунов
Original Assignee
Федеральное государственное бюджетное учреждение "Государственный научный центр дерматовенерологии и косметологии" Министерства здравоохранения Российской Федерации (ФГБУ "ГНЦДК" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Государственный научный центр дерматовенерологии и косметологии" Министерства здравоохранения Российской Федерации (ФГБУ "ГНЦДК" Минздрава России) filed Critical Федеральное государственное бюджетное учреждение "Государственный научный центр дерматовенерологии и косметологии" Министерства здравоохранения Российской Федерации (ФГБУ "ГНЦДК" Минздрава России)
Priority to RU2015150974A priority Critical patent/RU2625006C1/ru
Application granted granted Critical
Publication of RU2625006C1 publication Critical patent/RU2625006C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules

Abstract

Изобретение относится к области молекулярной биологии, микробиологии и медицины. Описан способ одновременной таргетной амплификации фрагментов геномов возбудителей инфекций органов репродукции человека, включающих Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum, с целью одновременной идентификации возбудителей. Мультиплексная ПЦР проводится в едином реакционном объеме в два этапа с использованием по меньшей мере двух пар праймеров, последовательности которых комплементарны последовательностям сегментов гена 16S рРНК возбудителей. ПЦР включает два последовательных профиля амплификации, различающихся температурами отжига пар праймеров. Способ обладает устойчивостью к контаминации ПЦР-продуктами, высокой аналитической чувствительностью и существенно уменьшает время и трудоемкость анализа. Изобретение включает также набор праймеров для осуществления способа. 2 н.п. ф-лы, 16 ил., 1 табл., 1 пр.

