RU2601538C1 - Устройство для измерения массового расхода жидких сред - Google Patents

Устройство для измерения массового расхода жидких сред Download PDF

Info

Publication number
RU2601538C1
RU2601538C1 RU2015120420/28A RU2015120420A RU2601538C1 RU 2601538 C1 RU2601538 C1 RU 2601538C1 RU 2015120420/28 A RU2015120420/28 A RU 2015120420/28A RU 2015120420 A RU2015120420 A RU 2015120420A RU 2601538 C1 RU2601538 C1 RU 2601538C1
Authority
RU
Russia
Prior art keywords
output
mixer
input
microwave generator
inputs
Prior art date
Application number
RU2015120420/28A
Other languages
English (en)
Inventor
Дмитрий Владиленович Хаблов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2015120420/28A priority Critical patent/RU2601538C1/ru
Application granted granted Critical
Publication of RU2601538C1 publication Critical patent/RU2601538C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя. Дополнительно устройство содержит делитель мощности на 4, входом соединенный с выходом первого генератора СВЧ, первым выходом соединенный с входом первого смесителя, вторым выходом соединенный с входом циркулятора, передающую и приемную антенны, направленные через радиопрозрачные окна в трубопроводе навстречу друг другу и перпендикулярно направлению потока, второй, третий и четвертый смеситель, второй генератор СВЧ и соединенный с его выходом делитель мощности на 2, выходы которого соединены с первыми входами второго и третьего смесителей, управляющий блок, при этом вторые входы второго и третьего смесителей соединены соответственно с четвертым выходом делителя мощности на 4 и с приемной антенной, а их выходы - с входами четвертого смесителя, выход которого соединен с управляющим входом первого генератора СВЧ через управляющий блок. Технический результат - повышение точности измерения. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.
В настоящее время известны и применяется много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения скорости потока из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 133-144 с.). Эти способы не предполагают применение элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя скорости потока в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущейся жидкости и поступают на приемную антенну с частотой
Figure 00000001
, отличной от частоты
Figure 00000002
зондирующей волны на частоту
Figure 00000003
. Неоднородностями в измеряемой жидкой среде при этом могут быть газовые и твердые включения, а также другие жидкости, обладающие электрофизическими параметрами ε, отличными от таковых для контролируемого вещества. Направления движения неоднородностей образуют различные углы с направлением этой волны. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, средняя доплеровская частота
Figure 00000004
связана со средней скоростью потока
Figure 00000005
по формуле:
Figure 00000006
где α - угол между направлением излучения и потоком в трубе,
Figure 00000007
- длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, c - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость ν потока, можно определить массовый расход:
Figure 00000008
где S - площадь поперечного сечения потока на измерительном участке. Подставив значение
Figure 00000009
из выражения (1) в (2), получим выражение для среднего массового расхода
Figure 00000010
Известно техническое решение - доплеровский расходомер, содержащий генератор СВЧ, направленный ответвитель, циркулятор, приемо-передающую антенну, смеситель, полосовой фильтр, регистрирующее устройство, по технической сущности наиболее близкое к предлагаемому устройству и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 136-137 с.). Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через герметичное радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала, по максимуму спектральной плотности которого определялась средняя доплеровская частота, по которой оценивался расход в соответствии с формулой (3).
Данное измерительное устройство имеет существенный недостаток. Из формулы (1) следует, что скорость потока
Figure 00000011
- зависит от диэлектрической проницаемости среды, которая в реальных условиях может постоянно меняться из-за изменений химического состава и температуры. Это приводит к погрешности в измерении скорости потока и, следовательно, расхода.
