RU2616955C2 - Устройство гидроразрыва пласта - Google Patents

Устройство гидроразрыва пласта Download PDF

Info

Publication number
RU2616955C2
RU2616955C2 RU2015102147A RU2015102147A RU2616955C2 RU 2616955 C2 RU2616955 C2 RU 2616955C2 RU 2015102147 A RU2015102147 A RU 2015102147A RU 2015102147 A RU2015102147 A RU 2015102147A RU 2616955 C2 RU2616955 C2 RU 2616955C2
Authority
RU
Russia
Prior art keywords
combustion
hydraulic fracturing
housing
fluid
chamber
Prior art date
Application number
RU2015102147A
Other languages
English (en)
Other versions
RU2015102147A (ru
Inventor
Джозеф Э. АЛИФАНО
Дэниел ТИЛМОНТ
Original Assignee
ОРБИТАЛ ЭйТиКей ИНК.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОРБИТАЛ ЭйТиКей ИНК. filed Critical ОРБИТАЛ ЭйТиКей ИНК.
Publication of RU2015102147A publication Critical patent/RU2015102147A/ru
Application granted granted Critical
Publication of RU2616955C2 publication Critical patent/RU2616955C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/02Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/263Methods for stimulating production by forming crevices or fractures using explosives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1853Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines coming in direct contact with water in bulk or in sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/02Instantaneous or flash steam boilers built-up from fire tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/12Instantaneous or flash steam boilers built-up from rotary heat-exchange elements, e.g. from tube assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0329Mixing of plural fluids of diverse characteristics or conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Группа изобретений относится к способам и устройствам для гидравлического разрыва пласта. Устройство гидроразрыва пласта содержит по существу трубчатый корпус, стыковочное устройство подачи нагнетаемой текучей среды и по меньшей мере один парогазогенератор высокого давления. При этом трубчатый корпус выполнен с возможностью установки в зоне забоя ствола скважины. Причем корпус имеет по меньшей мере одно нагнетательное окно вблизи своего конца. Стыковочное устройство функционально соединено с корпусом для подачи расходуемых материалов в виде текучей среды гидроразрыва внутрь корпуса устройства гидроразрыва пласта. Парогазогенератор высокого давления размещен в корпусе и содержит по меньшей мере одну камеру сгорания. Причем корпус имеет стыковочное устройство горючей среды, гидравлически сообщающееся с по меньшей мере одной камерой сгорания. Причем по меньшей мере парогазогенератор выполнен с возможностью и предназначен для создания повторяющихся циклов воспламенения. Причем каждый цикл воспламенения содержит цикл подачи топлива, предназначенный для подачи горючей среды, содержащей воздух и топливо, к по меньшей мере одному парогазогенератору, и цикл сгорания, предназначенный для воспламенения поданной горючей среды для генерирования давления, полученного в результате сгорания горючей среды во время цикла сгорания, которое выталкивает текучую среду гидроразрыва по меньшей мере из одного нагнетательного окна. Техническим результатом является снижение количества жидкости гидроразрыва. 2 н. и 14 з.п. ф-лы, 9 ил.

