RU2624310C2 - Способ переработки эмульсии, полученной при гидрометаллургическом извлечении металла - Google Patents

Способ переработки эмульсии, полученной при гидрометаллургическом извлечении металла Download PDF

Info

Publication number
RU2624310C2
RU2624310C2 RU2015102968A RU2015102968A RU2624310C2 RU 2624310 C2 RU2624310 C2 RU 2624310C2 RU 2015102968 A RU2015102968 A RU 2015102968A RU 2015102968 A RU2015102968 A RU 2015102968A RU 2624310 C2 RU2624310 C2 RU 2624310C2
Authority
RU
Russia
Prior art keywords
phase
liquid phase
density
decanter
organic phase
Prior art date
Application number
RU2015102968A
Other languages
English (en)
Other versions
RU2015102968A (ru
Inventor
Ульрих ХОРБАХ
Йенс КРАМЕР
Торе ХАРТМАН
Original Assignee
Геа Меканикал Эквипмент Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Геа Меканикал Эквипмент Гмбх filed Critical Геа Меканикал Эквипмент Гмбх
Publication of RU2015102968A publication Critical patent/RU2015102968A/ru
Application granted granted Critical
Publication of RU2624310C2 publication Critical patent/RU2624310C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0484Controlling means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Centrifugal Separators (AREA)
  • Colloid Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Изобретение относится к способу обработки эмульсии, полученной при гидрометаллургическом извлечении металла. В способе центробежной переработки эмульсии, содержащей твердые вещества, полученной при гидрометаллургическом извлечении металла, повторная обработка имеет место в по меньшей мере одном трехфазном декантере (1) для получения первой более легкой жидкой фазы (5), второй жидкой фазы (6) и твердой фазы (7). Способ характеризуется этапами определения действительного значения плотности первой жидкой фазы (5), сравнения действительного значения с заданным значением плотности первой жидкой фазы (5) и установкой давления истечения первой жидкой фазы в качестве функции заданного параметра в зависимости от сравнения определенного действительного/желаемого значения. Техническим результатом изобретения является улучшение способа обработки эмульсии и улучшение способа гидрометаллургического извлечения металла. 4 з.п. ф-лы, 7 ил.