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат достигается тем, что устройство для измерения расхода жидких сред содержит первый генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя. Дополнительно устройство содержит делитель мощности на 4, входом соединенный с выходом первого генератора СВЧ, первым выходом соединенный с входом первого смесителя, вторым выходом соединенный с входом циркулятора, передающую и приемную антенны, направленные через радиопрозрачные окна в трубопроводе навстречу друг другу и перпендикулярно направлению потока, второй, третий и четвертый смесители, второй генератор СВЧ и соединенный с его выходом делитель мощности на 2, выходы которого соединены с первыми входами второго и третьего смесителей, управляющий блок, при этом вторые входы второго и третьего смесителей соединены соответственно с четвертым выходом делителя мощности на 4 и с приемной антенной, а их выходы - с входами четвертого смесителя, выход которого соединен с управляющим входом первого генератора СВЧ через управляющий блок.
Предлагаемое устройство поясняется чертежом, где представлена его структурная схема.
Устройство содержит генератор СВЧ 1, делитель мощности на 4 - 2, смеситель 3, циркулятор 4, приемо-передающую антенну 5, передающую антенну 6 и приемную антенну 7, смесители 8, 9 и 10, второй генератор СВЧ 11, делитель мощности на 2 - 12, управляющий блок 13 и вычислительный блок 14.
Устройство работает следующим образом.
Электромагнитные колебания, поступающие от генератора СВЧ 1 с частотой
Figure 00000012
, делятся на 4 части с помощью делителя мощности 2, после чего поступают с его первого выхода на вход первого смесителя 3, а со второго выхода, через циркулятор 4, - на приемо-передающую антенну 5, затем излучаются через герметичное радиопрозрачное окно 15 в трубопроводе 17 под углом α к направлению потока. На второй вход смесителя через циркулятор поступают электромагнитные волны, отраженные от потока и принятые антенной 5. В результате, на выходе смесителя формируется доплеровский сигнал, который обрабатывается в вычислительном блоке, где по максимуму спектральной плотности определяется средняя доплеровская частота (см. формулу (1)), которая зависит как от частоты СВЧ излучения
Figure 00000013
, так и от диэлектрической проницаемости среды распространения ε. Одновременно, с третьего выхода делителя мощности 2 электромагнитные СВЧ-колебания поступают на антенну 6, откуда излучаются через радиопрозрачное окно 16 в трубопроводе 17, перпендикулярно направлению потока, прошедшие волны принимаются антенной 7 и поступают на второй вход смесителя 9. Также на второй вход смесителя 8 приходят СВЧ-волны напрямую с четвертого выхода делителя мощности 2. На первые входы смесителей 8 и 9 поступают СВЧ-колебания от генератора СВЧ 11 с опорной частотой
Figure 00000014
через делитель мощности 12. Волна, прошедшая через трубу, будет задержана на время
Figure 00000015
, где D - расстояние между антеннами, равное диаметру трубы. При соответствующей настройке можно добиться состояния, когда волна, поступающая на смеситель 9, будет запаздывать относительно волны на входе смесителя 8 ровно на величину tзад. Соответственно, волны на выходе этих смесителей, равные колебаниям разностной частоты
Figure 00000016
, также будут смещены на то же время. Поскольку оба этих сигнала поступают на входы смесителя 10, на его выходе формируется фазовый сдвиг
Figure 00000017
Значение фазы φ поступает на вход управляющего блока, который формирует напряжение, подстраивающее частоту генератора СВЧ 1
Figure 00000018
таким образом, чтобы поддерживать нулевой фазовый сдвиг. В этом случае, подставив в формулу (4) φ=2π, получим значение ε:
Figure 00000019
Таким образом, в результате работы устройства, флуктуации величины ε не будут влиять на измеренное значение скорости потока, поскольку они будут нивелироваться изменениями частоты СВЧ-генератора 1 -
Figure 00000020
, т.е. произведение
Figure 00000021
будет оставаться неизменным (см. формулу (4)). Выбор частоты генератора СВЧ 2
Figure 00000022
определяется из необходимости поддержания однозначности соответствия диэлектрической проницаемости среды и фазы согласно формуле (6) внутри возможного диапазона ее изменения: ε-Δε≤ε≤ε+Δε при текущем значении диаметра трубопровода D.