Description

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
[1] Гидравлический разрыв пласта стал основным способом интенсификации притока старых коллекторов и более новых запасов сланцевого газа/нефти. Преимущества гидроразрыва пластов в прошедших перфорирование стволах скважин являются хорошо известными, и данный способ продемонстрировал возможность увеличения продуктивности или создания доступа к ранее считавшимся непродуктивными запасам. Данные преимущества, вместе с тем, сопровождаются дополнительными финансовыми затратами и экологическими проблемами. Во время гидравлического разрыва пласта в глубоких горизонтальных скважинах требуются огромные объемы воды. Миллионы галлонов (галлон = 3,8 л) воды могут расходоваться для интенсификации притока одиночной глубокой горизонтальной скважины. Обычные затраты на гидравлический разрыв пласта включают в себя изоляцию, закачку и утилизацию воды по завершении работы.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[2] Упомянутые выше проблемы существующих систем решаются с помощью вариантов осуществления настоящего изобретения, которые становятся понятными из приведенного ниже подробного описания изобретения. Сущность изобретения приведена в качестве примера и не служит ограничением. Сущность изобретения приведена для помощи пользователю в понимании некоторых аспектов изобретения.
[3] В одном варианте осуществления изобретения создано устройство гидроразрыва пласта, которое включает в себя корпус, стыковочное устройство подачи нагнетаемой текучей среды и по меньшей мере один парогазогенератор высокого давления. Корпус, выполнен с возможностью установки в зоне забоя ствола скважины. Корпус имеет по меньшей мере одно нагнетательное окно. Стыковочное устройство подачи нагнетаемой текучей среды снабжает нагнетаемой текучей средой устройство гидравлического разрыва пласта. По меньшей мере один парогазогенератор высокого давления размещен в корпусе. Корпус имеет стыковочное устройство горючей среды, гидравлически сообщающееся по меньшей мере с одним парогазогенератором высокого давления. По меньшей мере один парогазогенератор высокого давления выполнен с возможностью создания повторяющихся циклов воспламенения, которые включают в себя цикл сгорания, в котором воспламеняется горючая среда, и цикл подачи топлива, в котором горючая среда подается в камеру сгорания, при этом давление, полученное в результате цикла сгорания, выталкивает нагнетаемую текучую среду по меньшей мере из одного нагнетательного окна, обеспечивая гидроразрыв пласта на участке породы вокруг ствола скважины.
[4] В другом варианте осуществления изобретения создано другое устройство гидроразрыва пласта, которое включает в себя корпус, стыковочное устройство подачи нагнетаемой текучей среды, трубу нагнетаемой текучей среды и по меньшей мере один парогазогенератор высокого давления. Корпус выполнен с возможностью установки в зоне забоя ствола скважины. Корпус имеет множество разнесенных нагнетательных окон. Кроме того, корпус дополнительно имеет камеру удержания объема нагнетания, выполненную с возможностью удержания объема нагнетаемой текучей среды. Стыковочное устройство подачи нагнетаемой текучей среды применяется для снабжения нагнетаемой текучей средой устройства гидравлического разрыва пласта. Камера удержания объема нагнетания гидравлически сообщается со стыковочным устройством подачи нагнетаемой текучей среды. Труба нагнетаемой текучей среды создает путь в корпусе между стыковочным устройством подачи нагнетаемой текучей среды и камерой удержания объема нагнетания. По меньшей мере один парогазогенератор высокого давления размещен в корпусе. Корпус дополнительно имеет стыковочное устройство горючей среды, гидравлически сообщающееся по меньшей мере с одним парогазогенератором высокого давления. По меньшей мере один парогазогенератор высокого давления выполнен с возможностью создания повторяющихся циклов воспламенения, которые включают в себя цикл сгорания горючей среды и цикл подачи топлива, в котором горючая среда подается в камеру сгорания, при этом давление, полученное в результате цикла сгорания, выталкивает нагнетаемую текучую среду по меньшей мере из одного нагнетательного окна, обеспечивая гидроразрыв пласта на участке породы вокруг ствола скважины.
[5] В еще одном варианте осуществления изобретения создан способ гидроразрыва пласта в зоне забоя скважины. Способ включает в себя: установку корпуса по меньшей мере с одним парогазогенератором высокого давления в зоне забоя ствола скважины и создание пульсирующего давления с помощью по меньшей мере одного парогазогенератора высокого давления, обеспечивающего микрогидроразрыв пласта в области породы вблизи ствола скважины.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[6] Настоящее изобретение и его дополнительные преимущества и варианты применения можно лучше понять из приведенного ниже подробного описания с прилагаемыми фигурами, на которых показано следующее.
[7] На Фиг. 1 показано в изометрии продольное сечение одного варианта осуществления забойного устройства гидроразрыва пласта.
[8] На Фиг. 2 показано в изометрии продольное сечение другого варианта осуществления забойного устройства гидроразрыва пласта.
[9] На Фиг. 3 показана схема работы варианта осуществления Фиг. 2.
[10] На Фиг. 4A и 4B в продольном сечении Фиг. 2 показано направление перемещения поршня.
[11] На Фиг. 5 показан в изометрии парогазогенератор одного варианта осуществления настоящего изобретения.
[12] На Фиг. 6A показано сечение по линии 3A-3A парогазогенератора Фиг. 5.
[13] На Фиг. 6B показано сечение по линии 3B-3B парогазогенератора Фиг. 5.
[14] На Фиг. 7 в сечении парогазогенератора Фиг. 5 показaн газовый поток, проходящий через камеру сгорания.
[15] Согласно обычной практике различные описанные элементы вычерчены без соблюдения масштаба для выделения конкретных признаков, релевантных для настоящего изобретения. Одинаковые позиции ссылки присвоены одинаковым элементам, показанным на фигурах и упомянутым в тексте.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[16] В следующем подробном описании с прилагаемыми чертежами даны примеры иллюстративных конкретных вариантов осуществления изобретения. Данные варианты осуществления описаны достаточно подробно, при этом специалисту в данной области техники, реализующему изобретение, понятно, что можно применять другие варианты осуществления и что изменения можно выполнять без отхода от сущности и объема настоящего изобретения. Следующее подробное описание, таким образом, нельзя считать ограничивающим, и объем настоящего изобретения определяется только формулой изобретения и его эквивалентами.
[17] В вариантах осуществления настоящего изобретения создано устройство гидроразрыва пласта или устройств инициирования и распространения трещин. В вариантах осуществления применяется забойный парогазогенератор для создания импульсов пульсирующего давления для развития трещин. В некоторых вариантах осуществления устройство гидроразрыва пласта является частью системы, которая включает в себя топливо, реактор или другую установку реформинга топлива на поверхности (например, каталитического частичного окисления), систему управления для подачи топлива и забойный окислительный аппарат, а также источник воспламенения. Топливо, например, без ограничения этим, природный газ, пропан, метан, дизель, должно прогоняться через реактор так, что получаются газообразные компоненты, прогнозируемо сгорающие в окружающей среде зоны забоя. При этом обеспечивается получение синтетического топлива, включающего в себя главным образом газообразные CO, H2 и простые углеводороды, для высокоэффективного и устойчивого горения. Газообразные компоненты топлива должны улучшать смешивание с газообразным окислителем, например воздухом, и обеспечивать на поверхности подготовку различных компонентов топлива для подачи в устройство 100 гидроразрыва пласта. Устройство 100 гидроразрыва пласта можно применять в стволе скважины (не показано) в геологическом пласте (не показано).
[18] Показанное на Фиг. 1 устройство 100 гидроразрыва пласта включает в себя кожух или корпус 102, являющийся в общем трубчатым и закрытым, если не считать стыковочных устройств 104 подачи, таких как впускные окна или трубы на одном конце. Стыковочные устройства 104 подачи могут обеспечивать проход и подачу в устройство 100 гидроразрыва пласта газа и текучих сред (например, воздуха, топлива и других текучих сред, например, горючей среды) и электропитания для инициирования системы 200 воспламенения (парогазогенератора). Текучие среды, которые могут вводиться в корпус, включают в себя, например, нагнетаемые текучие среды гидроразрыва пласта. Корпус 102 дополнительно имеет множество нагнетательных окон 106, установленных на конце, противоположном стыковочным устройствам 104 подачи. Нагнетательные окна 106 обеспечивают выброс или подачу газообразных продуктов горения и гидравлических рабочих текучих сред (нагнетаемых текучих сред).
[19] В корпусе 102 варианта осуществления Фиг. 1 заключена трубчатая камера 108 сгорания. Трубчатая камера 108 сгорания проходит выбранный отрезок длины корпуса 102 и сужается в направлении выпускных окон 106 для образования сопла или насадки 110 Вентури. Между насадкой 110 Вентури и выпускным окном или нагнетательным окном 106 расположено пространство или область камеры 111 удержания объема нагнетания, которая обеспечивает смешивание газообразных продуктов горения и текучей среды перед выбросом из выпуска 106 в данном варианте осуществления. В некоторых вариантах осуществления выпускное окно 106 включает в себя клапан регулирования расхода или перекрывается им, данный клапан рассмотрен ниже в описании варианта осуществления, показанного на Фиг. 2.
