RU2601273C1 - Устройство для измерения массового расхода жидких сред - Google Patents

Устройство для измерения массового расхода жидких сред Download PDF

Info

Publication number
RU2601273C1
RU2601273C1 RU2015131965/28A RU2015131965A RU2601273C1 RU 2601273 C1 RU2601273 C1 RU 2601273C1 RU 2015131965/28 A RU2015131965/28 A RU 2015131965/28A RU 2015131965 A RU2015131965 A RU 2015131965A RU 2601273 C1 RU2601273 C1 RU 2601273C1
Authority
RU
Russia
Prior art keywords
output
input
mixer
directional coupler
acoustic
Prior art date
Application number
RU2015131965/28A
Other languages
English (en)
Inventor
Дмитрий Владиленович Хаблов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2015131965/28A priority Critical patent/RU2601273C1/ru
Application granted granted Critical
Publication of RU2601273C1 publication Critical patent/RU2601273C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, первый смеситель, первый направленный ответвитель, основной выход которого соединен с первым входом циркулятора, а дополнительный выход соединен с первым входом смесителя, при этом второй вход смесителя соединен со вторым выводом циркулятора, а третий вывод циркулятора соединен с приемо-передающей антенной, вычислительный блок, соединенный с выходом смесителя. Дополнительно устройство содержит второй и третий направленные ответвители, фазовый детектор, выходом соединенный с управляющим входом генератора СВЧ, выход которого соединен с входом второго направленного ответвителя, основной выход которого, в свою очередь, соединен с входом третьего направленного ответвителя, дополнительный выход которого соединен с первым входом фазового детектора, устройства ввода и вывода электромагнитной волны в трубопровод, соединенные соответственно с основным выходом третьего направленного ответвителя и со вторым входом фазового детектора, умножитель частоты, входом соединенный с дополнительным выходом второго направленного ответвителя, а выходом со входом первого направленного ответвителя, генератор акустических колебаний, излучатель и приемник акустических колебаний, направленных под углом α к направлению движения потока, второй смеситель, первый вход которого соединен с выходом акустического приемника, при этом выход генератора акустических колебаний соединен с акустическим излучателем и со вторым входом смесителя, частотный дискрименатор, первым входом соединенный с выходом второго смесителя, а вторым входом с выходом первого смесителя, а выходом с управляющим входом акустического генератора, при этом вычислительный блок соединен также с выходом акустического генератора. Технический результат заключается в повышении точности измерения. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.
В настоящее время известны и применяется много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения скорости потока из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 133-144 с.). Эти устройства не предполагают применение элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя скорости потока в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущейся жидкости и поступают на приемную антенну с частотой ƒ, отличной от частоты ƒ0 зондирующей волны на частоту ƒд. Неоднородностями в измеряемой жидкой среде при этом могут быть газовые и твердые включения, а также другие жидкости, обладающие электрофизическими параметрами ε, отличными от таковых для контролируемого вещества, в том числе вода. Направления движения неоднородностей образуют различные углы с направлением этой волны. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, средняя доплеровская частота
Figure 00000001
связана со средней скоростью потока
Figure 00000002
по формуле
Figure 00000003
где α - угол между направлением излучения и потоком в трубе, λ0=c/ƒ0 ε
Figure 00000004
- длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, с - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость v потока, можно определить массовый расход:
Figure 00000005
где S - площадь поперечного сечения потока на измерительном участке. Подставив значение
Figure 00000002
из выражения (1) в (2), получим выражение для среднего массового расхода
Figure 00000006
Известно техническое решение - доплеровский измеритель расхода, содержащий генератор СВЧ, направленный ответвитель, циркулятор, приемо-передающую антенну, смеситель, полосовой фильтр, регистрирующее устройство, по технической сущности наиболее близкое к предлагаемому устройству и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 136 - 137 с.). Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через герметичное радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала, по максимуму спектральной плотности определялась средняя доплеровская частота, по которой оценивался расход в соответствии с формулой (3).
Данное измерительное устройство имеет существенные недостатки. Из формулы (1) следует, что скорость потока
Figure 00000007
- зависит от диэлектрической проницаемости среды, которая в реальных условиях может постоянно случайным образом меняться из-за изменений химического состава и температуры. Это приводит к погрешности в измерении скорости потока и, следовательно, расхода. С другой стороны, из-за флуктуаций в плотности среды ρ из-за изменений температуры и наличия примесей имеет накопительный эффект и приводит к существенным погрешностям в измерении массового расхода (см. фор-лу 3).
