RU2611336C1 - Способ измерения массового расхода жидких и сыпучих сред - Google Patents

Способ измерения массового расхода жидких и сыпучих сред Download PDF

Info

Publication number
RU2611336C1
RU2611336C1 RU2015152256A RU2015152256A RU2611336C1 RU 2611336 C1 RU2611336 C1 RU 2611336C1 RU 2015152256 A RU2015152256 A RU 2015152256A RU 2015152256 A RU2015152256 A RU 2015152256A RU 2611336 C1 RU2611336 C1 RU 2611336C1
Authority
RU
Russia
Prior art keywords
frequency
flow rate
wave
mass flow
radio
Prior art date
Application number
RU2015152256A
Other languages
English (en)
Inventor
Дмитрий Владиленович Хаблов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2015152256A priority Critical patent/RU2611336C1/ru
Application granted granted Critical
Publication of RU2611336C1 publication Critical patent/RU2611336C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных сред. Cпособ измерения массового расхода жидких сред заключается в том, что радиоволна с частотой
Figure 00000023
направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности x(t) со средней частотой
Figure 00000024
. Дополнительно часть мощности радиоволны с частотой
Figure 00000023
направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности y(t) со средней частотой
Figure 00000024
, массовый расход определяется по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности. Технический результат – повышение точности. 3 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных сред.
В настоящее время известны и применяются много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения скорости потока из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 133-144 с.). Эти способы не предполагают применения элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущегося вещества и поступают на приемную антенну с частотой
Figure 00000001
, отличной от частоты
Figure 00000002
зондирующей волны на частоту
Figure 00000003
. Неоднородностями вещества при этом могут быть частицы сыпучего материала, газовые и твердые включения в жидкости, твердые частицы и капли жидкости в потоке газа, обладающие электрофизическими параметрами ε, отличными от таковых для контролируемого вещества. Направления движения неоднородностей образуют различные углы с направлением этой волны. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, средняя доплеровская частота
Figure 00000004
связана со средней скоростью потока
Figure 00000005
по формуле:
Figure 00000006
где α - угол между направлением излучения и потоком в трубе,
Figure 00000007
- длина волны в среде измерения, а εэф - ее эффективная диэлектрическая проницаемость, с - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость
Figure 00000005
потока, можно определить средний массовый расход:
Figure 00000008
где S - площадь поперечного сечения потока на измерительном участке.
Как видно из формул, на точность определения расхода влияют изменения в плотности и диэлектрической проницаемости среды.
Измерение массового расхода возможно при использовании симметричной частотной модуляции зондирующих волн и определении суммы и разности разностных частот, зондирующих и отраженных (рассеянных) волн от движущегося вещества (его неоднородностей), соответствующих возрастанию и убыванию частоты зондирующей волны (SU 896418, 07.01.82). Такой метод используется в радиолокации для измерения скорости движущегося объекта и расстояния до него. В этом случае удается получить независимые выражения для эффективной диэлектрической проницаемости среды и скорости потока, при некотором эффективном расстоянии
Figure 00000009
между приемо-передающей системой и движущейся средой, что при известной функциональной зависимости между плотностью среды и ε позволяет оценить ее реальный массовый расход. Недостатком данного метода является сложность конструкции, высокая стоимость широкополосных систем с частотной модуляцией и недостаточная точность из-за зависимости
Figure 00000009
от состава среды и ее неоднородностей.
Известно техническое решение, принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 136 - 137 с.) - способ измерения расхода жидкости, заключающийся в том, что радиоволна с частотой
Figure 00000010
направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженная волна с частотой
Figure 00000011
смешивается с частью падающей волны и выделяется доплеровский сигнал их разности со средней частотой
Figure 00000012