[20] Парогазогенератор 200 (например, система 200 воспламенения, описанная ниже и показанная на Фиг. 5, 6A, 6B и 7) установлен для сжигания горючей среды в трубчатой камере 108 сгорания. В некоторых вариантах осуществления корпус включает в себя каналы 112, которые совмещаются со стыковочным устройством 104 подачи. Канал 112 может выполняться между наружным или внешним участком цилиндра 114 и внутренним участком корпуса 116 и проходить продольно через корпус 102. Сгорание газов и топлива поднимает температуру в камере сгорания. Тепло, получаемое от горячих газов, обуславливает расширение газов и их перемещение к насадке Вентури. В одном варианте осуществления газ должен достигать скорости звука в насадке Вентури. В других вариантах осуществления скорость потока газа должна оставаться ниже звукового предела. Повышение температуры цилиндра также повышает температуру текучей среды, проходящей по каналам 112. Одним важным преимуществом увеличенных температур является увеличение температуры нагнетаемой текучей среды (или текучей среды гидроразрыва), при котором уменьшается плотность нагнетаемой текучей среды, что обеспечивает подачу уменьшенного объема жидкости на единицу объема подачи для интенсификации притока (т.е. более горячая жидкость занимает больше пространства, чем та же жидкость при более низкой температуре). Нагретая текучая среда также имеет пониженную вязкость, что может являться огромным преимуществом. Увеличение температуры на 100°F (приблизительно на 60°С) может снижать вязкость более чем на 50%. При этом либо исключается применение или снижается количество понизителя трения, используемого в гидроразрыве пласта. Высокотемпературные с высоким давлением продукты выхлопа выходят из насадки 110 Вентури в камеру 111 удержания объема нагнетания, где смешиваются с гидравлической рабочей текучей средой (объемом нагнетания). Смесь затем выдавливается из выпускного окна 106 для гидроразрыва породы вблизи устройства гидроразрыва пласта. Сжигание проводится в циклическом режиме для создания пульсирующей силы, вызывающей гидроразрыв пласта.
[21] На Фиг. 2, показан другой вариант осуществления устройства 400 гидроразрыва пласта. Устройство 400 гидроразрыва пласта в общем представляет собой корпус или кожух 402, заключающий в себе поршень 404. Поршень 404 имеет поршневую головку 406, работающую в камере сгорания, и поршневую головку 408, работающую с нагнетаемой текучей средой, поршневые головки 406 и 408 соединены штоком или штангой 410.
[22] Поршень 404 последовательно делит цилиндр на две камеры, основную камеру 412 сгорания и вспомогательную камеру 414 сгорания. Поршень 404 установлен с возможностью скольжения в основной камере 412 сгорания и во время хода нагнетания может перемещаться к вспомогательной камере 414 сгорания. Основная камера 412 сгорания образует первую ступень сжатия, и вспомогательная камера 414 сгорания образует вторую ступень сжатия. Основная камера 412 сгорания и вспомогательная камера 414 сгорания могут располагаться смежно друг с другом и могут иметь одинаковые размеры или отличающиеся размеры. Две камеры могут сообщаться с помощью труб и клапанов управления (не показано). Каждая камера сгорания имеет свою собственную систему 200 воспламенения.
[23] На одном конце корпуса 402 устроены впускные окна или стыковочное устройство 416 подачи нагнетаемой текучей среды. Впускные окна 416 обеспечивают подачу воздуха, топлива (горючей среды) и текучей среды гидроразрыва, которая может включать в себя воду и топливные компоненты плюс несколько химических добавок, а также имеют соединение или разъем (не показано) для подачи электропитания в систему 200 воспламенения. На конце, противоположном впускным окнам 416, расположены нагнетательные окна или окна 418 отработанных газов. Нагнетательные окна или окна 418 отработанных газов выполнены с клапанами 420 регулирования расхода одностороннего действия. В варианте осуществления забойное устройство 400 гидроразрыва пласта имеет пассивную систему управления, в которой используется положительный перепад давления для нагнетания газов в основную камеру 412 сгорания.
[24] Как показано на Фиг. 3, 4A и 4B, газы воспламеняются с помощью модифицированной системы 200 воспламенения при высоком давлении, описанной ниже. После воспламенения газовой смеси поршень 502 выполняет ход нагнетания в направлении стрелки 500 при этом сжимается пружина (не показано) и поршень 502 перемещается в направлении к выпускным окнам 504 (через изолирующий клапан 506), при этом текучая среда вытесняется на забой и поднимается давление в коллекторе для инициирования и развития трещин.
[25] Давление и соотношение топлива и воздуха в основной камере 506 сгорания, а также степень расширения, которые существуют в устройстве гидроразрыва пласта, устанавливают на основе условий в стволе скважины, так что работа, выполненная поршнем, достаточно охлаждает продукты горения для нагнетания в ствол скважины. Горячие продукты горения выпускаются в коллектор 507 через выпускные окна 504. Расширение в основной камере 506 сгорания вследствие сгорания создает давление в гидравлической рабочей текучей среде или нагнетаемой текучей среде. При ходе нагнетания давления поршень 502 должен вдавливать текучие среды в коллектор 507 под высоким давлением. Обратные клапаны применяются для регулирования направления подачи.
[26] Камера 509 низкого давления (1 атм.), противоположная объему нагнетания, поддерживает разность максимального и минимального значений силы, которая действует, сжимая основную камеру 506 сгорания по завершении выполнения работы выброса. Во время начала обратного хода в основной камере 506 сгорания происходит сжатие, и текучая среда гидроразрыва пласта (нагнетаемая текучая среда) втягивается в объем 511 нагнетания. Указанное сжатие в основной камере 506 сгорания выталкивает отработанный воздух и топливо (выпуск) наружу из окон 512 отработанных газов вспомогательной камеры 508. Обратный ход инициируется камерой низкого давления и в некоторых случаях сжатой пружиной (не показано), которой увеличивается объем во вспомогательной камере 508 сгорания и в камеру втягивается новая порция 516 топлива и воздуха (или другого окислителя), которая должна воспламеняться при перемещении поршня обратно в его начальное положение. После воспламенения нагнетается давление во вспомогательной камере 508. Комбинация сил, действующих на поршни, сжимает спиральную пружину (не показано) в основной камере сгорания. Аналогичная схема охлаждения и выпуска применена во вспомогательной камере сгорания. После достаточного сброса давления газа из вспомогательной камеры пружина в основной камере возвращается в свое начальное состояние, втягивая поршень. Расширение основной камеры 506 сгорания создает всасывание. При этом топливо и воздух должны втягиваться в основную камеру 506 сгорания. Когда основная камера сгорания достаточно заполнена, система воспламенения создает волну горения для нагнетания давления в основной камере сгорания, и процесс повторяется.
[27] Корпус 402 имеет выпуски подачи объединенных гидравлических рабочих текучих сред и побочных продуктов сгорания в пласт. Данный цикл повторяется, и его результатом является регулируемое нагнетание давления в стволе скважины с применением газа высокого давления умеренной температуры, полученного в процессе сгорания, и скважинной текучей среды, поступившей из пласта, для гидравлического разрыва пласта. В одном варианте осуществления сжигание при высоком давлении выполняется при давлении 6000 фунт/дюйм2 (41 МПа). В другом варианте осуществления давление в стволе скважины может составлять около 5500-6000 фунт/дюйм2 (38-42 МПа) с подаваемым давлением 5900-6400 фунт/дюйм2 (40-44 МПа) соответственно.
[28] Описанные выше инструменты гидроразрыва пласта вырабатывают горячую пену с высоким содержанием газа, более 50% газа по объему, из комбинации горячего отработанного газа из парогазогенератора и нагнетаемой текучей среды вблизи ствола скважины для инициирования микрогидроразрыва пласта. В другом варианте осуществления пену с низким содержанием газа создают с помощью регулирования подачи воздуха, топлива и жидкости. Кроме того, данная пена преобразуется в пену с низким содержанием газа с помощью конденсации и охлаждения горячего отработанного газа, который имеет высокообъемные молекулы, для удержания трещин раскрытыми на большую глубину в пласте при дополнительном удалении пены от устройства гидроразрыва пласта.
[29] В других вариантах осуществления инструменты 100 или 400 гидроразрыва пласта могут дополняться известными твердотопливными системами. С помощью дополнения инструментов гидроразрыва пласта 100 или 400 топливной системой можно задавать профили давления по требуемым условиям в стволе скважины. Объединение двух систем также обеспечивает импульсы установившегося давления, в отличие от известных систем (например, установок газовой детонации), обеспечивающих одиночные импульсы давления. В одном варианте осуществления объединенную систему или раскрытые системы можно использовать для эффективного применения на практике закона Пэриса для роста усталостных трещин. Закон Пэриса традиционно применяется для определения скорости роста трещин при воздействии на компонент (например, коллектор или ствол скважины) повторяющихся условий возникновения усталостных трещин. Другими словами, когда коллектор или ствол скважины подвергается повторяющимся или циклическим усталостным нагрузкам или силам, например, повторяющемуся или циклическому воздействию давления, в коллекторе или стволе скважины может развиваться трещина.
[30] Закон Пэриса можно математически описать, как da/dN=C(ΔK)m, где а - половина длины трещины, N - число вызывающих усталость циклов, da/dN - скорость изменения половины длины трещины относительно числа вызывающих усталость циклов, C - материальная константа уравнения роста трещин и геометрии трещины и m - показатель степени, который можно выбрать на основе типа материала, подлежащего анализу, ΔΚ - диапазон коэффициента интенсивности напряжений K, где K может основываться на состоянии нагружения.