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат достигается тем, что устройство измерения массового расхода жидких сред содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, первый смеситель, первый направленный ответвитель, основной выход которого соединен с первым входом циркулятора, а дополнительный выход соединен с первым входом смесителя, при этом второй вход смесителя соединен со вторым выводом циркулятора, а третий вывод циркулятора соединен с приемо-передающей антенной, вычислительный блок, соединенный с выходом смесителя. Дополнительно устройство содержит второй и третий направленный ответвитель, фазовый детектор, выходом соединенный с управляющим входом генератора СВЧ, выход которого соединен с входом второго направленного ответвителя, основной выход которого, в свою очередь, соединен с входом третьего направленного ответвителя, дополнительный выход которого соединен с первым входом фазового детектора, устройства ввода и вывода электромагнитной волны в трубопровод, соединенные соответственно с основным выходом третьего направленного ответвителя и со вторым входом фазового детектора, умножитель частоты, входом соединенный с дополнительным выходом второго направленного ответвителя, а выходом со входом первого направленного ответвителя, генератор акустических колебаний, излучатель и приемник акустических колебаний, направленных под углом α к направлению движения потока, второй смеситель, первый вход которого соединен с выходом акустического приемника, при этом выход генератора акустических колебаний соединен с акустическим излучателем и со вторым входом смесителя, частотный дискрименатор, первым входом соединенный с выходом второго смесителя, а вторым входом с выходом первого смесителя, а выходом с управляющим входом акустического генератора, при этом вычислительный блок соединен также с выходом акустического генератора.
Предлагаемый способ поясняется чертежом, где представлена структурная схема устройства, его реализующее.
Устройство содержит генератор СВЧ 1, направленные ответвители 2, 3 и 8, устройство ввода электромагнитной волны в трубопровод 4 и вывода из него 5, фазовый детектор 6, умножитель частоты 7, циркулятор 9, приемо-передающую антенну 10, первый смеситель 11, вычислительный блок 19, задающий генератор акустических колебаний 14, акустический излучатель 15 и акустический приемник 16, второй смеситель 17, частотный дискрименатор 18.
Устройство работает следующим образом.
Электромагнитные волны, поступающие от генератора СВЧ 1 с частотой ƒk через направленные ответвители 2 и 3, поступают через устройство ввода 4 в трубопровод с жидкостью, затем принимаются устройством вывода электромагнитных волн 5, расположенного на расстоянии L от ввода, и подаются на вход фазового детектора 6. Поскольку на второй вход фазового детектора поступают электромагнитные колебания от дополнительного выхода направленного ответвителя 3, на его выходе формируется напряжение, пропорциональное разности фаз, которое поступает на вход управления генератора СВЧ, перестраивая его частоту ƒk до момента равенства нулю сигнала на выходе фазового детектора. Диапазон перестройки генератора СВЧ выбран таким образом, что длина волны в среде λ0, равная
Figure 00000008
, много больше размеров неоднородностей, присутствующих в потоке. В результате этого фаза принимаемого сигнала будет зависеть только от расстояния L, частоты ƒk и усредненного значения ε. Электромагнитные колебания с частотой ƒk поступают на вход умножителя частоты на k, с выхода которого они уже с частотой ƒ0=kƒk поступают через направленный ответвитель 8 и циркулятор 9 на приемо-передающую антенну 10, затем излучаются через герметичное радиопрозрачное окно 12 в трубопроводе 13 под углом α к направлению потока. Часть сигнала с частотой ƒ0 через дополнительный выход направленного ответвителя 8 приходит на первый вход смесителя 11. На второй вход смесителя через циркулятор поступают электромагнитные волны, отраженные от неоднородностей в потоке, которые в этом случае соизмеримы с длиной волны излучения, и принятые антенной 10. В результате на выходе смесителя формируется доплеровский сигнал, который обрабатывается в вычислительном блоке 19, где по максимуму спектральной плотности определяется средняя доплеровская частота (см. формулу (1)), которая зависит как от частоты СВЧ излучения ƒ0, так и от диэлектрической проницаемости среды распространения ε. Поскольку с увеличением или уменьшением ε, соответственно уменьшается или увеличивается ƒ0=kƒk, произведение
Figure 00000009
остается постоянным. Таким образом, доплеровская частота и скорость потока остается неизменной, несмотря на измения ε внутри возможного диапазона ее изменения: ε-Δε≤ε≤ε+Δε.
Выражение
Figure 00000010
можно записать исходя из условия равенства нулю сигнала на выходе фазового детектора
Figure 00000011
или
Figure 00000012
, где n - целое число полуволн электромагнитных колебаний в среде, в данном случае это постоянная величина в пределах изменения ε, отсюда следует:
Figure 00000013
Подставив выражение (5) в формулу (4) с учетом того, что
Figure 00000014
получим выражение для скорости потока, не зависящее от ε:
Figure 00000015
отсюда
Figure 00000016
Одновременно излучаются акустические колебания с частотой ƒ0 от генератора 14 через излучатель 15 под углом α к потоку и поступают, после отражения от неоднородностей, в приемник 16, диаграмма направленности которого также расположена под углом α к направлению потока. Для упрощения выбран тот же угол α, что и для радиоволнового доплеровского датчика. В результате смешивания этой принятой волны с частью падающей на выходе смесителя 17 выделяется доплеровский акустический сигнал с частотой
Figure 00000017
где c′ - скорость звука в среде. Радиоволновый и акустический доплеровские сигналы с частотами
Figure 00000018
и
Figure 00000019
поступают на входы частотного дискриминатора, который выделяет сигнал, который перестраивает частоту акустического генератора 14
Figure 00000020
до момента максимального частотного совпадения этих двух доплеровских сигналов. В этом случае из равенства частот (7) и (8) следует
Figure 00000021
Поскольку известно, что скорость звука в жидких диэлектрических углеродосодержащих средах, подобных нефти, нефтепродуктам и сжиженным газам, пропорциональна ее плотности ρ согласно формуле с′=Aρ+В, где А и В константы, то
Figure 00000022
В данном случае плотность изменяется пропорционально частоте акустического генератора. Таким образом, при неизменной скорости потока изменение частоты
Figure 00000020
будет связано только с изменением плотности жидкой среды.
Окончательно формула для расчета массового расхода жидкой среды (2) с учетом (6) и (9) будет выглядеть следующим образом:
Figure 00000023
В этой формуле все величины, кроме радиоволновой доплеровской частоты и частоты акустического генератора, являются константами для конкретной диэлектрической жидкости типа нефти, нефтепродуктов или сжиженных газов. Таким образом, временные неоднородности в ε и ρ среды будут учитываться в процессе измерения расхода, что увеличит точность измерения.