Description

Изобретение относится к способу обработки эмульсии, полученной при гидрометаллургическом извлечении металла, в соответствии с п. 1.
При гидрометаллургическом извлечении металлов эмульсию, содержащую твердые вещества, получают на границе фаз между органической фазой и водной фазой на этапе экстракции растворителем. Данная эмульсия, содержащая твердые вещества, влияет на эффективность способа гидрометаллургического извлечения, поскольку эмульсия формирует относительно большую часть по сравнению с органической фазой и водной фазой и может быть достаточно сложно отделима при помощи средств обычного осаждения в осадочных чанах, предложенных для данной задачи. Примеси в эмульсии дополнительно присутствуют как в органической фазе, так и при дальнейших этапах способа до раствора электролита, из-за этого срок службы катода при электрохимическом извлечении металла снижен, и определение рН раствора электролита становится проблематичным. Аналогично примеси появляются в водной фазе при экстракции растворителем, так что данная фаза не может быть быстро восстановлена из выщелачивающего раствора.
В WO 2006/133804 раскрыто применение декантера для трехфазного отделения эмульсии при гидрометаллургическом извлечении металла. Для регуляции зоны разделения и/или глубины отстойника в бочке давление изменяют в кольцевой камере, в которой расположена очистная пластина. Линия подачи жидкости, через которую жидкость, например газ, может быть введен из наружных отверстий в кольцевую камеру. Данный тип установки/регуляции зоны разделения и/или глубины отстойника найден полезным, но должен быть дополнительно оптимизирован.
Таким образом, задача настоящего изобретения предложить улучшенный способ обработки эмульсии, полученной при гидрометаллургическом извлечении и разработать улучшенный способ гидрометаллургического извлечения металла.
Изобретение достигает указанного технического результата за счет признаков по п. 1.
Изобретение предлагает способ центробежной обработки эмульсии, содержащей твердые вещества, полученной при гидрометаллургическом извлечении металла, где обработку выполняют в по меньшей мере одном декантере (шнековая центрифуга), для получения первой более легкой жидкой фазы, второй жидкой фазы и твердой фазы, характеризующийся следующими этапами:
i) определение действительного значения плотности первой жидкой фазы,
ii) сравнение действительного значения с заданным параметром, в частности с заданным значением плотности, и
iii) установка давления истечения первой жидкой фазы в качестве функции заданного параметра.
Таким образом, выполняют регуляцию зоны разделения в качестве функции плотности первой жидкой фазы или осуществляют в такой последовательности, что время удержания данной фазы в декантере оптимизировано так, что фазу разгружают с хорошим удалением твердых веществ.
Первая жидкая фаза может в результате всегда быть рециркулирована в гидрометаллургическом способе в виде растворителя для экстракции растворителем. В то же время, вторая жидкая фаза также может быть выгружена из декантера с небольшой контаминацией твердыми веществами и может быть рециркулирована в виде выщелачивающего раствора для гидрометаллургического способа. При относительно высоких концентрациях ионов металлов первая жидкая фаза, предпочтительно в качестве органической фазы, также может быть подана для обратной экстракции с целью достижения максимизации выхода металла при гидрометаллургическом способе извлечения. В обоих случаях эффективность гидрометаллургического способа повышена. Кроме того, растворители, примененные при гидрометаллургическом способе, могут быть восстановлены в значительной степени.
Выполняют разделение фаз для получения первой жидкой фазы, второй жидкой фазы и твердой фазы. Предпочтительно проводят установку давления истечения в линии оттока очистной пластины для удаления первой фазы. С этой целью плотность первой жидкой фазы определяют в качестве действительного значения и сравнивают с по меньшей мере одним заданным значением. Если действительное значение отклоняется от заданного значения, изменяют давление истечения первой жидкой фазы.
Регуляцию предпочтительно осуществляют таким образом, что система регулирует связанное давление согласно минимальной плотности.
Предпочтительные воплощения изобретения представляют собой сущность зависимых пунктов формулы изобретения.
В случае чрезмерного неожиданного повышения давления истечения, часть органической фазы может быть удалена вместе с водной фазой из декантера. Чтобы этого избежать, предпочтительно определить дополнительный параметр способа и установить его на предопределенное заданное значение. На это, например, можно влиять за счет определения выхода, проводимости и/или чистоты органической фазы и/или водной фазы.
Вышеописанный способ также применим в качестве части способа для гидрометаллургического извлечения металла, предпочтительно включающего следующие этапы:
A) обеспечение металлической руды;
B) выщелачивание металлической руды для получения водного или глинистого раствора, содержащего ионы металлов;
C) экстракцию растворителем для переноса ионов металла в фазу органического растворителя;
D) обратную экстракцию ионов металлов с добавлением раствора электролита в фазу органического растворителя; и
E) электрохимическое извлечение металла.