[31] Система воспламенения и парогазогенератор 200, описанный выше, показан на Фиг. 5-7. На Фиг. 5 показан в изометрии парогазогенератор 200, который включает в себя корпус 202 форсунки. Корпус 202 форсунки, в общем, цилиндрической формы, имеет первый конец 202a и второй конец 202b. Топливопровод 206 входит в первый конец корпуса 202 форсунки для подачи топлива в парогазогенератор 200. Как также показано на Фиг. 5 и 6B, воздуховпускная трубка 204 предварительного смешивания проходит через корпус 202 форсунки для подачи потока воздуха в парогазогенератор 200. Горелка (например, без ограничения этим с завихрительной пластиной 208) присоединена вблизи второго конца корпуса 202 форсунки. Завихрительная пластина 208 включает в себя множество наклонных воздушных каналов 207, которые обеспечивают вихревое движение воздуха, пропущенного через каналы 207. Также на Фиг. 5 показан струйный удлинитель 210, который проходит от второго конца 202b корпуса 202 форсунки. В частности, струйный удлинитель 210 трубчатой формы проходит от центрального канала плоской головки 217 топливной форсунки мимо второго конца 202b корпуса 202 форсунки. Струйный удлинитель 210 отделяет топливовоздушный поток предварительного смешивания, применяемый для начального воспламенения, на выбранное расстояние от топливовоздушного потока, применяемого в основной камере 300 сгорания. Точное соотношение воздух/топливо требуется для начального воспламенения в камере 240 воспламенения. Струйный удлинитель 210 предотвращает проход топлива, подаваемого из плоской головки 217 топливной форсунки в камеру воспламенения, который может неприемлемо изменить соотношение воздух/топливо в камере 240 воспламенения. В данном примере струйный удлинитель 210 включает в себя множество установленных рядами каналов 211, проходящих через средний участок корпуса струйного удлинителя. Множество установленных рядами каналов 211, проходящих через средний участок корпуса 210 струйного удлинителя, служат для получения требуемого соотношения воздух/топливо между запальной камерой 240 и основной камерой 300 сгорания. Это обеспечивает пассивное управление воспламенением при нужном соотношении воздух/топливо для основной камеры 300 сгорания.
[32] Как рассмотрено выше, струйный удлинитель 210 проходит от центрального канала плоской головки 217 топливной форсунки. Как показано на Фиг. 6A и 6B, плоская головка 217 форсунки, в общем, имеет форму диска с выбранной высотой и с центральным каналом. Наружная поверхность плоской головки 217 форсунки соединяется с примыкающей внутренней поверхностью корпуса 202 форсунки и расположена на выбранном расстоянии от второго конца 202b корпуса 202 форсунки. В частности, боковой участок плоской головки 217 форсунки упирается во внутренний уступ 202c корпуса 202 форсунки для установки плоской головки 217 форсунки в нужном месте относительно второго конца 202b корпуса 202 форсунки. Плоская головка 217 форсунки включает в себя внутренние каналы 217a и 217b, ведущие к выходным каналам 215 топлива. Штуцера 221 и 223 установлены в соответствующих отверстиях 219a и 219b во внутренних каналах 217a и 217b плоской головки 217 форсунки. Штуцера 221 и 223 дросселируют поток топлива и распределяют поток топлива для прохода через соответствующие штуцерные каналы 221a и 223a выпуска топлива из плоской головки 217 форсунки, а также прохода во внутренние каналы 217a и 217b плоской головки 217 форсунки через множество отверстий 221b и 223b. Топливо, пропущенное во внутренние каналы 217a и 217b, выходит наружу из плоской головки 217 форсунки через каналы 215 форсунки.
[33] Топливопровод 206 подводит топливо к парогазогенератору 200. В частности, как показано на Фиг. 3A, в конце топливопровода 206 размещена часть элемента 209 предварительного смешивания топлива. Элемент 209 предварительного смешивания топлива включает в себя внутреннюю полость 209a, которая открывается в камеру 212 предварительного смешивания. В частности, элемент 209 предварительного смешивания топлива включает в себя первую часть 209b, которая установлена внутри топливопровода 206. Первая часть 209b элемента 209 предварительного смешивания топлива включает в себя впускные окна 210a и 210b прохода топлива предварительного смешивания во внутреннюю полость 209a. Топливо из топливопровода 206 пропускается через впускные окна 210a и 210b прохода топлива предварительного смешивания и затем во внутреннюю полость 209a к камере 212 предварительного смешивания. Элемент 209 предварительного смешивания топлива дополнительно включает в себя вторую часть 209c, установленную за пределами топливопровода 206. Вторая часть 209c элемента 209 предварительного смешивания топлива соединяется с камерой 212 предварительного смешивания. Вторая часть 209c дополнительно включает в себя соединительный фланец 209d, который выступает от поверхности топливопровода 206. Соединительный фланец 209d соединяется с концом топливопровода 206. В одном варианте осуществления установлено уплотнение между соединительным фланцем 209d и концом топливопровода 206. Хотя это не показано, другой конец топливопровода 206 соединен с внутренним каналом в корпусе забойного парогазогенератора 100 для приема топлива. Как также показано на Фиг. 3A, ответвляющиеся топливопроводы 205a и 205b, соединенные с топливопроводом 206, подают топливо на соответствующие штуцеры 221 и 223 в плоской головке 217 топливной форсунки. Как показано на Фиг. 3B, воздух через впуск 204 воздуха предварительного смешивания подается в камеру 212 предварительного смешивания. Топливовоздушная смесь затем пропускается в форсунку 214 с предварительным смешиванием топлива и воздуха, которая распределяет топливовоздушную смесь в камере 240 первоначального воспламенения. Камера 240 первоначального воспламенения имеет внутреннее теплоизоляционное покрытие 220 для минимизации потери тепла. Топливовоздушная смесь из форсунки 214 с предварительным смешиванием компонентов воспламеняется одной или несколькими свечами 230a и 230b предпускового нагрева.
[34] На Фиг. 7 показана работа парогазогенератора 200, описанная ниже. Топливо, например, без ограничения этим, метан, под давлением подается через каналы в корпусе 102 в топливопровод 206. Как показано, топливо проходит через топливопровод 206 в множество ответвляющихся топливопроводов 205a и 205b и во впуски 210a и 210b предварительного смешивания топлива впускного элемента 209 предварительного смешивания топлива. Хотя показаны только два ответвляющихся топливопровода 205a и 205b и два впуска 210a и 210b предварительного смешивания топлива во впускной элемент 109 предварительного смешивания топлива, любое нужное число топливопроводов и впусков предварительного смешивания топлива можно применять, и их числом настоящее изобретение не ограничено. Топливо, входящее во впуски 210a и 210b предварительного смешивания топлива впускного элемента 209 предварительного смешивания топлива, подается в камеру 212 предварительного смешивания, где смешивается с воздухом из впуска 204 воздуха предварительного смешивания, как рассмотрено ниже. Топливо, проходящее через ответвляющиеся топливопроводы 205a и 205b подается в штуцера 221 и 223 и на выход из топливных инжекторов 216a и 216b и топливных каналов 215 в плоской головке 217 топливной форсунки, обеспечивающих снабжение топливом основной камеры 300 сгорания.
[35] Воздух под давлением также подается в парогазогенератор 200 через каналы в корпусе 102. В данном варианте осуществления воздух под давлением находится между корпусом 202 форсунки и корпусом 102. Воздух дополнительно проходит через воздушные каналы 207 в завихрительной пластине 208, при этом обеспечивается снабжение воздухом основной камеры 300 сгорания. Как показано, некоторая часть воздуха входит во впуск 204 воздуха предварительного смешивания и подается в камеру 212 предварительного смешивания. Воздух и топливо, смешанные в камере 212 предварительного смешивания, пропускаются далее в форсунку 214 с предварительным смешиванием топлива и воздуха, выполненную с возможностью подачи топливовоздушной смеси так, что топливовоздушная смесь из форсунки 214 с предварительным смешиванием топлива и воздуха совершает вихревое движение в камере 240 первоначального воспламенения при относительно малой скорости. Одна или несколько свеч 230a и 230b предпускового нагрева нагревают данный относительно низкоскоростной поток топливовоздушной смеси до температуры самовоспламенения, при которой происходит воспламенение. Сгорание в камере 240 первоначального воспламенения, проходящей через струйный удлинитель 210, воспламеняет топливовоздушный поток, проходящий из плоской головки 217 топливной форсунки и завихрительной пластины 208 в основной камере 300 сгорания. Когда получено горение в основной камере 300 сгорания, электропитание свеч 230a и 230b предпускового нагрева отключается. Таким образом, сгорание в камере 240 первоначального воспламенения является переходным процессом, при котором вырабатываемое тепло не должно расплавлять компоненты. Период времени работы свеч 230a и 230b предпускового нагрева для воспламенения топливовоздушной смеси в камере 240 первоначального воспламенения может являться коротким. В одном варианте осуществления такой период составляет около 8-10 секунд.
[36] В варианте осуществления коэффициент избытка воздух/топливо в диапазоне 0,5-2,0 получают в камере 240 первоначального воспламенения с помощью форсунки 214 с предварительным смешиванием топлива и воздуха во время начального воспламенения. Одновременно, коэффициент избытка воздух/топливо в основной камере 300 сгорания в диапазоне 0,04-0,25 получается с помощью завихрительной пластины 208 и плоской головки 217 топливной форсунки. После воспламенения потока в камере 240 первоначального сгорания и основной камере 300 сгорания свечи 230a и 230b предпускового нагрева отключаются. Коэффициент избытка воздух/топливо в диапазоне 5,0-25,0 затем получают в камере 240 первоначального воспламенения и одновременно получают коэффициент избытка воздух/топливо в диапазоне 0,1-3,0 в основной камере 300 сгорания с помощью завихрительной пластины 208 и плоской головки 217 топливной форсунки. Данное устройство обеспечивает переходный выброс из камеры 240 первоначального воспламенения для зажигания воздуха/топлива в основной камере 300, после чего горение в камере 240 первоначального воспламенения гасится получением коэффициента избытка воздух/топливо, соответствующего слишком высокому обогащению топливом, не поддерживающему непрерывного горения. Для прекращения горения в основной камере 300 сгорания прекращается подача одного из или обоих, воздуха и топлива, в парогазогенератор 200.
[37] Хотя в данном документе показаны и описаны конкретные варианты осуществления изобретения, специалисту в данной области техники понятно, что любое показанное устройство в таком варианте осуществления можно заменить другим устройством аналогичной функциональности. Данная заявка не описывает все возможные адаптации или вариации настоящего изобретения. Таким образом, устанавливается, что данное изобретение ограничено только формулой изобретения и его эквивалентами.