Description

Область техники, к которой относится изобретение
Изобретение относится к области молекулярной биологии, микробиологии и медицине и обеспечивает способ одновременной таргетной ПЦР-амплификации геномов возбудителей инфекций органов репродукции человека, включающих Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum с целью одновременной идентификации возбудителей. Изобретение также включает набор олигонуклеотидных праймеров для осуществления способа.
Предшествующий уровень техники настоящего изобретения
Инфекции, вызывающие заболевания урогенитального тракта являются одними из самых распространенных. По данным ВОЗ, во всем мире ежегодно регистрируется около полумиллиарда случаев инфекций, передаваемых половым путем (ИППП) [Report on global sexually transmitted infection surveillance 2013 // WHO Press: Geneva, Switzerland, 2014; p. 54], включая 105,7 млн. случаев хламидийной инфекции, 106,1 млн. - гонококковой инфекции, 10,6 млн. - сифилиса, 276,4 млн. - урогенитального трихомониаза [Baseline report on global sexually transmitted infection surveillance 2012 // WHO Press: Geneva, Switzerland 2013; p. 66]. Своевременная диагностика урогенитальных инфекций и проведение адекватной антимикробной терапии являются ключевыми факторами, определяющими как успешное лечение, так и предотвращение развития осложнений и распространения заболеваний.
Патологические состояния мочеполовой системы часто носят полимикробный характер, представленный не только облигатными патогенными микроорганизмами (Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Trichomonas vaginalis), но и различными условно-патогенными микробными агентами. Полимикробный характер заболеваний изменяет клиническую картину, отягощает течение воспалительного процесса, а также снижает эффективность выявления этиологического агента, что может привести к назначению неадекватной терапии [Кондратьева Ю.С., Неймарк А.И. Смешанные урогенитальные инфекции: клинико-терапевтические подходы. Вестн. дерматол. венерол. 2011; 4: 112-116]. Для назначения адекватной и своевременной терапии воспалительных заболеваний урогенитального тракта большое значение имеет точная и быстрая детекция возбудителей.
Для эффективной диагностики требуется одновременная детекция нескольких возбудителей в биологическом материале, полученном от пациента. Точность детекции достигается использованием современных методов молекулярной диагностики, таких, как секвенирование, а также методов, основанных на ПЦР. Системы для секвенирования нового поколения позволяют идентифицировать любое количество возбудителей в образце, однако низкая аналитическая чувствительность, особенно при анализе клинического материала, а также трудоемкость и высокая стоимость анализа (не менее 100 тыс. руб. за анализ одного образца) делают данный инструмент непригодным для применения в рутинной лабораторной диагностике [Desai A.N., Jere A. Next-generation sequencing: ready for the clinics? Clin Genet 2012; 81: 503-510].
В последние годы во всем мире ведутся различные научно-исследовательские работы по разработке методов одновременной идентификации нескольких возбудителей инфекций органов репродукции человека, основанных на мультиплексной ПЦР-амплификации с последующей детекцией продуктов методом гибридизации, гель-электрофореза или блоттинга на мембране [Zariffard M.R., Saifuddin М, Sha В.Е., Spear G.T. Detection of bacterial vaginosis-related organisms by real-time PCR for Lactobacilli, Gardnerella vaginalis and Mycoplasma hominis. FEMS Immunol. Med. Microbiol. 2002; 34 (4): 277-281; Muvunyi С.М., Dhont N., Verhelst R., et al. Evaluation of a new multiplex polymerase chain reaction assay STD finder for the simultaneous detection of 7 sexually transmitted disease pathogens. Diagnostic. Microbiol. Infect. Dis. 2011; 71 (1): 29-37; Menard J.P., Fenollar F., Henry M., Bretelle F., Raoult D. Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis. Clin. Infect. Dis. 2008; 47 (1): 33-43].
Для одновременной идентификации нескольких возбудителей предложены различные варианты мультиплексных тест-систем на основе ПЦР в реальном времени [Mackay I.M., Harnett G., Jeoffreys N. et al. Detection and discrimination of herpes simplex viruses, Haemophilus ducreyi, Treponema pallidum, and Calymmatobacterium (Klebsiella) granulomatis from genital ulcers. Clin. Inf. Dis. 2006; 42: 1431-1438; Mclver C.J., Rismanto N., Smith C, et al. Multiplex PCR testing detection of higher-than-expected rates of cervical Mycoplasma, Ureaplasma, and Trichomonas and viral agent infections in sexually active australian women. J. Clin. Microbiol. 2009; 47: 1358-1363; Suntoke T.R., Hardick A., Tobian A.A., et al. Evaluation of multiplex real-time PCR for detection of Haemophilus ducreyi, Treponema pallidum, herpes simplex virus type 1 and 2 in the diagnosis of genital ulcer disease in the Rakai District, Uganda. Sex. Trans. Inf. 2009; 85: 97-101].
К преимуществам методов, основанных на ПЦР, относится более высокая чувствительность по сравнению с микроскопическими исследованиями, возможность проводить исследования непосредственно с биологическим материалом, минуя стадию культивирования микроорганизма, скорость выполнения, возможность автоматизации и одновременного проведения большого количества исследований. Основным недостатком описанных к настоящему времени ПЦР-методов является возможность одновременного обнаружения лишь небольшой группы возбудителей, а также сложные процедуры проведения амплификации, включающие несколько стадий.
Разработаны различные коммерческие тест-системы (наборы реагентов) для одновременной диагностики двух и более возбудителей: наборы «Амплисенс» (ООО «ИнтерЛабСервис», Россия), Bio-Rad CT/NG/MG assay (США), Abbott RealTime CT/NG и APTIMA Combo 2 Assay (Abbott, США), Roche Cobas 4800 CT/NG assay (Roche, США), Anyplex II STI-7 assay (TOTEM technology, CШA), STI multiplex array (Randox, Ирландия), BD Probetec™ ET - CT/GC (Becton Dickinson, США). Анализ с их использованием обладает достаточно высокой чувствительностью (500-1000 клеток/мл), однако количество одновременно выявляемых возбудителей не всегда достаточно для точной постановки диагноза, когда возможно полимикробная этиология заболевания.
Описан лабораторный метод на основе мультиплексной ПЦР и реверсивного линейного блота для одновременной идентификации 14 микроорганизмов, включающих Т. vaginalis, S. pneumoniae, N. gonorrhoeae, С.trachomatis, U. parvum, U. urealyticum, G. vaginalis, H. influenzae, N. meningitidis, M. hominis, M. genitalium, аденовирус, HSV-1, HSV-2. Детекцию проводят методом блоттинга на мембране с использованием хемилюминесцентной реакции [Mckechnie M.L., Hillman R., Couldwell D. et al. Simultaneous identification of 14 genital microorganisms in urine by use of a multiplex PCR-based reverse line blot assay. J. Clin. Microbiol. 2009; 47: 1871-1877; McKechnie M.L, Kong F., Gilbert G.L. Simultaneous direct identification of genital microorganisms in voided urine using multiplex PCR-based reverse-line blot assays. Methods Mol. Biol. 2013; 943: 229-245]. Для проведения ГЩР сконструирована система праймеров, включающая специфические праймеры, направленные на высококонсервативные участки каждого из анализируемых микроорганизмов. К недостаткам данного метода следует отнести сложную систему для проведения ПЦР, состоящую из множества олигонуклеотидных праймеров.