Эмульсию, содержащую твердые вещества, получают в течение экстракции растворителем и их обрабатывают одним из вышеописанных способов. Обработка эмульсии улучшает эффективность способа гидрометаллургического извлечения. Флуктуации, вызванные негомогенной композицией металлической руды, в частности за счет изменения пропорций силикатов или песка, влияют на эффективность способа гидрометаллургического извлечения лишь в незначительной степени.
Предпочтительные воплощения изобретения представляют собой сущность зависимых пунктов формулы изобретения.
Для достижения эффективного способа работы, в частности, преимуществом является то, что жидкие фазы, восстановленные из эмульсии, могут быть рециркулированы в виде органического растворителя или выщелачивающей жидкости для способа экстракции, так что становится возможным наиболее безопасный для окружающей среды и экономичный способ работы.
Предпочтительный вариант изобретения проиллюстрирован ниже при помощи графических материалов.
Краткое описание графических материалов
Фигура 1: схематическое изображение гидрометаллургического способа извлечения металла;
Фигура 2: схематическое изображение подобласти декантера для обработки эмульсии;
Фигура 3: схематическое изображение рабочего состояния с относительно низким давлением истечения в линии оттока ниже очистной пластины декантера;
Фигура 4: схематическое изображение рабочего состояния с повышенным давлением истечения по сравнению с фиг. 3;
Фигуры 5-7: различные графики для иллюстрации основных взаимосвязей для обработки эмульсии.
Фигура 1 показывает иллюстративную схему технологического потока для гидрометаллургического извлечения металла.
Исходя из обеспечения металлической руды на этапе А, например руды, содержащей медь, никель или кобальт, выщелачивание металлической руды сначала выполняют на этапе В. Выщелачивающий раствор добавляют на данном этапе. Это приводит к по меньшей мере частичному растворению ионов металлов. Выщелачивающий раствор предпочтительно представляет собой водный раствор.
После выщелачивания проводят экстракцию растворителем на этапе С. На данном этапе к выщелачивающему раствору предпочтительно добавляют органический растворитель для получения двухфазной системы, состоящей из органической фазы и водной фазы, но в которой эмульсию, содержащую твердые вещества, получают на границе фаз из-за примесей. Обработка описана более детально ниже со ссылкой на фигуры 2-7.
После ионы металлов переносят в органическую фазу, обратную экстракцию выполняют на этапе D за счет добавления водного раствора электролита с органической фазой, способной к восстановлению так, чтобы ее можно было повторно использовать в предшествующей экстракции растворителем.
После экстракции растворителем и обратной экстракции электрохимическое восстановление и возможно дополнительную переработку металла М выполняют на этапе Е, принимая в расчет потенциал осаждения соответствующего металла.
Фигура 2 иллюстрирует предпочтительный путь обработки эмульсии, которую получают при экстракции растворителем в течение гидрометаллургического извлечения металла, как показано на фигуре 1.
Особым предпочтением является применение декантера, в частности трехфазного декантера, для обработки эмульсии.
В случае трехфазного декантера 1, показанного на фигуре 2, эмульсию 2 подлежащую обработке, вводят через подающую трубу 4 в передней части декантера 3 бочки 16.
Данную эмульсию 2 разделяют в центрифугирующей части бочки 16 декантера 1 на органическую фазу 5, водную фазу 6 и фазу твердых веществ 7. Формируют диаметр зоны разделения Т и глубину отстойника или диаметр глубины отстойника TD.
Органическую фазу 5 отбирают из декантера 1 через очистную пластину 8 при помощи вала очистной пластины и линии оттока 9, расположенной ниже данного насоса (не показан).
Более тяжелую водную фазу 6, способом примера, отбирают радиально из передней части декантера 3 через выход 19, собирают в пространство для сбора 10 и оттуда отбирают из декантера.
Фазу твердых веществ 7 предпочтительно перемещают при помощи винта 17 сбоку от бочки 16 напротив выхода для органической фазы 5 и отбирают из бочки 16 (не показана).
Перегородка 11, через которую органическая фаза 5 течет к очистной пластине 8, расположена в передней части бочки 3.
Для сравнения, перегородка 18 служит в качестве выпуска излишка водной фазы 6 в предпочтительно радиальный выход из предпочтительно радиального выхода из бочки 16.
Для установки зоны разделения или диаметра зоны разделения Т (см. также фигуры 3 и 4) в декантере 1 переключают клапан 12, установленный в линии оттока 9; данный клапан 12 может контролироваться за счет регуляции устройства 13 для регуляции клапана 12 в качестве функции параметра способа, в частности в качестве функции давления органической фазы.
Данное регулирующее устройство 13 обладает по меньшей мере одним средством для определения параметра способа. Предпочтительные средства для определения параметра способа представляют собой предпочтительно средства для измерения плотности 14, в частности для измерения плотности органической фазы 5.
В случае отклонения плотности от заданного параметра (предпочтительно фиксированное или вариабельное заданное значение плотности, которое отражает максимальную контаминацию органической фазы 5) или заданного значения плотности, ассоциированного с ним, степень регулирования значения 12 изменяют соответствующим образом.
Повышенное регулирование клапана 12 приводит к менее легкой фазе 5, подлежащей отбору, в результате чего диаметр зоны разделения Т в бочке 16 декантера перемещают кнаружи и в тоже время глубину отстойника DT радиально повышают в направлении вовнутрь.