Claims (1)

  1. Устройство для измерения массового расхода жидких сред содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, первый смеситель, первый направленный ответвитель, основной выход которого соединен с первым входом циркулятора, а дополнительный выход соединен с первым входом смесителя, при этом второй вход смесителя соединен со вторым выводом циркулятора, а третий вывод циркулятора соединен с приемо-передающей антенной, вычислительный блок, соединенный с выходом смесителя, отличается тем, что устройство содержит второй и третий направленные ответвители, фазовый детектор, выходом соединенный с управляющим входом генератора СВЧ, выход которого соединен с входом второго направленного ответвителя, основной выход которого, в свою очередь, соединен с входом третьего направленного ответвителя, дополнительный выход которого соединен с первым входом фазового детектора, устройства ввода и вывода электромагнитной волны в трубопровод, соединенные соответственно с основным выходом третьего направленного ответвителя и со вторым входом фазового детектора, умножитель частоты, входом соединенный с дополнительным выходом второго направленного ответвителя, а выходом с входом первого направленного ответвителя, генератор акустических колебаний, излучатель и приемник акустических колебаний направленных под углом α к направлению движения потока, второй смеситель, первый вход которого соединен с выходом акустического приемника, при этом выход генератора акустических колебаний соединен с акустическим излучателем и со вторым входом смесителя, частотный дискрименатор, первым входом соединенный с выходом второго смесителя, а вторым входом с выходом первого смесителя, а выходом с управляющим входом акустического генератора, при этом вычислительный блок соединен также с выходом акустического генератора.
RU2015131965/28A 2015-07-31 2015-07-31 Устройство для измерения массового расхода жидких сред RU2601273C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015131965/28A RU2601273C1 (ru) 2015-07-31 2015-07-31 Устройство для измерения массового расхода жидких сред

