RU2620774C1 - Способ измерения массового расхода жидких сред - Google Patents
Способ измерения массового расхода жидких сред Download PDFInfo
- Publication number
- RU2620774C1 RU2620774C1 RU2016118016A RU2016118016A RU2620774C1 RU 2620774 C1 RU2620774 C1 RU 2620774C1 RU 2016118016 A RU2016118016 A RU 2016118016A RU 2016118016 A RU2016118016 A RU 2016118016A RU 2620774 C1 RU2620774 C1 RU 2620774C1
- Authority
- RU
- Russia
- Prior art keywords
- frequency
- signal
- flow rate
- calculated
- difference
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред заключается в том, что радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой смешивают с частью падающей волны, выделяют сигнал их разности и вычисляют спектральную плотность этого сигнала. Дополнительно к этому частоту генератора модулируют по симметричному пилообразному закону от до спектральные плотности сигнала разностной частоты вычисляют отдельно на растущем - и падающем участке несущей частоты - вычисляют их взаимно-корреляционную функцию и модуль разности массовый расход определяют по частотному сдвигу, соответствующему максимуму взаимно-корреляционной функции, и по частоте вычисляемой из условия равенства где b - диапазон частот, определяемый из возможной полосы частот сигнала. Технический результат - повышение точности. 5 ил.
Description
Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.
В настоящее время известны и применяется много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, с.133-144). Эти способы не предполагают применение элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя скорости потока в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущейся жидкости и поступают на приемную антенну с частотой , отличной от частоты зондирующей волны на доплеровскую частоту Неоднородностями в измеряемой жидкой среде при этом могут быть газовые и твердые включения, а также другие жидкости, обладающие электрофизическими параметрами ε, отличными от контролируемого вещества. Направления движения неоднородностей образуют различные углы с направлением этой волны, которая также распространяется не по прямой, как в идеальном случае, а в соответствии со своей диаграммой направленности. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, средняя доплеровская частота связана со средней скоростью потока V по формуле
где α - угол между направлением излучения и потоком в трубе, - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, c - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость V потока, можно определить массовый расход
где P - площадь поперечного сечения потока на измерительном участке. Подставив значение V из выражения (1) в (2), получим выражение для среднего массового расхода
Как видно из формулы (3), для точного измерения среднего массового расхода необходимо оценивать изменения в диэлектрической проницаемости среды и функционально с ней связанной плотностью контролируемого потока. Изменения этих параметров приводят к погрешностям в измерении и, как следствие, к недостаточной точности.
Известно техническое решение, принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, с.136-137) - способ измерения расхода жидкости, заключающийся в том, что радиоволна с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженная волна с частотой смешивается с частью падающей волны и выделяется доплеровский сигнал их разности со средней частотой а по этой частоте в соответствии с формулой (2) определяется расход. Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через герметичное радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала по максимуму его спектральной плотности определялась средняя доплеровская частота, по которой оценивался расход в соответствии с формулой (3).
Данный способ имеет существенные недостатки. Во-первых, для точного измерения массового расхода необходимо оценивать изменения в диэлектрической проницаемости среды и функционально с ней связанной плотностью контролируемого потока в соответствии с формулой (3). Во-вторых, спектральная плотность доплеровского сигнала за счет отражений от неоднородностей в потоке под разными углами имеет сложную форму, и ее максимум может не совпадать со средней доплеровской частотой, что приводит к ошибкам в определении скорости потока.
Техническим результатом изобретения является повышение точности измерения.
Технический результат достигается тем, что в способе измерения массового расхода жидких сред, радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой смешивают с частью падающей волны, выделяют сигнал их разности и вычисляют спектральную плотность этого сигнала. Дополнительно к этому частоту генератора модулируют по симметричному пилообразному закону от до спектральные плотности сигнала разностной частоты вычисляют отдельно на растущем - и падающем участке несущей частоты - вычисляют их взаимно-корреляционную функцию и модуль разности массовый расход определяют по частотному сдвигу, соответствующему максимуму взаимно-корреляционной функции, и по частоте вычисляемой из условия равенства , где b - диапазон частот, определяемый из возможной полосы частот сигнала.
Предлагаемый способ поясняется работой устройства, реализующего способ.
На фиг. 1 представлена структурная схема устройства.
На фиг. 2 изображены временные диаграммы сигналов на выходах генератора СВЧ и смесителя при симметричной пилообразной частотной модуляции.