Регуляция давления истечения, связанная с регуляцией клапана 12, обуславливает перемещение зоны разделения Т в декантере в качестве функции плотности органической фазы. Повышение в плотности органической фазы эквивалентно повышению контаминации данной фазы. Определение плотности дает возможность детектировать контаминацию органической фазы простым образом. Фиксированное или вариабельное заданное значение плотности дает более высокий предел возможной контаминации. В случае его превышения предпринимают меры противодействия для снижения плотности, например, изменение давления истечения в линии оттока 9. Определение плотности, таким образом, делает возможным автоматическую адаптацию способа работы декантера при непрерывной эксплуатации.
Фигура 3 демонстрирует возможное состояние декантера 1, в котором клапан 12 (не показан) не регулируют или регулируют лишь незначительно. В данном состоянии органическая фаза присутствует только в очень небольшом количестве.
В случае существенного повышения контаминации органической фазы данную повышенную контаминацию определяют за счет средств, представленных на фигуре 2 для измерения плотности 14, например, в линии оттока 9, и клапан 12 впоследствии регулируют для повышения давления истечения. Повышенное давление истечения перемещает зону разделения Т кнаружи, так что меньшее количество твердых веществ присутствует в области выхода органической фазы и водной фазы. Кроме того, диаметр зоны отстойника TD передвигается радиально вовнутрь. Фигура 4 показывает состояние декантера 1 в случае более значительного регулирования давления клапана 12 по сравнению с фигурой 3, в этом состоянии давление истечения повышено, что приводит к смещению зоны разделения Т дополнительно кнаружи и глубины отстойника TD вовнутрь.
График на фигуре 5 схематично демонстрирует зависимость отношения диаметра зоны разделения Т/диаметра бочки от отношения глубины отстойника Td/диаметра бочки.
График на фигуре 6 описывает зависимость плотности контаминированной органической фазы от степени контаминации. Чистая органическая фаза обладает плотностью 845 кг/м3. Однако данная плотность повышается в дальнейшем, предпочтительно линейно, с увеличением контаминации. В качестве непосредственного заключения преобладающая контаминация может быть выявлена за счет определения плотности органической фазы.
Такой график определяют экспериментально. Давление истечения, которое, в частности, является преимуществом при заданной контаминации, также определяют в эксперименте. Такое взаимодействие затем может быть сохранено в компьютере и применено для определения давления истечения для установки.
Таким образом, график на фигуре 7 демонстрирует зависимость диаметра зоны разделения Т от давления в очистной пластине или центростремительном насосе, забирающем жидкость по периферии и выдающем ее у оси, в результате регуляции клапана 12.
Можно увидеть, что в случае когда давление, создаваемое насосом, повышается, диаметр зоны разделения Т повышается в направлении кнаружи. Повышение диаметра зоны разделения Т соответствует повышению объема органической фазы в бочке и таким образом, повышению времени удержания, т.е. времени необходимому органической фазе для прохождения через декантер.
Повышение диаметра зоны разделения Т таким образом также приводит к более высокой чистоте органической фазы. Адаптация давления истечения, и ассоциированного с этим диаметра зоны разделения Т в качестве функции измеренной плотности органической фазы может быть выполнена в реальном времени при непрерывном способе.
Однако в случае значительного повышения давления истечения, например, в результате большого снижения объема оттока органической фазы, органическую фазу, обладающую высокой чистотой, получают, но в данном случае органическая фаза теряется в течение отбора водной фазы. Таким образом, твердые вещества также иногда теряются. В данном случае может быть выполнено дополнительное определение и корректировка выхода, проводимости и чистоты органической фазы или возможно также водной фазы. Выход, например, может быть определен при помощи средств измерения объема потока 15, приведенных на фигуре 2, расположенных в области выхода органической фазы.
Следует отметить, что приемлемые средства для измерения плотности известны специалистам в области техники. Могут быть упомянуты оптические способы (пропускание света через фазу: повышение мутности показывает повышение плотности). Более того, могут быть применены другие приемлемые средства для измерения плотности. Измерение плотности предпочтительно выполняют непрерывно, например, на продукте, выходящем из линии оттока 9.
Эксперименты проводили при помощи декантерной модели центрифуги DCE 345-02,32 от GEA WESTFALIA GROUP GMBH, Oelde, Германия.
Номера позиций
1. Декантер
2. Эмульсия
3. Передняя часть декантера
4. Подающая труба
5. Органическая фаза
6. Водная фаза
7. Твердая фаза
8. Очистная пластина
9. Линия оттока
10. Пространство для сбора
11. Перегородка
12. Клапан
13. Регулятор
14. Средства для измерения плотности
15. Средства для измерения объема потока
16. Бочка
17. Винт
18. Перегородка сливного отверстия
19. Выход
Этап А: обеспечение металлической руды
Этап В: выщелачивание
Этап С: экстракция растворителем
Этап D: обратная экстракция
Этап Е: электрохимическое извлечение
Этап F: обработка эмульсии
М металл
Т зона разделения
Td глубина отстойника