, а по этой частоте, в соответствии с формулой (2), определяется расход. Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через герметичное радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала, по максимуму спектральной плотности которого определялась средняя доплеровская частота, оценивался расход в соответствии с формулой (3). Недостатком этого устройства является зависимость с одной стороны скорости потока от эффективной диэлектрической проницаемости среды εэф согласно формуле (1), а с другой стороны еще и зависимость массового расхода от плотности среды по формуле (2), что снижает точность измерения. Также на точность измерения влияют вибрационные шумы и другие наводки, присутствующие при применении способа в реальной ситуации.
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат достигается тем, что в способе измерения массового расхода жидких сред радиоволна с частотой
Figure 00000002
направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности x(t) со средней частотой
Figure 00000012
. Дополнительно часть мощности радиоволны с частотой
Figure 00000002
направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности y(f) со средней частотой
Figure 00000012
, массовый расход определяется по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности.
Предлагаемый способ поясняется чертежом, где на Фиг. 1 представлена структурная схема устройства, его реализующая, а на Фиг. 2 и Фиг. 3 - временные диаграммы работы устройства.
Устройство содержит генератор СВЧ 1, делитель мощности 2, циркуляторы 3 и 4, приемопередающие антенны 5 и 6, смесители 7 и 8, вычислительный блок 9 (см. Фиг. 1).
Устройство работает следующим образом.
Электромагнитные колебания генератора СВЧ 1 с частотой
Figure 00000002
делятся на четыре части в делителе мощности 2, после чего поступают через циркуляторы 3 и 4 на приемопередающие антенны 5, 6 и на опорные входы смесителей 7 и 8. Излучение СВЧ через радиопрозрачное окно 10 в трубопроводе 11 проникает внутрь и отражается от неоднородностей присутствующих в потоке. Эти отраженные волны принимаются антеннами 5, 6 и через циркуляторы 3, 4 попадают на измерительные входы смесителей 7 и 8. С выходов смесителей доплеровские сигналы x(t) и y(f) (см. Фиг. 2а и Фиг. 2б) поступают в вычислительный блок 9. Поскольку расстояние между антеннами равно L, то эти сигналы имеют временную задержку относительно друг друга на время τm прохождения потоком этого отрезка пути. Для этого в блоке 9 вычисляют взаимно-корреляционную Rxy функцию двух этих доплеровских сигналов x(t) и y(t) (см. Фиг. 2б) по формуле:
Figure 00000013
При необходимом времени интегрирования Т, Rxy имеет максимальное значение тогда, когда временной сдвиг между функциями x(t) и y(t) равен времени перемещения τm неоднородностей в потоке между двумя антеннами. Средняя скорость потока определится по формуле:
Figure 00000014
Также в блоке 9 по двум доплеровским сигналам x(t) и y(t) вычисляется их взаимный спектр плотности мощности (ВСПМ), максимальное значение которого будет соответствовать доплеровской частоте
Figure 00000012
(см. Фиг. 3). При этом поскольку сигналы поступают в блок 9 через антенны с временным сдвигом, а вибрационные и шумовые акустические наводки воспринимаются антеннами одновременно, то результат обработки - ВСПМ будет мало восприимчив к ним. Таким образом, получив уточненное значение
Figure 00000012
и вставив в формулу (1) значение
Figure 00000005
из формулы (4), получим:
Figure 00000015
Для жидких и сыпучих сред существует функциональная зависимость между плотностью ρ и эффективной диэлектрической проницаемостью εэф, в некоторых случаях эта зависимость выражается аналитически. Так, для неполярных диэлектрических жидкостей (жидкий азот, водород, метан и др.) эта связь выражается уравнением Клаузиуса-Мосотти. При небольших изменениях для большинства сред можно считать, что плотность ρ пропорциональна εэф, т.е.
Figure 00000016
, где K - коэффициент пропорциональности. В итоге, с учетом этого выражения, формул (5) и (4), формула (2) для массового расхода преобразуется в следующее выражение, зависящее только от
Figure 00000012
и τm:
Figure 00000017
На Фиг. 2 и Фиг. 3 представлены результаты расчета нефтяного потока при L=0,1 м,
Figure 00000018
, α=30°. Получаем, что при τm=89 мс,
Figure 00000019
, скорость потока
Figure 00000020
и εэф=2,2.
Таким образом, данное устройство, реализующее предлагаемый способ, позволяет повысить точность массового расхода среды за счет вычисления времени максимума τm взаимной корреляционной функции двух доплеровских сигналов, а также частоты максимума их взаимного спектра плотности мощности
Figure 00000012
.