Многопараметрический анализ биологических образцов достигается с применением технологии ДНК-микроматриц (микрочипов): массивов иммобилизованных на твердой фазе олигонуклеотидных зондов, способных специфично связываться с детектируемыми последовательностями. Идентификация микроорганизма осуществляется путем гибридизации зонда со специфическим участком ДНК микроорганизма.
В ФГБУ «Государственный научный центр дерматовенерологии и косметологии» Министерства здравоохранения РФ разработан и запатентован ДНК-чип для комплексной диагностики спектра патогенных, непатогенных и условно-патогенных микроорганизмов мочеполовой сферы человека, на котором производится детекция после проведения мультиплексной ПЦР [«ДНК-чип для комплексной диагностики инфекций, передаваемых половым путем», патент РФ на полезную модель 117431, приоритет от 05.11.2009; Лихарева В.В., Фриго Н.В., Рахматулина М.Р., Нурутдинова О.С., Шаталова Ю.А. Разработка ДНК-чипа для комплексной диагностики ИППП. Вестн. дерматол. венерол. 2009; 4: 49-57]. Микрочип предназначен для одновременной идентификации 28 микроорганизмов: 7 патогенов-возбудителей ИППП (N. gonorrhoeae, С. trachomatis, Т. pallidum, Т. vaginalis, М. genitalium, Herpes virus I, Herpes virus II), непатогенных {Lactobacillus spp.) и ряда условно-патогенных микроорганизмов - возбудителей инфекционных заболеваний мочеполовой сферы (в том числе U. urealyticum, М. hominis, G. vaginalis, Е. coli, труднокультивируемые анаэробные бактерии). ДНК-чип содержал иммобилизованные на твердой подложке олигонуклеотидные зонды, комплементарные двум вариабельным участкам гена, кодирующего 16S-субъединицу рибосомальной РНК, ген G3 белка Т. vaginalis и ген тимидинкиназы вируса простого герпеса I и II типа. ПЦР проводили с использованием двух пар праймеров, перекрывающих два участка гена 16S рРНК. В работе отмечается, что не для всех микроорганизмов достигалась хорошая чувствительность определения. Невысокая чувствительность, в частности, может быть связана с погрешностями при проведении мультиплексной ПЦР с использованием выбранных праймеров.
Способ видовой идентификации инфекционных агентов (вирусы герпеса нескольких типов, Streptococcus agalactiae и/или Streptococcus pyogenes, Streptococcus agalactiae, Gardnerella vaginalis, Mycoplasma hominis, Mycoplasma genitalium, Candida albicans, Ureaplasma urealyticum и/или Ureaplasma parvum, Trichomonas vaginalis, Neisseria gonorrhoeae, Chlamydia trachomatis), включающий проведение мультиплексной ПЦР с детекцией на микрочипе, запатентован также ЗАО «Молекулярно-медицинские технологии» [патент РФ №2348695, дата приоритета 23.05.2006, «Дифференцирующий и специфический олигонуклеотиды для идентификации последовательностей ДНК инфекционных агентов в биологических материалах, способ видовой идентификации инфекционных агентов, биочип и набор для осуществления этого способа»].
Для проведения многопараметрического анализа разработана технология хМАР, в которой анализ проводится с использованием суспензии флуоресцентно-маркированных микросфер. Описано проведение ПЦР с последующей детекцией на микросферах Luminex для анализа 18 микроорганизмов-возбудителей урогенитальных инфекций: Chlamydia trachomatis, Treponema pallidum, Trichomonas vaginalis, Neisseria gonorrhoeae, Mycoplasma genitalium, Herpes simplex virus 1 и 2 типа, M. hominis, M. pneumonia, M. spermatophilum, Ureaplasma urealyticum, U parvum, Atopobium vaginae и Gardnerella vaginalis, 3 вида Candida species и Lactobacillus species [Schmitt M., Depuydt C., Stalpaert M., Pawlita M. Bead-based multiplex sexually transmitted infection profiling, Journal of Infection. 2014; 69: 123-133]. В результате ПЦР получали биотинилированные фрагменты ДНК длинной 88-197 п.о., которые гибридизовали с микросферами, иммобилизованными на их поверхности олигонуклеотидных зондов. В этом случае ПЦР проводится в несколько стадий, и используется сложный набор праймеров для амплификации.
Таким образом, существующие в настоящее время способы, основанные на ПЦР, для одновременной идентификации нескольких возбудителей инфекций органов репродукции человека обладают существенными недостатками. В первую очередь, сложность процедуры проведения анализа, включающей две и более последовательные стадии амплификации в разных реакционных объемах, проводимые с использованием большого количества праймеров, что приводит к риску контаминации реакционных смесей ПЦР-продуктами и ложно-положительным результатам. Кроме того, реакция амплификации часто проводится отдельно для каждого микроорганизма или группы микроорганизмов, так как большинство известных ПЦР-методов дает возможность одновременного обнаружения лишь небольшой группы инфекционных агентов. Данные недостатки преодолеваются настоящим изобретением, предлагающим способ амплификации фрагментов геномов возбудителей инфекций органов репродукции человека, обеспечивающий их видовую идентификацию, который проводится в едином реакционном объеме и обладает устойчивостью к контаминации ПЦР-продуктами и высокой аналитической чувствительностью.
Таким образом, заявляемый способ не известен из уровня техники, т.е соответствует критерию «новизны».
Раскрытие изобретения
Задачей настоящего изобретения явилась разработка способа амплификации фрагментов геномов возбудителей инфекций органов репродукции человека, обладающего устойчивостью к контаминации ПЦР-продуктами и высокой аналитической чувствительностью при проведении исследования в едином реакционном объеме.
Технический результат от использования изобретения заключается в возможности одновременной амплификации фрагментов геномов возбудителей инфекций органов репродукции человека с их видовой идентификацией в клиническом материале пациентов при полимикробном течении заболевания, что позволяет точно и быстро установить этиологический агент заболевания. Способ выгодно отличается от известных из уровня техники методов проведения ПЦР тем, что позволяет проводить реакцию в едином реакционном объеме, при этом проводится общая, а не отдельная для каждого микроорганизма, реакция амплификации фрагмента гена 16S РНК, единого для всех микроорганизмов, что ускоряет и упрощает диагностику.
В результате амплификации, проводимой по данному способу, получают одноцепочечные фрагменты ДНК, которые можно анализировать секвенированием или гибридизацией на ДНК-микрочипах, содержащих соответствующие олигонуклеотидные зонды. Способ позволяет одновременно идентифицировать ДНК Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum в исследуемом образце. В способе используются по меньшей мере две пары праймеров, последовательности которых комплементарны последовательностям сегментов гена 16S рРНК возбудителей.