Claims (37)

1. Устройство гидроразрыва пласта, содержащее:
по существу, трубчатый корпус, выполненный с возможностью установки в зоне забоя ствола скважины, корпус имеет по меньшей мере одно нагнетательное окно вблизи своего конца;
стыковочное устройство подачи нагнетаемой текучей среды, функционально соединенное с корпусом для подачи расходуемых материалов в виде текучей среды гидроразрыва внутрь корпуса устройства гидроразрыва пласта; и
по меньшей мере один парогазогенератор высокого давления, размещенный в корпусе и содержащий по меньшей мере одну камеру сгорания, причем корпус имеет стыковочное устройство горючей среды, гидравлически сообщающееся с по меньшей мере одной камерой сгорания, причем по меньшей мере парогазогенератор выполнен с возможностью и предназначен для создания повторяющихся циклов воспламенения, причем каждый цикл воспламенения содержит цикл подачи топлива, предназначенный для подачи горючей среды, содержащей воздух и топливо, к по меньшей мере одному парогазогенератору, и цикл сгорания, предназначенный для воспламенения поданной горючей среды для генерирования давления, полученного в результате сгорания горючей среды во время цикла сгорания, которое выталкивает текучую среду гидроразрыва по меньшей мере из одного нагнетательного окна.
2. Устройство гидроразрыва пласта по п.1, в котором по меньшей мере одно нагнетательное окно является множеством разнесенных нагнетательных окон, установленных по окружности участка боковой поверхности цилиндрического корпуса.
3. Устройство гидроразрыва пласта по п.1, дополнительно содержащее:
клапан регулирования расхода, выборочно перекрывающий по меньшей мере одно нагнетательное окно, причем клапан регулирования расхода выполнен с возможностью обеспечения прохода потока через по меньшей мере одно нагнетательное окно, когда величина давления внутри корпуса выше, чем давление снаружи корпуса, прикладываемое к клапану регулирования расхода.
4. Устройство гидроразрыва пласта по п.1, в котором:
корпус дополнительно включает в себя камеру удержания объема нагнетания, размещенную для приема и смешивания текучей среды гидроразрыва, принимаемой от стыковочного устройства подачи нагнетаемой текучей среды с газами от сгорания горючей среды.
5. Устройство гидроразрыва пласта по п.4, дополнительно содержащее:
трубу текучей среды гидроразрыва пласта, создающую путь в корпусе между стыковочным устройством подачи нагнетаемой текучей среды и камерой удержания объема нагнетания.
6. Устройство гидроразрыва пласта по п.4, дополнительно содержащее:
трубчатую камеру сгорания, соединенную с по меньшей мере одним парогазогенератором высокого давления, предназначенным для сгорания горючей среды и содержащим насадку Вентури для удаления газов сгорания в камеру удержания объема нагнетания.
7. Устройство гидроразрыва пласта по п.1, дополнительно содержащее:
поршневую компоновку, размещенную в корпусе, причем поршневая компоновка расположена и выполнена с возможностью подачи давления к текучей среде гидроразрыва пласта в корпусе в ответ на газы, полученные от воспламенения горючей среды во время сгорания на цикле сгорания.
8. Устройство гидроразрыва пласта по п.7, где поршневая компоновка включает в себя:
поршневую головку, работающую в камере сгорания;
поршневую головку, работающую с нагнетаемой текучей средой гидравлического разрыва пласта;
и соединительный шток, соединяющийся первым концом с поршневой головкой, работающей в камере сгорания и соединяющийся вторым концом с поршневой головкой, работающей с нагнетаемой гидравлической рабочей текучей средой.
9. Устройство гидроразрыва пласта по п.8, в котором по меньшей мере одна камера сгорания содержит основную камеру сгорания и вспомогательную камеру сгорания, причем поршневая головка, работающая в камере сгорания, размещена с возможностью перемещения в основной и вспомогательной камерах сгорания, поршневая головка, работающая в камере сгорания, отделяет основную камеру сгорания от вспомогательной камеры сгорания;
по меньшей мере один парогазогенератор высокого давления, включающий в себя основной парогазогенератор, установленный для сжигания горючей среды в основной камере сгорания, и вспомогательный парогазогенератор, установленный для сжигания горючей среды во вспомогательной камере; и
поршневую головку, работающую с нагнетаемой текучей средой гидроразрыва, установленную в камере удержания объема нагнетания в корпусе, причем поршневая компоновка сконфигурирована и выполнена так, что давление газа от сгорания горючей среды в основной камере сгорания действует на поршневую головку, работающую в камере сгорания в направлении, обеспечивающем выталкивание поршневой головкой, работающей с нагнетаемой текучей средой гидравлического разрыва пласта, текучей среды гидроразрыва из камеры удержания объема нагнетания через по меньшей мере одно нагнетательное окно, и давление газа от сгорания горючей среды во вспомогательной камере сгорания действует на поршневую головку, работающую в камере сгорания в обратном направлении, обеспечивающем втягивание поршневой головкой, работающей с нагнетаемой текучей средой гидравлического разрыва пласта, текучей среды гидравлического разрыва пласта из стыковочного устройства подачи нагнетаемой текучей среды в камеру удержания объема нагнетания.
10. Устройство гидроразрыва пласта по п.9, дополнительно включающее в себя камеру низкого давления, установленную в корпусе между вспомогательной камерой сгорания и камерой удержания объема нагнетания.
11. Способ гидроразрыва пласта в зоне забоя скважины, содержащий:
установку корпуса, содержащего по меньшей мере один парогазогенератор высокого давления в зоне забоя ствола скважины;
ввод горючей среды, содержащей воздух и топливо по меньшей мере в один парогазогенератор высокого давления;
ввод текучей среды гидроразрыва в корпус;
циклическое сжигание горючей среды по меньшей мере в одном парогазогенераторе высокого давления для сжатия текучей среды гидроразрыва, содержащейся в корпусе, и
циклический выпуск сжатой текучей среды гидроразрыва из корпуса в скважину, соединенную с подземным пластом.
12. Способ по п.11, дополнительно содержащий:
выдавливание сжатой текучей среды гидроразрыва из корпуса через множество нагнетательных окон и предотвращение входа внутрискважинной текучей среды в корпус, когда давление внутрискважинной текучей среды превышает давление внутри корпуса между циклами сгорания.
13. Способ по п.12, дополнительно содержащий смешивание газообразных продуктов горения от каждого цикла сгорания по меньшей мере одного парогазогенератора высокого давления, причем смешивание газообразных продуктов горения каждого цикла сжигания по меньшей мере одного парогазогенератора высокого давления с текучей средой гидроразрыва в корпусе содержит вырабатывание горячей пены с высоким содержанием газа, больше 50% по объему, из комбинации газообразных продуктов горения и текучей среды гидроразрыва.
14. Способ по п.13, дополнительно содержащий:
применение пены с низким содержанием газа, образованной при конденсации и охлаждении газообразных продуктов горения с высокообъемными молекулами для поддержания трещин на большей глубине в пласте.
15. Способ по п.11, дополнительно содержащий:
дополнение давления, вырабатываемого по меньшей мере одним циклом сжигания, давлением, создаваемым воспламенением твердого топлива системы гидроразрыва с помощью твердого топлива.
16. Способ по п.11, дополнительно содержащий смешивание газообразных продуктов горения от каждого цикла сгорания по меньшей мере одного парогазогенератора высокого давления, причем смешивание газообразных продуктов горения каждого цикла сжигания по меньшей мере одного парогазогенератора высокого давления с текучей средой гидроразрыва в корпусе дополнительно содержит направление газообразных продуктов горения из камеры сгорания по меньшей мере одного парогазогенератора высокого давления через выпускное устройство в камеру удержания объема нагнетания в корпусе, содержащую текучую среду гидроразрыва.
RU2015102147A 2012-06-25 2013-06-24 Устройство гидроразрыва пласта RU2616955C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261664015P 2012-06-25 2012-06-25
US61/664,015 2012-06-25
US13/840,672 US9383094B2 (en) 2012-06-25 2013-03-15 Fracturing apparatus
US13/840,672 2013-03-15
PCT/US2013/047273 WO2014004356A1 (en) 2012-06-25 2013-06-24 Fracturing apparatus