Claims (8)

1. Способ центробежной обработки эмульсии, содержащей твердые вещества, полученной при гидрометаллургическом извлечении металла, где обработку проводят в по меньшей мере одном трехфазном декантере (1) для получения первой более легкой жидкой фазы (5), второй жидкой фазы (6) и твердой фазы (7), где указанная первая жидкая фаза (5) обладает более низкой плотностью, чем вторая жидкая фаза (6), характеризующийся следующими этапами:
i) определение действительного значения плотности первой жидкой фазы (5),
ii) сравнение действительного значения с заданным параметром, в частности заданным значением плотности, и
iii) установка давления истечения первой жидкой фазы в качестве функции заданного параметра.
2. Способ по п. 1, отличающийся тем, что установку давления истечения осуществляют путем регулирования клапана (12) в линии оттока (9) ниже очистной пластины (8) для отбора первой жидкой фазы (5) из декантера.
3. Способ по п. 1, отличающийся тем, что обработку выполняют с получением органической фазы (5), водной фазы (6) и твердой фазы (7), где органическая фаза (5) представляет собой первую жидкую фазу и водная фаза (6) представляет собой вторую жидкую фазу.
4. Способ по п. 1, отличающийся тем, что помимо плотности определяют дополнительный параметр регуляции и принимают его в расчет при установке давления истечения.
5. Способ по п. 4, отличающийся тем, что выход, проводимость и/или чистоту первой жидкой фазы (5) и/или второй жидкой фазы (6) используют в качестве дополнительного параметра регуляции.
RU2015102968A 2012-07-02 2013-06-26 Способ переработки эмульсии, полученной при гидрометаллургическом извлечении металла RU2624310C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012105828.8A DE102012105828A1 (de) 2012-07-02 2012-07-02 Verfahren zur Aufarbeitung einer bei der hydrometallurgischen Gewinnung eines Metalls gebildeten Emulsion
DE102012105828.8 2012-07-02
PCT/EP2013/063331 WO2014005889A1 (de) 2012-07-02 2013-06-26 Verfahren zur aufarbeitung einer bei der hydrometallurgischen gewinnung eines metalls gebildeten emulsion

Publications (2)

Publication Number Publication Date
RU2015102968A RU2015102968A (ru) 2016-08-20
RU2624310C2 true RU2624310C2 (ru) 2017-07-03

Family

ID=48700560

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015102968A RU2624310C2 (ru) 2012-07-02 2013-06-26 Способ переработки эмульсии, полученной при гидрометаллургическом извлечении металла

Country Status (15)

Country Link
US (1) US20150152518A1 (ru)
EP (1) EP2866945B1 (ru)
JP (1) JP2015528854A (ru)
KR (1) KR20150032317A (ru)
CN (1) CN104507583A (ru)
AR (1) AR091645A1 (ru)
AU (1) AU2013286114B2 (ru)
BR (1) BR112014032969B1 (ru)
CA (1) CA2876564C (ru)
DE (1) DE102012105828A1 (ru)
LT (1) LT2866945T (ru)
MX (1) MX357670B (ru)
RU (1) RU2624310C2 (ru)
SG (1) SG11201408819YA (ru)
WO (1) WO2014005889A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829352B1 (ja) * 2015-07-31 2015-12-09 三菱化工機株式会社 排ガススクラバー用の遠心分離機及びその運転方法
CN110721824A (zh) * 2019-11-18 2020-01-24 江苏同泽过滤科技有限公司 一种卧式螺旋沉降离心机中的溢流深度调节装置
WO2024107008A1 (ko) * 2022-11-17 2024-05-23 기초과학연구원 회전 반응기를 이용하여 금속 혼합물을 분리하는 방법, 및 회전 반응기를 이용하여 금속 혼합물을 분리하기 위한 반응 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229434A (ja) * 1995-02-24 1996-09-10 Mitsubishi Kakoki Kaisha Ltd スクリュウ型デカンタ及びその制御方法
US6143183A (en) * 1995-12-01 2000-11-07 Baker Hughes Incorporated Method and apparatus for controlling and monitoring continuous feed centrifuge
RU2207387C2 (ru) * 2001-07-04 2003-06-27 Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" Способ экстракционного извлечения металлов из руд и концентратов
WO2006133804A1 (de) * 2005-06-14 2006-12-21 Westfalia Separator Ag Drei-phasen-vollmantel-schneckenzentrifuge und verfahren zur regelung des trennprozesses
DE102008051499A1 (de) * 2008-10-13 2010-04-15 Gea Westfalia Separator Gmbh Verfahren zur Reduzierung des Pülpegehaltes von pülpehaltigen Fruchtsäften