Способ осуществляется следующим образом
Клинический материал, полученный от пациента, исследуется последовательно:
1. Первый этап амплификации, в котором синтезируются двуцепочечные ПЦР-продукты, соответствующие фрагменту гена 16S рРНК, фланкированные первой парой праймеров, с использованием:
- ДНК возбудителей инфекций органов репродуктивного тракта человека в качестве матрицы для ПЦР;
- первой пары праймеров, последовательности которых комплементарны последовательностям консервативных сегментов гена 16S рРНК возбудителей инфекций;
- компонентов реакционной смеси, обеспечивающих наработку специфичных ПЦР-продуктов;
2. Второй этап амплификации, в котором синтезируются преимущественно одноцепочечные ПЦР-продукты, соответствующие фрагменту гена 16S рРНК, с использованием
- ПЦР-продуктов, полученных на предыдущей стадии, в качестве матрицы для ПЦР;
- второй пары праймеров, в которой последовательность прямого праймера идентична последовательности 3'-концевого фрагмента прямого праймера первой пары, а последовательность обратного праймера комплементарна последовательности консервативного сегмента гена 16S рРНК, локализованному внутри фрагмента гена 16S рРНК, фланкированного первой парой праймеров;
- компонентов реакционной смеси, обеспечивающих наработку ПЦР-продуктов.
Амплифицируемый фрагмент гена 16S рРНК включает соответствующий фрагмент геномов Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum.
В одном из своих воплощений способ характеризуется тем, что разница в температурах отжига первой и второй пары праймеров составляет не менее 10°С. В другом воплощении концентрации прямого и обратного праймеров второй пары в реакционной смеси могут различаться в 10 и более раз с целью получения преимущественно одноцепочечных ПЦР-продуктов.
Изобретением также предлагается набор олигонуклеотидных праймеров для осуществления способа амплификации фрагментов геномов возбудителей инфекций органов репродукции человека, причем последовательности праймеров представлены SEQ ID NO 1-4 (Таблица 1).
Figure 00000001
F1L и R1 - пары прямого и обратного праймеров, используемые на первой стадии ПЦР;
F1S и R2 - пары прямого и обратного праймеров, используемые на второй стадии ПЦР;
R=G или А; М=А или С;
Y=Т или С; В=G, или С, или Т;
S=G или С; D=А, или G, или Т;
W=А или Т; Н=А, или С, или Т;
К=G или Т; V=А, или G, или С;
N=А, или G, или С, или Т.
Далее изобретение раскрывается со ссылками на фигуры и примеры, которые приводятся с целью иллюстрации и пояснения сущности заявленного изобретения.
Осуществление изобретения
Целью настоящего изобретения является создание способа одновременной таргетной ПЦР-амплификации геномов возбудителей инфекций органов репродукции человека, включающих Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum, с целью одновременной идентификации возбудителей, а также набора олигонуклеотидных праймеров для осуществления способа. Схема мультиплексной ПЦР, используемой в способе, приведена на Фиг. 1.
Реакционная смесь для проведения ПЦР содержит по крайней мере две пары праймеров (прямого и обратного праймеров первой пары F1L и R1, прямого и обратного второй пары F1S и R2). Последовательности праймеров комплементарны последовательностям сегментов гена 16S рРНК возбудителей инфекций органов репродукции человека, причем для второй пары последовательность прямого праймера идентична последовательности 3'-концевого фрагмента прямого праймера первой пары, а последовательность обратного праймера комплементарна последовательности консервативного сегмента гена 16S рРНК, локализованному внутри фрагмента гена 16S рРНК, фланкированного первой парой праймеров. Последовательности праймеров приведены в Таблице 1.
Процедура амплификации по данному способу протекает в едином реакционном объеме и включает два этапа. На первом этапе амплификации с использованием ДНК возбудителей инфекций органов репродукции человека в качестве матрицы для ПЦР и первой пары праймеров синтезируются двуцепочечные ПЦР-продукты, соответствующие фрагменту гена 16S рРНК, фланкированные первой парой праймеров. На втором этапе в качестве матрицы для ПЦР используются ПЦР-продукты, полученные на первой стадии, и вторая пара праймеров. Разница в температурах отжига первой и второй пары праймеров составляет не менее, чем 10°С, например, 70-72°С для первой стадии и 50-55°С - для второй. Для того, чтобы процедура ПЦР могла происходить в одном реакционном объеме в две стадии, последовательности праймеров первой и второй пары выбраны таким образом, чтобы их температуры плавления различались не менее, чем на 10°С. Таким образом, на первом этапе в реакции принимают участие праймеры, имеющие высокую температуру плавления; на втором этапе при понижении температуры отжига в реакцию вступают праймеры второй группы.
Для получения преимущественно одноцепочечных ПЦР-продуктов концентрации прямого и обратного праймеров второй пары в реакционной смеси могут различаться в 10 и более раз. Наличие одноцепочечных фрагментов необходимо для проведения идентификации возбудителей путем гибридизации полученных ПЦР-продуктов на ДНК-микрочипах, содержащих в ячейках комплементарные им олигонуклеотидные зонды. Идентификация также может осуществляться с использованием секвенирования полученных фрагментов ДНК, а также любым способом, позволяющим проанализировать последовательности ДНК-фрагментов.
Изобретением также предлагается набор олигонуклеотидных праймеров, представленных последовательностями SEQ ID NO 1-4 (Таблица 1) для осуществления способа амплификации фрагментов геномов возбудителей инфекций органов репродукции человека, включающих Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum. Последовательности праймеров комплементарны последовательностям сегментов гена 16S рРНК возбудителей, что обеспечивает их одновременную идентификацию с использованием ПЦР по заявляемому способу.
Возможность практического использования заявляемого способа подтверждается, но не исчерпывается следующим примером.
Пример. Одновременная амплификация геномов возбудителей инфекций органов репродукции человека Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum и идентификация возбудителей с использованием ДНК-микрочипов.
а) Проведение ПЦР-амплификация геномов возбудителей инфекций органов репродукции человека.
Для проведения одновременной амплификация геномов возбудителей инфекций органов репродукции человека Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis Treponema pallidum использовали олигонуклеотидные праймеры, комплементарные последовательностям сегментов гена 16S рРНК возбудителей. Последовательности праймеров и их концентрации в реакционной смеси приведены в Таблице 1. Праймеры синтезировали на автоматическом синтезаторе 394 DNA/RNA synthesizer (Applied Biosystems, США).
Готовили реакционную смесь для проведения ПЦР, внося в пробирку следующие реагенты (из расчета на 1 реакцию):
- смесь праймеров в концентрациях, указанных в Таблице 1 1 мкл;
- буфер для HS-Taq полимеразы (ЗАО «Евроген, Россия) 3 мкл;
- HS-Taq-ДНК-полимераза (ЗАО «Евроген», Россия) 1 мкл;