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015131965/28A RU2601273C1 (ru) 2015-07-31 2015-07-31 Устройство для измерения массового расхода жидких сред

Publications (1)

Publication Number Publication Date
RU2601273C1 true RU2601273C1 (ru) 2016-10-27

Family

ID=57216460

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015131965/28A RU2601273C1 (ru) 2015-07-31 2015-07-31 Устройство для измерения массового расхода жидких сред

Country Status (1)

Country Link
RU (1) RU2601273C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670707C1 (ru) * 2017-12-18 2018-10-24 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения скорости потока диэлектрического вещества

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU896418A1 (ru) * 1980-05-29 1982-01-07 Ордена Ленина Институт Проблем Управления Устройство дл измерени массового расхода жидких и сыпучих сред
SU1257409A1 (ru) * 1984-08-27 1986-09-15 Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) Устройство дл измерени массового расхода вещества
RU2247947C1 (ru) * 2003-12-30 2005-03-10 Андрейчиков Борис Иванович Способ измерения покомпонентного расхода трехкомпонентного газожидкостно-твердотельного потока и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU896418A1 (ru) * 1980-05-29 1982-01-07 Ордена Ленина Институт Проблем Управления Устройство дл измерени массового расхода жидких и сыпучих сред
SU1257409A1 (ru) * 1984-08-27 1986-09-15 Ордена Ленина Институт Проблем Управления (Автоматики И Телемеханики) Устройство дл измерени массового расхода вещества
RU2247947C1 (ru) * 2003-12-30 2005-03-10 Андрейчиков Борис Иванович Способ измерения покомпонентного расхода трехкомпонентного газожидкостно-твердотельного потока и устройство для его осуществления

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670707C1 (ru) * 2017-12-18 2018-10-24 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения скорости потока диэлектрического вещества
RU2670707C9 (ru) * 2017-12-18 2018-11-29 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения скорости потока диэлектрического вещества

Similar Documents

Publication Publication Date Title
US11391699B2 (en) Turbidity sensor based on ultrasound measurements
KR101810724B1 (ko) 다상 유체 특성화 시스템
US9354094B2 (en) Apparatus and method for noninvasive particle detection using doppler spectroscopy
CN100439870C (zh) 用于确定多相流体成分的流量的方法和流量计
US8428892B2 (en) Viscous fluid flow measurement using a differential pressure measurement and a SONAR measured velocity
US10260929B2 (en) System and method for measuring a signal propagation speed in a liquid or gaseous medium
US7852091B2 (en) Microwave determination of location and speed of an object inside a pipe
US4452077A (en) Borehole ultrasonic flow meter
RU2601273C1 (ru) Устройство для измерения массового расхода жидких сред
WO1994017373A1 (en) Procedure for determining material flow rate
RU2585320C1 (ru) Устройство для измерения массового расхода жидких и сыпучих сред
RU2620774C1 (ru) Способ измерения массового расхода жидких сред
RU2597666C1 (ru) Способ измерения массового расхода жидких сред
RU2504739C1 (ru) Устройство для определения уровня жидкости в емкости
RU2620779C1 (ru) Устройство для измерения массового расхода жидких сред
SU1257409A1 (ru) Устройство дл измерени массового расхода вещества
RU2597663C1 (ru) Радиоволновое устройство для измерения скорости потока жидких сред
RU2611255C1 (ru) Радиоволновый расходомер
RU2654929C1 (ru) Устройство для измерения массового расхода жидких и сыпучих сред
RU2601538C1 (ru) Устройство для измерения массового расхода жидких сред
RU2611336C1 (ru) Способ измерения массового расхода жидких и сыпучих сред
RU2654926C1 (ru) Способ измерения массового расхода жидких и сыпучих сред
WO2019099477A1 (en) Estimating flow velocity by harmonic exctation of injected microbubbles
JP6066551B2 (ja) 管内を流れる粉体または流体の濃度または流量の測定方法、並びにそのための測定装置
RU2194950C2 (ru) Устройство для определения расхода двухкомпонентных веществ в трубопроводе

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200801