На фиг. 3 представлены огибающие спектров сигналов разностной частоты в относительных величинах при нулевой скорости потока - и при скорости потока V в моменты роста и спада частоты на выходе генератора СВЧ, соответственно и
На фиг. 4 изображена взаимно-корреляционная функция между этими огибающими и в относительных величинах.
Устройство содержит частотный модулятор 1, генератор СВЧ 2, направленный ответвитель 3, циркулятор 4, приемо-передающую антенну 5, смеситель 6, коммутирующий блок 7, первый блок спектральной обработки 8, второй блок спектральной обработки 9, блок вычисления взаимной корреляции 10, блок вычисления частоты 11 и вычислительный блок 12 (см. фиг. 1).
Устройство работает следующим образом. Частотный модулятор 1 пилообразным симметричным напряжением линейно модулирует частоту генератора СВЧ 2 в диапазоне где и его начальная и конечная частота (см. кривая 1 на фиг. 2). Сначала за время TM частота растет от до затем за это же время линейно уменьшается от до Соответственно в это время с помощью коммутирующего блока 7, управляемого от генератора пилообразного напряжения 1, сигнал с выхода смесителя 6 обрабатывается блоками спектральной обработки 8 и 9. Электромагнитные колебания от генератора СВЧ поступают на первый, опорный вход смесителя напрямую через дополнительный вывод направленного ответвителя 3. Другая часть электромагнитных колебаний через основной вывод направленного ответвителя и циркулятор 4 направляется антенной 5 через диэлектрическое окно 13 на измерительном участке трубопровода 14 под углом α навстречу направлению потока, затем после отражений от неоднородностей, присутствующих в потоке, принимаются этой же антенной и поступают через циркулятор на второй вход смесителя. При отсутствии движения в потоке при V=0, на выходе смесителя образуется сигнал биений согласно формуле
где - девиация частоты, TM - полупериод модуляции, D - расстояние в виде спектра гармоник конечной ширины (см. фиг. 3), одинаковый для растущего и падающего участка (см. кривая 2 на фиг. 2а). При наличии движения потока со скоростью V к сигналу биений добавляется спектр доплеровкой составляющей в соответствии с формулой (1), также в виде спектра гармоник конечной ширины. При этом на растущем участке модуляции частоты суммарного спектра растут, а на падающем - уменьшаются на частоту соответственно и (см. фиг. 2 и 3). Эти спектры вычисляются в блоках 8 и 9, после чего поступают на блок 10, где вычисляется их взаимно-корреляционная функция в относительных единицах (см. фиг. 4). Частотный сдвиг, соответствующий максимуму этой функции - , будет в точности соответствовать удвоенной доплеровской частоте, поэтому
Одновременно спектры и поступают в блок 11 вычисления частоты биений для спектра который соответствует скорости потока V=0. Эта частота фактически является осью симметрии между спектрами и (см. фиг. 2 и 3), поэтому процедура вычисления будет следующей. Сначала определяется модуль разности спектров а затем находится частота путем перебора в диапазоне спектров и до соблюдения условия
где b - диапазон частот, определяемый из возможной ширины полосы частот сигнала биений и доплеровских частот, связанных с возможными скоростями потока. Т.е. площадь суммарного спектра справа и слева от точки должны быть равны (см. фиг. 5). Далее в итоговом вычислительном блоке 12 по значению вычисляется диэлектрическая проницаемость из формулы (4)
и функционально связанная с ней плотность ρ и затем с использованием от блока 10 происходит вычисление расхода среды в соответствии с формулой (3), где в данном случае будет равна средней частоте несущей.
Таким образом, точность определения массового расхода сред увеличивается по сравнению с прототипом за счет увеличения точности в определении доплеровской частоты и частоты биений. Способ позволяет компенсировать влияние на точность измерения наличие конечного нестабильного спектра в доплеровском сигнале и в сигнале биений, возникающего по причинам наличия конечных диаграмм направленности антенн, турбулентности отражающих неоднородностей в потоке.