- смесь дезоксинуклеозидтрифосфатов, 2 мМ каждый
(ЗАО «Силекс», Россия) 3 мкл;
- флуоресцентный субстрат IMD 515-дУТФ 1 мкМ
(ООО «БИОЧИП-ИМБ», Россия) 1 мкл;
- вода деионизованная 14 мкл;
Всего: 25 мкл.
Полученные ПЦР-продукты далее исследовали методом гибридизации на ДНК-чипах с флуоресцентной регистрацией результата, поэтому реакционная смесь содержала конъюгат флуоресцентного красителя IMD-515 (максимум поглощения 645 нм, максимум флуоресценции 670 нм) и дУТФ (дезоксиуридинтрифосфата) для получения флуоресцентно-меченных продуктов.
В пробирки с реакционной смесью вносили по 2,5 мкл раствора ДНК анализируемых образцов и добавляли по 2,5 мкл ДНК фага лямбда в качестве положительного контрольного образца. В пробирку с отрицательным контрольным образцом вносили 5 мкл деионизованной воды.
При проведении ПЦР использовали следующий температурно-временной режим: предварительная денатурация - 1 цикл (95°С - 4 мин), первый этап амплификации - 30 циклов (95°С - 30 с, 68°С - 30 с, 72°С - 30 с), второй этап амплификации - 30 циклов (95°С - 20 с, 53°С - 20 с, 72°С - 20 с), завершающая инкубация - 72°С - 5 мин.
Для оценки эффективности амплификации ПЦР-продукты, полученные с использованием процедуры ПЦР, заявляемой в настоящем способе, гибридизовали на ДНК-микрочипах, содержащих специфические олигонуклеотидные зонды.
б) Получение ДНК-микрочипов, содержащих элементы с олигонуклеотидными зондами, для идентификации возбудителей инфекций органов репродукции человека, процедура гибридизации на микрочипах и сканирование результатов гибридизации.
Схема размещения олигонуклеотидных зондов на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека приведена на фиг. 2, где М - ячейки, содержащие флуоресцентный краситель для обеспечения автоматической обработки результатов гибридизации; 0 - ячейки, не содержащие зондов (используются для вычисления фонового сигнала).
Подбор и подготовку олигонуклеотидных зондов, получение микрочипов осуществляли, как описано в работе: Лихарева В.В., Фриго Н.В., Рахматулина М.Р., Нурутдинова О.С., Шаталова, Ю.А. Разработка ДНК-чипа для комплексной диагностики ИППП, Вестн. дерматол. венерол., 2009; 4: 49-57. Для иммобилизации на чипе использовали зонды, соответствующие вариабельным областям гена 16S рДНК выбранных возбудителей. Специфичность зондов проверяли с помощью базы данных BLAST: не обнаружена гомология с ДНК человека, а также с другими микроорганизмами-возбудителями урогенитальных инфекций среди последовательностей, представленных в базе GenBank.
Для изготовления микрочипов использовали стеклянные микроскопные слайды, содержащие на поверхности активные альдегидные группы. Для нанесения олигонуклеотидных зондов на поверхность слайдов использовали комплекс-принтер для микропечати "XactII" (LabNext, США). После нанесения слайды обрабатывали растворами боргидрида натрия и додецилсульфата натрия для стабилизации зондов на поверхности микрочипа.
Для проведения гибридизации на микрочипах в каждую из пробирок, содержащую ПЦР-продукты, добавляли по 10 мкл раствора для проведения гибридизации (0,3 М HEPES, рН 7,5, 3,0 М гуанидинтиоцианата, 30 мМ ЭДТА), смеси перемешивали на вортексе в течение 5, и наносили на микрочипы. Микрочипы инкубировали в закрытом суховоздушном термостате при температуре +37°С в течение 1-1,5 ч. По окончании гибридизации микрочипы тщательно промывали дистиллированной водой, высушивали в струе воздуха и использовали для учета результатов.
Для регистрации полученных результатов на ДНК-чипе использовали лазерный сканер для биочипов "ScanArray" ("PerkinElmer, США) с программным обеспечением "ScanArrayExpress".
в) Результаты гибридизации ПЦР-продуктов, полученных при проведении амплификации, заявленной в настоящем способе, на ДНК-чипе.
ПЦР-амплификация по заявленному способу с использованием заявленного набора олигонуклеотидных праймеров (SEQ ID NO: 1-4) была проведена с образцами ДНК возбудителей инфекций органов репродукции человека Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum. Для выделения ДНК из образцов биологического материала использовали набор реагентов «ПРОБА-НК» (ООО «ДНК-технология, Россия). Наличие или отсутствие ДНК возбудителей в исследуемых образцах было установлено независимыми методами: стандартные методы исследования образцов биоматериала от пациентов с подозрением на инфекции, передаваемые половым путем (трепонемные тесты на сифилис, микроскопия, культуральное исследование), секвенирование ДНК.
Результаты гибридизации ПЦР-продуктов полученных с использованием ДНК-чипа представлены на Фиг. 3-16:
На фиг. 3 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа отрицательного контрольного образца.
На фиг. 4 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Neisseria gonorrhoeae.
На фиг. 5 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Treponema pallidum.
На фиг. 6 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Fusobacterium nucleatum и Gardnerella vaginalis.
На фиг. 7 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Streptococcus anginosus и Staphylococcus epidermidis.
На фиг. 8 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Ureaplasma parvum и Ureaplasma urealyticum.
На фиг. 9 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Mobiluncus mulieris и Ureaplasma urealyticum.
На фиг. 10 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Escherichia coli.
На фиг. 11 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Chlamydia trachomatis и Mycoplasma genitalium.
На фиг. 12 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Mycoplasma hominis.
На фиг. 13 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Bacteroides fragilis.
На фиг. 14 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Enterococcus faecalis.
На фиг. 15 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Trichomonas vaginalis.
На фиг. 16 представлены результаты гибридизации ПЦР-продуктов, полученных при проведении таргетной амплификации, заявленной в настоящем способе, на ДНК-чипе для идентификации возбудителей инфекций органов репродукции человека, после проведения анализа образцов, содержащих ДНК Atopobium vaginae и Ureaplasma urealyticum.
Таким образом, продемонстрировано, что предлагаемый способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров обеспечивает одновременную амплификацию ДНК возбудителей Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma parvum, Ureaplasma urealyticum, Atopobium vaginae, Enterococcus faecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, Treponema pallidum и их одновременную идентификацию в образце.
Аналитическую чувствительность идентификации ДНК возбудителей инфекций органов репродукции человека при проведении ПЦР по заявляемому способу (минимальное количество ДНК возбудителя в образце, при котором идентифицируется данный возбудитель) определяли методом последовательных разбавлений образцов, содержащих известное количество ДНК возбудителей. Аналитическая чувствительность для всех исследуемых возбудителей составила 500 геном-эквивалентов бактериальной ДНК.