Publications (2)

Publication Number Publication Date
RU2015102147A RU2015102147A (ru) 2016-08-10
RU2616955C2 true RU2616955C2 (ru) 2017-04-18

Family

ID=49773323

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2015102141/03A RU2604357C2 (ru) 2012-06-25 2013-06-24 Парогазогенератор высокого давления с калильным воспламенением
RU2015102142/06A RU2602949C2 (ru) 2012-06-25 2013-06-24 Теплообменник высокого кпд с непосредственным контактом сред
RU2015102147A RU2616955C2 (ru) 2012-06-25 2013-06-24 Устройство гидроразрыва пласта

Family Applications Before (2)

Application Number Title Priority Date Filing Date
RU2015102141/03A RU2604357C2 (ru) 2012-06-25 2013-06-24 Парогазогенератор высокого давления с калильным воспламенением
RU2015102142/06A RU2602949C2 (ru) 2012-06-25 2013-06-24 Теплообменник высокого кпд с непосредственным контактом сред

Country Status (9)

Country Link
US (4) US9228738B2 (ru)
EP (3) EP2867451A1 (ru)
CN (4) CN104903672B (ru)
BR (2) BR112014032350A8 (ru)
CA (3) CA2876974C (ru)
MX (2) MX354382B (ru)
RU (3) RU2604357C2 (ru)
SA (2) SA113340669B1 (ru)
WO (4) WO2014004355A1 (ru)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012010413A (es) * 2010-03-08 2013-04-11 World Energy Systems Inc Un generador de vapor situado en el fondo de la perforacion y metodo de uso.
US9228738B2 (en) 2012-06-25 2016-01-05 Orbital Atk, Inc. Downhole combustor
US9291041B2 (en) * 2013-02-06 2016-03-22 Orbital Atk, Inc. Downhole injector insert apparatus
US9988889B2 (en) * 2013-11-08 2018-06-05 Rock Hill Propulsion, Inc. Pneumatic system and process for fracturing rock in geological formations
EP3018408B1 (en) * 2014-11-05 2017-06-07 WORGAS BRUCIATORI S.r.l. Burner
CN104929605B (zh) * 2015-06-26 2017-06-09 重庆地质矿产研究院 一种井下水力脉冲分段压裂增渗装置及方法
CN106918053B (zh) * 2015-12-24 2022-12-02 中国石油天然气股份有限公司 油田开采用点火装置及油田开采方法
CN105698559B (zh) * 2016-03-31 2017-10-13 中国五冶集团有限公司 一种用于车间内增设热水点位的汽水混合器
WO2017192766A1 (en) * 2016-05-03 2017-11-09 Energy Analyst LLC. Systems and methods for generating superheated steam with variable flue gas for enhanced oil recovery
US20180038592A1 (en) * 2016-08-04 2018-02-08 Hayward Industries, Inc. Gas Switching Device And Associated Methods
US9967203B2 (en) * 2016-08-08 2018-05-08 Satori Worldwide, Llc Access control for message channels in a messaging system
CN106401553A (zh) * 2016-11-21 2017-02-15 胡少斌 二氧化碳‑聚能剂爆燃冲压相变射流装置及其方法
CN106907135B (zh) * 2017-04-21 2019-07-09 太原理工大学 一种煤层气井下燃料电池加热设备
US11519334B2 (en) * 2017-07-31 2022-12-06 General Electric Company Torch igniter for a combustor
US10981108B2 (en) 2017-09-15 2021-04-20 Baker Hughes, A Ge Company, Llc Moisture separation systems for downhole drilling systems
CN108442914B (zh) * 2018-05-29 2023-04-25 吉林大学 一种用于油页岩原位裂解的系统及方法
CN109025937B (zh) * 2018-06-22 2020-09-08 中国矿业大学 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法
US10580554B1 (en) * 2018-06-25 2020-03-03 Raymond Innovations, Llc Apparatus to provide a soft-start function to a high torque electric device
CA3107466A1 (en) 2018-07-25 2020-01-30 Hayward Industries, Inc. Compact universal gas pool heater and associated methods
US11394198B2 (en) 2019-02-26 2022-07-19 Raymond Innovations, Llc Soft starter for high-current electric devices
CN110486708B (zh) * 2019-04-26 2023-10-20 北京华曦油服石油技术有限公司 一种提高注汽锅炉蒸汽干度的干度提升器及方法
CN110185425B (zh) * 2019-05-31 2022-02-01 苏州大学 一种页岩气的开采方法及系统
WO2021026638A1 (en) * 2019-08-09 2021-02-18 General Energy Recovery Inc. Steam generator tool
WO2022132523A1 (en) * 2020-12-15 2022-06-23 Twin Disc, Inc. Fracturing of a wet well utilizing an air/fuel mixture and multiple plate orifice assembly
CN114033350B (zh) * 2021-11-17 2023-03-24 中国矿业大学 一种甲烷原位燃爆压裂循环式天然气强化抽采系统及方法
CN115522905B (zh) * 2022-11-24 2023-04-07 中国石油大学(华东) 一种页岩气储层甲烷燃爆压裂装置及其控制方法
CN117514120B (zh) * 2024-01-05 2024-04-19 陇东学院 一种直井甲烷原位燃爆压裂装置及方法
CN117868766A (zh) * 2024-02-23 2024-04-12 东营煜煌能源技术有限公司 煤制氢气井井下蒸汽自动配注器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674093A (en) * 1970-06-24 1972-07-04 Dale C Reese Method and apparatus for stimulating the flow of oil wells
US4380265A (en) * 1981-02-23 1983-04-19 Mohaupt Henry H Method of treating a hydrocarbon producing well
RU2209315C2 (ru) * 2001-02-16 2003-07-27 Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (Технический университет) Способ разработки выбросоопасных и газоносных пластов угля
EP2199538A2 (en) * 2008-12-18 2010-06-23 Hydril USA Manufacturing LLC Rechargeable Subsea Force Generating Device and Method
RU2451174C1 (ru) * 2010-12-03 2012-05-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ гидравлического разрыва пласта