Claims (1)
- Способ измерения массового расхода жидких сред, заключающийся в том, что радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой смешивают с частью падающей волны, выделяют сигнал их разности, вычисляют спектральную плотность этого сигнала, отличающийся тем, что частоту генератора модулируют по симметричному пилообразному закону от до , спектральные плотности сигнала разностной частоты вычисляют отдельно на растущем - и падающем участке несущей частоты - , вычисляют их взаимно-корреляционную функцию и модуль разности , массовый расход определяют по частотному сдвигу, соответствующему максимуму взаимно-корреляционной функции, и по частоте , вычисляемой из условия равенства , где b - диапазон частот, определяемый из возможной полосы частот сигнала.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016118016A RU2620774C1 (ru) | 2016-05-10 | 2016-05-10 | Способ измерения массового расхода жидких сред |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016118016A RU2620774C1 (ru) | 2016-05-10 | 2016-05-10 | Способ измерения массового расхода жидких сред |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2620774C1 true RU2620774C1 (ru) | 2017-05-29 |
Family
ID=59032219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016118016A RU2620774C1 (ru) | 2016-05-10 | 2016-05-10 | Способ измерения массового расхода жидких сред |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2620774C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2654926C1 (ru) * | 2017-08-18 | 2018-05-23 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Способ измерения массового расхода жидких и сыпучих сред |
RU2654929C1 (ru) * | 2017-08-18 | 2018-05-23 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Устройство для измерения массового расхода жидких и сыпучих сред |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1257409A1 (ru) * | 1984-08-27 | 1986-09-15 | Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) | Устройство дл измерени массового расхода вещества |
JPH08285649A (ja) * | 1995-04-10 | 1996-11-01 | Tokimec Inc | 電波流速計 |
RU2003105535A (ru) * | 2003-02-25 | 2004-09-10 | Михаил Николаевич Бирюков (RU) | Корреляционный способ измерения расхода текучих сред |
-
2016
- 2016-05-10 RU RU2016118016A patent/RU2620774C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1257409A1 (ru) * | 1984-08-27 | 1986-09-15 | Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) | Устройство дл измерени массового расхода вещества |
JPH08285649A (ja) * | 1995-04-10 | 1996-11-01 | Tokimec Inc | 電波流速計 |
RU2003105535A (ru) * | 2003-02-25 | 2004-09-10 | Михаил Николаевич Бирюков (RU) | Корреляционный способ измерения расхода текучих сред |
Non-Patent Citations (1)
Title |
---|
Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, с. 136-137. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2654926C1 (ru) * | 2017-08-18 | 2018-05-23 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Способ измерения массового расхода жидких и сыпучих сред |
RU2654929C1 (ru) * | 2017-08-18 | 2018-05-23 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Устройство для измерения массового расхода жидких и сыпучих сред |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013510295A (ja) | デジタル制御されたuwbミリメートル波レーダー | |
KR101239166B1 (ko) | Fmcw 근접 센서 | |
US7958786B2 (en) | Flow measurement system and method using enhanced phase difference detection | |
US7852091B2 (en) | Microwave determination of location and speed of an object inside a pipe | |
RU2620774C1 (ru) | Способ измерения массового расхода жидких сред | |
RU2334995C1 (ru) | Доплеровский измеритель путевой скорости | |
US20120146838A1 (en) | Method & Device for Measuring a Change in Distance | |
JP5932746B2 (ja) | 媒質境界の位置計測システム | |
RU2620779C1 (ru) | Устройство для измерения массового расхода жидких сред | |
WO1994017373A1 (en) | Procedure for determining material flow rate | |
RU2504739C1 (ru) | Устройство для определения уровня жидкости в емкости | |
RU2611440C1 (ru) | Доплеровский измеритель путевой скорости | |
RU2585320C1 (ru) | Устройство для измерения массового расхода жидких и сыпучих сред | |
SU1257409A1 (ru) | Устройство дл измерени массового расхода вещества | |
RU2597666C1 (ru) | Способ измерения массового расхода жидких сред | |
RU2504740C1 (ru) | Способ измерения уровня жидкости в емкости | |
RU2601273C1 (ru) | Устройство для измерения массового расхода жидких сред | |
RU2654926C1 (ru) | Способ измерения массового расхода жидких и сыпучих сред | |
RU2654929C1 (ru) | Устройство для измерения массового расхода жидких и сыпучих сред | |
RU2601538C1 (ru) | Устройство для измерения массового расхода жидких сред | |
RU2551260C1 (ru) | Бесконтактный радиоволновый способ определения уровня жидкости в емкости | |
RU2597663C1 (ru) | Радиоволновое устройство для измерения скорости потока жидких сред | |
JP7396630B2 (ja) | 測距装置および測距方法 | |
RU2611336C1 (ru) | Способ измерения массового расхода жидких и сыпучих сред | |
JP6066551B2 (ja) | 管内を流れる粉体または流体の濃度または流量の測定方法、並びにそのための測定装置 |