Claims (10)

1. Способ одновременной амплификации фрагментов геномов возбудителей инфекций органов репродукции человека, включающих Treponema pallidum, Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma urealiticum parvum, Ureaplasma urealiticum T960, Atopobium vaginae, Enterococcus fecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, обеспечивающий видовую идентификацию возбудителей путем последующего анализа полученных ДНК-фрагментов, проводимый в едином реакционном объеме, с использованием по меньшей мере двух пар праймеров, последовательности которых комплементарны последовательностям сегментов гена 16S рРНК возбудителей, включающий:
а) первый этап амплификации, в котором синтезируются двуцепочечные ПЦР-продукты, соответствующие фрагменту гена 16S рРНК возбудителей, фланкированные первой парой праймеров, с использованием:
- ДНК возбудителей инфекций органов репродукции человека в качестве матрицы для ПЦР;
- первой пары праймеров, последовательности которых комплементарны последовательностям консервативных сегментов гена 16S рРНК возбудителей инфекций;
- компонентов реакционной смеси, обеспечивающих наработку специфичных ПЦР-продуктов;
б) второй этап амплификации, в котором синтезируются преимущественно одноцепочечные ПЦР-продукты, соответствующие фрагменту гена 16S рРНК, с использованием
- ПЦР-продуктов, полученных на стадии (а), в качестве матрицы для ПЦР;
- второй пары праймеров, в которой последовательность прямого праймера идентична последовательности 3'-концевого фрагмента прямого праймера первой пары, а последовательность обратного праймера комплементарна последовательности консервативного сегмента гена 16S рРНК, локализованному внутри фрагмента гена 16S рРНК, фланкированного первой парой праймеров; при этом разница в температурах отжига первой и второй пары праймеров составляет не менее чем 10°С, а концентрации прямого и обратного праймеров второй пары в реакционной смеси могут различаться в 10 и более раз с целью получения преимущественно одноцепочечных ПЦР-продуктов;
- компонентов реакционной смеси, обеспечивающих наработку ПЦР-продуктов.
2. Набор праймеров для осуществления способа амплификации фрагментов геномов возбудителей инфекций органов репродукции человека, включающих Treponema pallidum, Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Gardnerella vaginalis, Ureaplasma urealiticum parvum, Ureaplasma urealiticum T960, Atopobium vaginae, Enterococcus fecalis, Trichomonas vaginalis, Escherichia coli, Mobiluncus mulieris, Streptococcus anginosus, Fusobacterium nucleatum, Staphylococcus epidermidis, Bacteroides fragilis, по п. 1, причем последовательности праймеров представлены SEQ ID NO: 1-4.
RU2015150974A 2015-11-27 2015-11-27 Способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров RU2625006C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015150974A RU2625006C1 (ru) 2015-11-27 2015-11-27 Способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015150974A RU2625006C1 (ru) 2015-11-27 2015-11-27 Способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров

Publications (1)

Publication Number Publication Date
RU2625006C1 true RU2625006C1 (ru) 2017-07-11

Family

ID=59495185

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015150974A RU2625006C1 (ru) 2015-11-27 2015-11-27 Способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров

Country Status (1)

Country Link
RU (1) RU2625006C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717809C1 (ru) * 2018-10-26 2020-03-25 Общество с ограниченной ответственностью "ОНКОДИАГНОСТИКА АТЛАС" Компьютерно-реализуемый интегральный способ для оценки качества результатов таргетного секвенирования
CN111235290A (zh) * 2020-03-27 2020-06-05 东莞市厚街医院 一种厌氧菌液相芯片检测方法
CN111560476A (zh) * 2020-05-24 2020-08-21 广州奥百阕谱生物科技有限公司 母婴垂直传播的病原体检测试剂盒及其应用
RU2744443C1 (ru) * 2019-12-17 2021-03-09 Российская Федерация, от имени которой выступает Министерство здравохранения Российской Федерации Реагентно-программный комплекс для проведения таргетного анализа
RU2755538C1 (ru) * 2020-09-18 2021-09-17 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова" Министерства здравоохранения Российской Федерации Способ синтеза наборов олигонуклеотидов для ампликонного таргетного секвенирования
EP3980564A4 (en) * 2019-06-07 2023-06-28 Chapter Diagnostics, Inc. Methods and compositions for human papillomaviruses and sexually transmitted infections detection, identification and quantification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2329305C2 (ru) * 2001-03-01 2008-07-20 Дзе Джонс Хопкинс Юниверсити Количественный анализ, позволяющий одновременно обнаруживать и идентифицировать бактериальные инфекции
WO2015103710A1 (en) * 2014-01-13 2015-07-16 The Royal Institution For The Advancement Of Learning/Mcgill University Methods, reagents and kits for the assessment of bacterial infection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2329305C2 (ru) * 2001-03-01 2008-07-20 Дзе Джонс Хопкинс Юниверсити Количественный анализ, позволяющий одновременно обнаруживать и идентифицировать бактериальные инфекции
WO2015103710A1 (en) * 2014-01-13 2015-07-16 The Royal Institution For The Advancement Of Learning/Mcgill University Methods, reagents and kits for the assessment of bacterial infection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717809C1 (ru) * 2018-10-26 2020-03-25 Общество с ограниченной ответственностью "ОНКОДИАГНОСТИКА АТЛАС" Компьютерно-реализуемый интегральный способ для оценки качества результатов таргетного секвенирования
EP3980564A4 (en) * 2019-06-07 2023-06-28 Chapter Diagnostics, Inc. Methods and compositions for human papillomaviruses and sexually transmitted infections detection, identification and quantification
RU2744443C1 (ru) * 2019-12-17 2021-03-09 Российская Федерация, от имени которой выступает Министерство здравохранения Российской Федерации Реагентно-программный комплекс для проведения таргетного анализа
CN111235290A (zh) * 2020-03-27 2020-06-05 东莞市厚街医院 一种厌氧菌液相芯片检测方法
CN111235290B (zh) * 2020-03-27 2023-10-31 东莞市厚街医院 一种厌氧菌液相芯片检测方法
CN111560476A (zh) * 2020-05-24 2020-08-21 广州奥百阕谱生物科技有限公司 母婴垂直传播的病原体检测试剂盒及其应用
RU2755538C1 (ru) * 2020-09-18 2021-09-17 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова" Министерства здравоохранения Российской Федерации Способ синтеза наборов олигонуклеотидов для ампликонного таргетного секвенирования