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB145209A (en) 1919-05-01 1920-07-02 Henry Charles Dickson Improvements in or relating to internal-combustion engines
US1663228A (en) * 1925-02-16 1928-03-20 John A Zublin Sectional barrel for oil-well pumps
FR823481A (fr) 1937-06-23 1938-01-20 Moteur à combustion interne double effet avec bielles extérieures au cylindre
US2707029A (en) 1950-07-28 1955-04-26 Carroll H Van Hartesveldt Apparatus for obtaining liquids from deep wells
US2803305A (en) 1953-05-14 1957-08-20 Pan American Petroleum Corp Oil recovery by underground combustion
US3284137A (en) 1963-12-05 1966-11-08 Int Minerals & Chem Corp Solution mining using subsurface burner
US3223539A (en) 1964-11-03 1965-12-14 Chevron Res Combustion chamber liner for well gas and air burner
US3456721A (en) 1967-12-19 1969-07-22 Phillips Petroleum Co Downhole-burner apparatus
US3482630A (en) 1967-12-26 1969-12-09 Marathon Oil Co In situ steam generation and combustion recovery
US3522995A (en) 1968-09-05 1970-08-04 Lennart G Erickson Gas-lift for liquid
US3587531A (en) * 1969-07-10 1971-06-28 Eclipse Lookout Co Boiler shell assembly
US3710767A (en) 1969-08-13 1973-01-16 R Smith Eight cycle twin chambered engine
SU599146A1 (ru) * 1973-11-06 1978-03-25 Ждановский металлургический институт Теплообменник непосредственного констакта жидкой и газообразной сред
US4050515A (en) * 1975-09-08 1977-09-27 World Energy Systems Insitu hydrogenation of hydrocarbons in underground formations
US4205725A (en) 1976-03-22 1980-06-03 Texaco Inc. Method for forming an automatic burner for in situ combustion for enhanced thermal recovery of hydrocarbons from a well
US4237973A (en) 1978-10-04 1980-12-09 Todd John C Method and apparatus for steam generation at the bottom of a well bore
US4243098A (en) 1979-11-14 1981-01-06 Thomas Meeks Downhole steam apparatus
US4326581A (en) * 1979-12-27 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Direct contact, binary fluid geothermal boiler
US4431069A (en) 1980-07-17 1984-02-14 Dickinson Iii Ben W O Method and apparatus for forming and using a bore hole
US4411618A (en) 1980-10-10 1983-10-25 Donaldson A Burl Downhole steam generator with improved preheating/cooling features
US4336839A (en) 1980-11-03 1982-06-29 Rockwell International Corporation Direct firing downhole steam generator
US4390062A (en) 1981-01-07 1983-06-28 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator using low pressure fuel and air supply
US4380267A (en) 1981-01-07 1983-04-19 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator having a downhole oxidant compressor
US4385661A (en) 1981-01-07 1983-05-31 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator with improved preheating, combustion and protection features
US4377205A (en) 1981-03-06 1983-03-22 Retallick William B Low pressure combustor for generating steam downhole
US4397356A (en) 1981-03-26 1983-08-09 Retallick William B High pressure combustor for generating steam downhole
US4366860A (en) * 1981-06-03 1983-01-04 The United States Of America As Represented By The United States Department Of Energy Downhole steam injector
US4421163A (en) 1981-07-13 1983-12-20 Rockwell International Corporation Downhole steam generator and turbopump
US4458756A (en) 1981-08-11 1984-07-10 Hemisphere Licensing Corporation Heavy oil recovery from deep formations
US4463803A (en) 1982-02-17 1984-08-07 Trans Texas Energy, Inc. Downhole vapor generator and method of operation
US4442898A (en) 1982-02-17 1984-04-17 Trans-Texas Energy, Inc. Downhole vapor generator
US4861263A (en) * 1982-03-04 1989-08-29 Phillips Petroleum Company Method and apparatus for the recovery of hydrocarbons
US4498531A (en) 1982-10-01 1985-02-12 Rockwell International Corporation Emission controller for indirect fired downhole steam generators
US4471839A (en) 1983-04-25 1984-09-18 Mobil Oil Corporation Steam drive oil recovery method utilizing a downhole steam generator
US4648835A (en) 1983-04-29 1987-03-10 Enhanced Energy Systems Steam generator having a high pressure combustor with controlled thermal and mechanical stresses and utilizing pyrophoric ignition
US4558743A (en) 1983-06-29 1985-12-17 University Of Utah Steam generator apparatus and method
US4522263A (en) 1984-01-23 1985-06-11 Mobil Oil Corporation Stem drive oil recovery method utilizing a downhole steam generator and anti clay-swelling agent
US4682471A (en) 1985-11-15 1987-07-28 Rockwell International Corporation Turbocompressor downhole steam-generating system
US4699213A (en) 1986-05-23 1987-10-13 Atlantic Richfield Company Enhanced oil recovery process utilizing in situ steam generation
US4783585A (en) 1986-06-26 1988-11-08 Meshekow Oil Recovery Corp. Downhole electric steam or hot water generator for oil wells
US4718489A (en) 1986-09-17 1988-01-12 Alberta Oil Sands Technology And Research Authority Pressure-up/blowdown combustion - a channelled reservoir recovery process
SU1481067A1 (ru) * 1987-04-29 1989-05-23 Всесоюзный Научно-Исследовательский Институт Использования Газа В Народном Хозяйстве, Подземного Хранения Нефти, Нефтепродуктов И Сжиженных Газов Парогазогенератор
US4834174A (en) 1987-11-17 1989-05-30 Hughes Tool Company Completion system for downhole steam generator
US4805698A (en) 1987-11-17 1989-02-21 Hughes Tool Company Packer cooling system for a downhole steam generator assembly
US4895206A (en) 1989-03-16 1990-01-23 Price Ernest H Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes
DE3921581A1 (de) 1989-04-27 1990-10-31 Ahmet Guezel Verbrennungsmotor
US4988287A (en) * 1989-06-20 1991-01-29 Phillips Petroleum Company Combustion apparatus and method
US5052482A (en) 1990-04-18 1991-10-01 S-Cal Research Corp. Catalytic downhole reactor and steam generator
US5205360A (en) * 1991-08-30 1993-04-27 Price Compressor Company, Inc. Pneumatic well tool for stimulation of petroleum formations
CA2058255C (en) 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
US5211230A (en) 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
US5355802A (en) 1992-11-10 1994-10-18 Schlumberger Technology Corporation Method and apparatus for perforating and fracturing in a borehole
CA2128761C (en) 1993-07-26 2004-12-07 Harry A. Deans Downhole radial flow steam generator for oil wells
JP2950720B2 (ja) * 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
AU681271B2 (en) 1994-06-07 1997-08-21 Westinghouse Electric Corporation Method and apparatus for sequentially staged combustion using a catalyst
US5525044A (en) 1995-04-27 1996-06-11 Thermo Power Corporation High pressure gas compressor
DE19627893C1 (de) 1996-07-11 1997-11-13 Daimler Benz Ag Hydraulisch betätigte Lenkung für Kraftfahrzeuge
CN2236601Y (zh) * 1995-08-09 1996-10-02 中国海洋石油测井公司 油管输送高能气体压裂点火装置
IT1278859B1 (it) 1995-09-22 1997-11-28 Gianfranco Montresor Motore a scoppio ad elevato rendimento provvisto di pistone a doppio effetto agente in collaborazione con gruppi di alimentazione e di
US5775426A (en) 1996-09-09 1998-07-07 Marathon Oil Company Apparatus and method for perforating and stimulating a subterranean formation
US6044907A (en) * 1998-08-25 2000-04-04 Masek; John A. Two phase heat generation system and method
CN2336312Y (zh) * 1998-09-09 1999-09-01 海尔集团公司 套管换热器
SE514807C2 (sv) 1998-09-10 2001-04-30 Svante Bahrton Dubbelverkande membranpump för konstant tryck och flöde
WO2001040622A1 (en) 1999-11-29 2001-06-07 Shell Internationale Research Maatschappij B.V. Downhole pulser
US6289874B1 (en) * 2000-03-31 2001-09-18 Borgwarner Inc. Electronic throttle control
CN2459532Y (zh) * 2000-12-29 2001-11-14 康景利 蒸汽发生器
CN2506770Y (zh) * 2001-10-19 2002-08-21 中国石油天然气股份有限公司 一种有壳油管传输气体压裂管柱
US7493952B2 (en) 2004-06-07 2009-02-24 Archon Technologies Ltd. Oilfield enhanced in situ combustion process
CN1280519C (zh) * 2004-07-23 2006-10-18 陈玉如 油田井下无氧燃烧加热装置
CA2801108C (en) * 2004-12-09 2014-09-02 David R. Smith Method to deliver energy in a well system
CN1332120C (zh) * 2005-03-28 2007-08-15 中国兵器工业第二一三研究所 投放式压裂器
US7665525B2 (en) 2005-05-23 2010-02-23 Precision Combustion, Inc. Reducing the energy requirements for the production of heavy oil
US7640987B2 (en) 2005-08-17 2010-01-05 Halliburton Energy Services, Inc. Communicating fluids with a heated-fluid generation system
US8091625B2 (en) 2006-02-21 2012-01-10 World Energy Systems Incorporated Method for producing viscous hydrocarbon using steam and carbon dioxide
US20070284107A1 (en) 2006-06-02 2007-12-13 Crichlow Henry B Heavy Oil Recovery and Apparatus
US20080017381A1 (en) 2006-06-08 2008-01-24 Nicholas Baiton Downhole steam generation system and method
US7784533B1 (en) 2006-06-19 2010-08-31 Hill Gilman A Downhole combustion unit and process for TECF injection into carbonaceous permeable zones
US7497253B2 (en) 2006-09-06 2009-03-03 William B. Retallick Downhole steam generator
US20080078552A1 (en) 2006-09-29 2008-04-03 Osum Oil Sands Corp. Method of heating hydrocarbons
US7712528B2 (en) 2006-10-09 2010-05-11 World Energy Systems, Inc. Process for dispersing nanocatalysts into petroleum-bearing formations
US7770646B2 (en) 2006-10-09 2010-08-10 World Energy Systems, Inc. System, method and apparatus for hydrogen-oxygen burner in downhole steam generator
JO2771B1 (en) 2006-10-13 2014-03-15 ايكسون موبيل ابستريم ريسيرتش كومباني Joint development of shale oil through in situ heating using deeper hydrocarbon sources
DE102006052430A1 (de) 2006-11-07 2008-05-08 BSH Bosch und Siemens Hausgeräte GmbH Verdichter mit gasdruckgelagertem Kolben
US7628204B2 (en) 2006-11-16 2009-12-08 Kellogg Brown & Root Llc Wastewater disposal with in situ steam production
CN201050946Y (zh) * 2006-12-04 2008-04-23 李晓明 造雪机用气水混合器
RU2364716C2 (ru) * 2007-10-02 2009-08-20 Открытое акционерное общество "Конструкторское бюро химавтоматики" Способ получения парогаза в скважинном газогенераторе и устройство для его осуществления
CA2638855C (en) 2007-10-08 2015-06-23 World Energy Systems Incorporated System, method and apparatus for hydrogen-oxygen burner in downhole steam generator
WO2009114913A1 (en) 2008-03-19 2009-09-24 VALE SOLUςόES EM ENERGIA S.A. Vitiated steam generator
US20090260811A1 (en) 2008-04-18 2009-10-22 Jingyu Cui Methods for generation of subsurface heat for treatment of a hydrocarbon containing formation
CA2631977C (en) 2008-05-22 2009-06-16 Gokhan Coskuner In situ thermal process for recovering oil from oil sands
DE102008047219A1 (de) 2008-09-15 2010-03-25 Siemens Aktiengesellschaft Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, zugehörige Anlage und Betriebsverfahren dieser Anlage
CA2690105C (en) 2009-01-16 2014-08-19 Resource Innovations Inc. Apparatus and method for downhole steam generation and enhanced oil recovery
US7946342B1 (en) 2009-04-30 2011-05-24 The United States Of America As Represented By The United States Department Of Energy In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)
CN102472094B (zh) 2009-07-17 2015-05-20 世界能源系统有限公司 井下气体生成器的方法及设备
US8075858B1 (en) * 2009-10-07 2011-12-13 White Cliff Technologies, LLC Trumpet shaped element and process for minimizing solid and gaseous pollutants from waste off-gasses and liquid streams
US8656998B2 (en) 2009-11-23 2014-02-25 Conocophillips Company In situ heating for reservoir chamber development
WO2011103190A1 (en) 2010-02-16 2011-08-25 David Randolph Smith Method and apparatus to release energy in a well
US8899327B2 (en) 2010-06-02 2014-12-02 World Energy Systems Incorporated Method for recovering hydrocarbons using cold heavy oil production with sand (CHOPS) and downhole steam generation
RU107961U1 (ru) * 2011-03-16 2011-09-10 Ильдар Рамилевич Калимуллин Вихревая ступень для контактного охлаждения газа
NL2006718C2 (en) 2011-05-04 2012-11-06 Thomassen Compression Syst Bv Piston compressor for compressing gas.
US20130161007A1 (en) 2011-12-22 2013-06-27 General Electric Company Pulse detonation tool, method and system for formation fracturing
US9228738B2 (en) 2012-06-25 2016-01-05 Orbital Atk, Inc. Downhole combustor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674093A (en) * 1970-06-24 1972-07-04 Dale C Reese Method and apparatus for stimulating the flow of oil wells
US4380265A (en) * 1981-02-23 1983-04-19 Mohaupt Henry H Method of treating a hydrocarbon producing well
RU2209315C2 (ru) * 2001-02-16 2003-07-27 Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (Технический университет) Способ разработки выбросоопасных и газоносных пластов угля
EP2199538A2 (en) * 2008-12-18 2010-06-23 Hydril USA Manufacturing LLC Rechargeable Subsea Force Generating Device and Method
RU2451174C1 (ru) * 2010-12-03 2012-05-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ гидравлического разрыва пласта