Claims (1)

  1. Устройство для измерения расхода жидких сред, содержащее первый генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя, отличающееся тем, что содержит делитель мощности на 4, входом соединенный с выходом первого генератора СВЧ, первым выходом соединенный с входом первого смесителя, вторым выходом соединенный с входом циркулятора, передающую и приемную антенны, направленные через радиопрозрачные окна в трубопроводе навстречу друг другу и перпендикулярно направлению потока, второй, третий и четвертый смесители, второй генератор СВЧ и соединенный с его выходом делитель мощности на 2, выходы которого соединены с первыми входами второго и третьего смесителей, управляющий блок, при этом вторые входы второго и третьего смесителей соединены соответственно с четвертым выходом делителя мощности на 4 и с приемной антенной, а их выходы - с входами четвертого смесителя, выход которого соединен с управляющим входом первого генератора СВЧ через управляющий блок.
RU2015120420/28A 2015-05-29 2015-05-29 Устройство для измерения массового расхода жидких сред RU2601538C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015120420/28A RU2601538C1 (ru) 2015-05-29 2015-05-29 Устройство для измерения массового расхода жидких сред

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015120420/28A RU2601538C1 (ru) 2015-05-29 2015-05-29 Устройство для измерения массового расхода жидких сред

Publications (1)

Publication Number Publication Date
RU2601538C1 true RU2601538C1 (ru) 2016-11-10

Family

ID=57278158

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120420/28A RU2601538C1 (ru) 2015-05-29 2015-05-29 Устройство для измерения массового расхода жидких сред

Country Status (1)

Country Link
RU (1) RU2601538C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU896418A1 (ru) * 1980-05-29 1982-01-07 Ордена Ленина Институт Проблем Управления Устройство дл измерени массового расхода жидких и сыпучих сред
SU1257409A1 (ru) * 1984-08-27 1986-09-15 Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) Устройство дл измерени массового расхода вещества

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU896418A1 (ru) * 1980-05-29 1982-01-07 Ордена Ленина Институт Проблем Управления Устройство дл измерени массового расхода жидких и сыпучих сред
SU1257409A1 (ru) * 1984-08-27 1986-09-15 Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) Устройство дл измерени массового расхода вещества

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Викторов В.А., Лункин Б.В., Совлуков А.С.Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 136-137 с.. *

Similar Documents

Publication Publication Date Title
EP1926991B1 (en) Systems and methods for measuring multiphase flow in a hydrocarbon transporting pipeline
AU2011295673B2 (en) Multiphase fluid characterization system
CN100439870C (zh) 用于确定多相流体成分的流量的方法和流量计
US11841255B2 (en) Systems, methods, and apparatus to measure multiphase flows
CN104677437A (zh) 一种超声波液相流量精确化测量方法
Takamoto et al. New measurement method for very low liquid flow rates using ultrasound
US7852091B2 (en) Microwave determination of location and speed of an object inside a pipe
RU2334995C1 (ru) Доплеровский измеритель путевой скорости
RU2620774C1 (ru) Способ измерения массового расхода жидких сред
RU2585320C1 (ru) Устройство для измерения массового расхода жидких и сыпучих сред
RU2620779C1 (ru) Устройство для измерения массового расхода жидких сред
RU2601538C1 (ru) Устройство для измерения массового расхода жидких сред
RU2597666C1 (ru) Способ измерения массового расхода жидких сред
WO1994017373A1 (en) Procedure for determining material flow rate
RU2504739C1 (ru) Устройство для определения уровня жидкости в емкости
RU2601273C1 (ru) Устройство для измерения массового расхода жидких сред
RU2597663C1 (ru) Радиоволновое устройство для измерения скорости потока жидких сред
RU2654929C1 (ru) Устройство для измерения массового расхода жидких и сыпучих сред
RU2654926C1 (ru) Способ измерения массового расхода жидких и сыпучих сред
RU2611255C1 (ru) Радиоволновый расходомер
CN108496075B (zh) 用于确定介质特性的方法和用于确定介质特性的设备
RU2611336C1 (ru) Способ измерения массового расхода жидких и сыпучих сред
CN109799247B (zh) 基于微波传输时间的两相流相含率检测装置及方法
RU2659821C1 (ru) Измеритель путевой скорости и угла сноса летательного аппарата
US3097526A (en) fischbacher

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200530