Claims (1)

  1. Способ для измерения массового расхода жидких и сыпучих сред, состоящий в том, что радиоволну с частотой
    Figure 00000021
    направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока среды, отраженные волны с частотой смешивают с частью падающей волны и выделяют доплеровский сигнал их разности x(t) со средней частотой
    Figure 00000022
    , отличающийся тем, что часть мощности радиоволны с частотой
    Figure 00000021
    направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешивают с частью падающей волны и выделяют доплеровский сигнал их разности y(t) со средней частотой
    Figure 00000022
    , а массовый расход определяют по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности.
RU2015152256A 2015-12-07 2015-12-07 Способ измерения массового расхода жидких и сыпучих сред RU2611336C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015152256A RU2611336C1 (ru) 2015-12-07 2015-12-07 Способ измерения массового расхода жидких и сыпучих сред

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015152256A RU2611336C1 (ru) 2015-12-07 2015-12-07 Способ измерения массового расхода жидких и сыпучих сред

Publications (1)

Publication Number Publication Date
RU2611336C1 true RU2611336C1 (ru) 2017-02-21

Family

ID=58458888

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152256A RU2611336C1 (ru) 2015-12-07 2015-12-07 Способ измерения массового расхода жидких и сыпучих сред

Country Status (1)

Country Link
RU (1) RU2611336C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU896418A1 (ru) * 1980-05-29 1982-01-07 Ордена Ленина Институт Проблем Управления Устройство дл измерени массового расхода жидких и сыпучих сред
SU1257409A1 (ru) * 1984-08-27 1986-09-15 Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) Устройство дл измерени массового расхода вещества
JPH08285649A (ja) * 1995-04-10 1996-11-01 Tokimec Inc 電波流速計
RU2247947C1 (ru) * 2003-12-30 2005-03-10 Андрейчиков Борис Иванович Способ измерения покомпонентного расхода трехкомпонентного газожидкостно-твердотельного потока и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU896418A1 (ru) * 1980-05-29 1982-01-07 Ордена Ленина Институт Проблем Управления Устройство дл измерени массового расхода жидких и сыпучих сред
SU1257409A1 (ru) * 1984-08-27 1986-09-15 Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) Устройство дл измерени массового расхода вещества
JPH08285649A (ja) * 1995-04-10 1996-11-01 Tokimec Inc 電波流速計
RU2247947C1 (ru) * 2003-12-30 2005-03-10 Андрейчиков Борис Иванович Способ измерения покомпонентного расхода трехкомпонентного газожидкостно-твердотельного потока и устройство для его осуществления

Similar Documents

Publication Publication Date Title
US7908930B2 (en) Systems and methods for measuring multiphase flow in a hydrocarbon transporting pipeline
AU2011295673B2 (en) Multiphase fluid characterization system
US7389187B2 (en) Apparatus and method using an array of ultrasonic sensors for determining the velocity of a fluid within a pipe
US7712380B2 (en) Waveguide doppler flowmeter
US11841255B2 (en) Systems, methods, and apparatus to measure multiphase flows
US7610816B2 (en) Flow measurement device
US12104936B2 (en) Apparatus for measuring multiphase fluid flows and related methods
JP3026223B2 (ja) 材料の水分含有量の測定方法および装置
RU2585320C1 (ru) Устройство для измерения массового расхода жидких и сыпучих сред
WO1994017373A1 (en) Procedure for determining material flow rate
RU2620779C1 (ru) Устройство для измерения массового расхода жидких сред
RU2620774C1 (ru) Способ измерения массового расхода жидких сред
RU2611336C1 (ru) Способ измерения массового расхода жидких и сыпучих сред
RU2504739C1 (ru) Устройство для определения уровня жидкости в емкости
RU2611255C1 (ru) Радиоволновый расходомер
RU2601273C1 (ru) Устройство для измерения массового расхода жидких сред
RU2597666C1 (ru) Способ измерения массового расхода жидких сред
US10704939B2 (en) Methodology and apparatus for distinguishing single phase fluid flows from multiphase fluid flows using a flow meter
RU2597663C1 (ru) Радиоволновое устройство для измерения скорости потока жидких сред
RU2654926C1 (ru) Способ измерения массового расхода жидких и сыпучих сред
RU2654929C1 (ru) Устройство для измерения массового расхода жидких и сыпучих сред
RU2601538C1 (ru) Устройство для измерения массового расхода жидких сред
RU2194950C2 (ru) Устройство для определения расхода двухкомпонентных веществ в трубопроводе
Khablov Correlation Method for Signal Processing of Microwave Doppler Sensors
JP6066551B2 (ja) 管内を流れる粉体または流体の濃度または流量の測定方法、並びにそのための測定装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201208