Also Published As

Publication number Publication date
WO2014004356A1 (en) 2014-01-03
CN104508236A (zh) 2015-04-08
BR112014032496A8 (pt) 2018-01-02
EP2893128A2 (en) 2015-07-15
RU2602949C2 (ru) 2016-11-20
CN104903672A (zh) 2015-09-09
MX353775B (es) 2018-01-29
RU2604357C2 (ru) 2016-12-10
CA2876974A1 (en) 2014-01-03
WO2014004352A3 (en) 2015-06-11
MX354382B (es) 2018-03-02
CN104508236B (zh) 2017-04-26
BR112014032350A2 (pt) 2017-06-27
CN104520528A (zh) 2015-04-15
CN104903672B (zh) 2017-06-06
CA2877595A1 (en) 2014-01-03
EP2867451A1 (en) 2015-05-06
RU2015102141A (ru) 2016-08-10
WO2014004353A1 (en) 2014-01-03
US9383093B2 (en) 2016-07-05
US20130340691A1 (en) 2013-12-26
RU2015102147A (ru) 2016-08-10
CA2877866A1 (en) 2014-01-03
EP2864584A1 (en) 2015-04-29
US9228738B2 (en) 2016-01-05
US20130341026A1 (en) 2013-12-26
CN104520528B (zh) 2017-04-19
MX2014015868A (es) 2015-03-13
BR112014032496A2 (pt) 2017-06-27
US9383094B2 (en) 2016-07-05
SA113340669B1 (ar) 2016-05-01
US20130341015A1 (en) 2013-12-26
US9388976B2 (en) 2016-07-12
CA2876974C (en) 2019-12-31
CN104704194B (zh) 2017-05-31
CN104704194A (zh) 2015-06-10
US20130344448A1 (en) 2013-12-26
SA113340668B1 (ar) 2016-05-10
WO2014004355A1 (en) 2014-01-03
BR112014032350A8 (pt) 2018-01-02
RU2015102142A (ru) 2016-08-10
MX2014015863A (es) 2015-03-26
WO2014004352A2 (en) 2014-01-03

Similar Documents

Publication Publication Date Title
RU2616955C2 (ru) Устройство гидроразрыва пласта
RU2586561C2 (ru) Огневой теплогенератор, система и способ повышения нефтеотдачи пласта
RU2524226C2 (ru) Скважинный парогенератор и способ его использования
US4558743A (en) Steam generator apparatus and method
CA1164793A (en) Direct firing downhole steam generator
US8950471B2 (en) Method of operation of a downhole gas generator with multiple combustion chambers
US20130037266A1 (en) Method for producing viscous hydrocarbon using steam and carbon dioxide
US20060162923A1 (en) Method for producing viscous hydrocarbon using incremental fracturing
RU2015144276A (ru) Интенсификация с помощью природного газа
US5488990A (en) Apparatus and method for generating inert gas and heating injected gas
RU2391497C1 (ru) Способ разработки месторождения высоковязкой нефти
RU2403382C1 (ru) Способ разработки месторождения высоковязкой нефти
RU43306U1 (ru) Установка для термического воздействия на нефтяной пласт
EP1141629B1 (en) Pulsed combustion device and method
RU2471974C2 (ru) Способ обработки призабойной зоны пласта и устройство для его осуществления
CA2893087A1 (en) System and method for heating a well treatment fluid
RU2588509C1 (ru) Забойный парогазогенератор
US9410409B1 (en) Thermal vapor stream apparatus and method
CA1220685A (en) Steam generator having a high pressure combustor having controlled thermal and mechanical stresses and utilizing pyrophoric ignition
CA2644612A1 (en) System, method and apparatus for hydrogen-oxygen burner in downhole steam generator
Goodwin Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200625