Similar Documents

Publication Publication Date Title
RU2625006C1 (ru) Способ таргетной амплификации геномов возбудителей инфекций органов репродукции человека с целью одновременной идентификации возбудителей с набором праймеров
US10584392B2 (en) Method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
KR101317263B1 (ko) 리얼타임 pcr을 이용한 카바페넴 내성 장내균 검사 방법 및 키트
JP2010537650A (ja) 細菌及び真菌の検出方法
Schmitt et al. Bead-based multiplex sexually transmitted infection profiling
KR20080020475A (ko) 다중-중합효소연쇄반응에 의한 성전파질환 원인균 검출을위한 신규한 유형 특이적 프라이머와 이를 이용한 검출방법
JP2014501494A (ja) 核酸標的の定量的多重同定
RU2435853C1 (ru) ТЕСТ-СИСТЕМА ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ Streptococcus agalactiae В БИОЛОГИЧЕСКОМ МАТЕРИАЛЕ
KR20110105663A (ko) 멀티플렉스 리퀴드 어레이 시스템을 이용한 여성 생식기 병원체 검출 방법 및 키트
JP3194943B2 (ja) クリプトコックス・ネオホルマンスの検出に用いる核酸プローブおよび方法
Sun et al. A new multiplex genetic detection assay method for the rapid semi-quantitative detection of six common curable sexually transmitted pathogens from the genital tract
WO2021039777A1 (ja) 関節リウマチを検査する方法
KR101111621B1 (ko) 역의 상보서열의 특이 구조를 가진 고감도 프라이머를 이용한 오리엔티아 쯔쯔가무시 균의 검출법
RU2685188C2 (ru) Днк-чип для идентификации генетических детерминант антибиотикорезистентности возбудителей инфекций, приводящих к нарушению репродуктивных функций человека, набор олигонуклеотидов для иммобилизации на днк-чипе
JP2015057958A (ja) 核酸の定量方法、それに使用されるプライマーセット、dnaチップおよびアッセイキット、並びにそれを利用する常在菌の判定方法
RU2732626C1 (ru) Система олигонуклеотидных праймеров и зонда для выявления ДНК Mycoplasma bovigenitalium
Harley et al. Molecular characterisation of 12 Chlamydophila felis polymorphic membrane protein genes
JP2022025456A (ja) 多発性硬化症を検査する方法
RU2583001C1 (ru) Набор олигонуклеотидных праймеров и флуоресцентно-меченого зонда для идентификации днк возбудителей кокцидиоидомикоза coccidioides immitis и coccidioides posadasii
JP2023517464A (ja) 微生物を検出するためのマルチプレックスpcr方法およびその使用
Salisu et al. Molecular Techniques for Rapid Diagnosis of Infectious Livestock Diseases
Vitrenko et al. A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR
Hamed et al. Feasibility of a nested PCR for the diagnosis of vaginal trichomoniasis: study in Al-Madinah Al-Munwarrha, Saudi Arabia
JP2008054525A (ja) Chlamydophilacaviae(C.caviae)由来のDNAの増幅および検出法
RU2595398C1 (ru) Набор реагентов для выявления днк neisseria gonorrhoeae и его применение

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171128

NF4A Reinstatement of patent

Effective date: 20181101

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200110

Effective date: 20200110

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201128

NF4A Reinstatement of patent

Effective date: 20220207