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167402A (en) * 1960-01-04 1965-01-26 Petrolite Corp Processing of ores
DE10336350B4 (de) * 2003-08-08 2007-10-31 Westfalia Separator Ag Vollmantel-Schneckenzentrifuge, mit Schälscheibe
GB0724572D0 (en) * 2007-12-17 2008-01-30 Specialist Process Technologie A separation device
CN101428876B (zh) * 2008-12-02 2010-09-29 大庆油田有限责任公司 高速碟片式三相离心机在处理三元复合驱采出水中的应用
SE535959C2 (sv) * 2010-01-29 2013-03-05 Alfa Laval Corp Ab System innefattande centrifugalseparator samt metod för kontroll av detsamma
US9126207B2 (en) * 2010-04-22 2015-09-08 Specialist Process Technologies Limited Separator for separating a multiphase mixture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229434A (ja) * 1995-02-24 1996-09-10 Mitsubishi Kakoki Kaisha Ltd スクリュウ型デカンタ及びその制御方法
US6143183A (en) * 1995-12-01 2000-11-07 Baker Hughes Incorporated Method and apparatus for controlling and monitoring continuous feed centrifuge
RU2207387C2 (ru) * 2001-07-04 2003-06-27 Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" Способ экстракционного извлечения металлов из руд и концентратов
WO2006133804A1 (de) * 2005-06-14 2006-12-21 Westfalia Separator Ag Drei-phasen-vollmantel-schneckenzentrifuge und verfahren zur regelung des trennprozesses
DE102008051499A1 (de) * 2008-10-13 2010-04-15 Gea Westfalia Separator Gmbh Verfahren zur Reduzierung des Pülpegehaltes von pülpehaltigen Fruchtsäften

Also Published As

Publication number Publication date
EP2866945A1 (de) 2015-05-06
SG11201408819YA (en) 2015-01-29
EP2866945B1 (de) 2018-03-28
CA2876564C (en) 2020-03-31
BR112014032969A2 (pt) 2017-06-27
WO2014005889A1 (de) 2014-01-09
DE102012105828A1 (de) 2014-01-02
US20150152518A1 (en) 2015-06-04
KR20150032317A (ko) 2015-03-25
MX2014015525A (es) 2015-04-09
JP2015528854A (ja) 2015-10-01
AU2013286114B2 (en) 2018-02-15
MX357670B (es) 2018-07-18
CN104507583A (zh) 2015-04-08
AU2013286114A1 (en) 2015-01-15
LT2866945T (lt) 2018-05-25
AR091645A1 (es) 2015-02-18
RU2015102968A (ru) 2016-08-20
CA2876564A1 (en) 2014-01-09
BR112014032969B1 (pt) 2020-11-03

Similar Documents

Publication Publication Date Title
JP5735006B2 (ja) 遠心分離装置を具備するシステムおよびそのシステムを制御する方法
RU2624310C2 (ru) Способ переработки эмульсии, полученной при гидрометаллургическом извлечении металла
AU2017398212B2 (en) Method and arrangement for controlling a dewatering process
JP2015528854A5 (ru)
RU2013120494A (ru) Способ разделения фаз продукта с помощью центрифуги
JP4592934B2 (ja) 分離板型遠心分離機及びその運転方法
SG191158A1 (en) Slurry management device for wire saw
JP5327159B2 (ja) 汚泥濃縮脱水システム及びその制御方法
EP3668624B1 (en) Methods and systems for enhanced dissolved gas floatation
RU2458161C1 (ru) Способ переработки сульфидных золотосодержащих флотоконцентратов
JP6856438B2 (ja) 遠心分離装置
JP6834710B2 (ja) エマルジョン破壊方法
JP5493841B2 (ja) 電解加工装置
RU2241517C2 (ru) Способ уменьшения размера ступеней для процесса экстракции растворителем и ячейка для использования в процессе экстракции растворителем
Efimovich et al. DISCRETE CONTROL OF THICKENER SLUDGE DISCHARGE
CN202226688U (zh) 一种轧钢废水除油设备
RU2685104C1 (ru) Ионообменный аппарат (варианты)
JP2018012860A (ja) 有機溶媒中の不純物除去方法および不純物除去設備
CN105936555A (zh) 餐厨垃圾除油方法
CN115869776A (zh) 过滤系统的控制方法、装置及过滤系统
JP2005021856A (ja) 晶析反応槽に種晶を導入する方法
JP2021058890A (ja) 油水廃液を減容する方法
JPH04361821A (ja) 循環水系における補給水制御装置
RU2343110C9 (ru) Способ автоматического управления процессом жидкостной очистки экстракционной фосфорной кислоты трибутилфосфатом
Hartmann et al. TREATMENT OF HYDRONIET PROCESSING CRUDE USING DECANTER CENIRIFUGE