RU2612713C1 - Способ получения естественного графита высокой чистоты - Google Patents

Способ получения естественного графита высокой чистоты Download PDF

Info

Publication number
RU2612713C1
RU2612713C1 RU2016109580A RU2016109580A RU2612713C1 RU 2612713 C1 RU2612713 C1 RU 2612713C1 RU 2016109580 A RU2016109580 A RU 2016109580A RU 2016109580 A RU2016109580 A RU 2016109580A RU 2612713 C1 RU2612713 C1 RU 2612713C1
Authority
RU
Russia
Prior art keywords
core
graphite
natural graphite
furnace
purification
Prior art date
Application number
RU2016109580A
Other languages
English (en)
Inventor
Валентин Петрович Перевезенцев
Алексей Викторович Петров
Original Assignee
Акционерное общество "Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" filed Critical Акционерное общество "Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит"
Priority to RU2016109580A priority Critical patent/RU2612713C1/ru
Application granted granted Critical
Publication of RU2612713C1 publication Critical patent/RU2612713C1/ru

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к технологии термохимической очистки углеродных материалов. Предложенный способ очистки естественного графита включает размещение его в керне печи графитации Ачесона, нагревание путем пропускания через него электростатического тока до температуры 2000-2700°C и обработку очистным реагентом, содержащим галогены. Графит размещают в керне печи в виде отдельных одинаковых по размерам блоков сечением, равным сечению керна, отделенных друг от друга плоскими стенками. Толщина стенок составляет 0,25-0,35 от длины блока. Стенки выполнены из конструкционного или электродного графита с пористостью 20-27%. Изобретение обеспечивает снижение общего сопротивление печи, что облегчает ведение процесса нагревания керна, при этом обеспечена чёткая фиксация положения керна как при загрузке печи, так и при ее разгрузке.

Description

Изобретение относится к технологии термохимической очистки углеродных материалов или изделий из него, в том числе для очистки естественного графита. Чистые (с содержанием золы до 0,03%) и особочистые (с содержанием золы <0,001%) углеродные материалы широко применяются в атомной энергетике, в технологиях получения чистых и особочистых металлов, полупроводниковых материалов, а также в производстве электрохимических источников тока.
В соответствии с общей технологией термохимической очистки путем нагревания до температуры выше 1500°С очистка углеродных материалов проводится в печах графитации Ачесона. Очищаемый материал, обожженные или графитированные заготовки, размещают в керне печи, окруженном теплоизоляционными слоями чистой углеродной тонкодисперсной засыпки с содержанием золы не более 2 мас.%, например, из пекового кокса. Через керн пропускают электрический ток, в результате чего керн нагревается до заданной температуры. В определенном температурном интервале проводится обработка керна галогенсодержащими газами (1).
Известен способ получения особочистого графита (2). В нем рекомендуется для очистки заготовок графита использовать обработку керна хладоном-22 (дифторхлорметан - CHF2Cl). Даются также рекомендации по температурному интервалу его использования и по удельному расходу хладона-22. В частности, этот способ может быть использован и для получения естественного графита высокой чистоты. Способ допускает размещение графитового порошка только в тиглях.
Экономически невыгодно использовать этот способ для очистки естественного графита до уровня содержания углерода 99,99% из-за больших расходов на изготовление и эксплуатацию тиглей. Кроме того, при тиглевом варианте для размещения порошка используется только 0,35-0,37 объема керна печи.
Однако для глубокой очистки до уровня ОСЧ-7-3 (содержание углерода 99,999%) этот способ очистки естественного графита пригоден, но очень затратен.
Известен способ термического рафинирования природного графита (3). Суть его заключается в том, что для загрузки естественного графита в печь графитации Ачесона, после засыпки подинного теплоизоляционного слоя, на нем по размеру керна выкладывают "ящик" из графитированных углеродных плит размерами, например, (110-115)×(68-75)×(32-35) мм. Длина "ящика" - это длина керна, а его ширина и высота соответствует ширине и высоте керна. В него засыпают примерно половину загружаемого графита без утрамбовки. Далее по всей длине керна выкладывают сердечник из углеродных графитированных блоков или их боя. Возможна укладка графитированных стержней или трубок с высокой электропроводимостью. Затем в этот «ящик» засыпают остальную часть естественного графита и сверху загружают слой теплоизоляционной засыпки высотой 300-350 мм. При включении тока основная его часть пойдет по сердечнику, который в данном случае играет роль нагревателя, от которого будет нагреваться окружающий его естественный графит. Его очистка будет проходить при температуре 1800-2500С°. Содержание зольных примесей при таком способе в естественном графите неоднородно и колеблется в пределах от 1×10-3 вес.% до 0,5 вес.%.
Недостатком данного способа является то, что получить естественный графит с содержанием углерода 99,99% стабильно не удается. Сердечник-нагреватель не обеспечивает равномерность нагревания графита по всему объему керна.
Многолетний опыт работ по очистке графита до уровня чистоты ОСЧ-7-3 (особочистый) с содержанием углерода 99,999%) показал, что при всех различных способах термической очистки без применения активных реагентов, содержащих Cl и F, максимально что удается - это эпизодически получать графит с содержанием углерода не более 99,99%. Для того чтобы получать графит с содержанием углерода 99,999%, необходимо использовать обработку его очистными реагентами в зоне высокой температуры.
Известен термический способ очистки естественного графита (4). При этом способе естественный графит размещают в керне без тиглей, керн полностью заполняется естественным графитом. Его нагревание до температуры 2700-2900°С осуществляется прямым пропусканием электрического тока через керн. Особенность способа заключается в усилении теплоизоляционных свойств углеродной засыпки путем добавления в ее состав дробленого терморасширенного графита до 15%. Термическую очистку проводят в углеродной засыпке, содержащей технической углерод и терморасширенный графит.
Этот способ с энергетической стороны применительно к очистке естественного графита более экономичен, чем термохимический в тиглях.
Однако он имеет ряд существенных недостатков. Во-первых, при этом способе эффективность использования газообразных реагентов применительно к очистке естественного графита невысокая, поскольку газопроницаемость мелкодисперсного естественного графита с размером частиц менее 20 мкм меньше, чем у окружающей керн теплоизоляционной пересыпки с размером частиц менее 90 мкм. Очистной реагент в основном будет чистить теплоизоляционную пересыпку, а естественный графит - только частично, за счет диффузии примесных элементов из естественного графита в более чистую пересыпку. Во-вторых, удельное электросопротивление естественного графита имеет тот же порядок величины, что и теплоизоляционная пересыпка. При этом с учетом высокой температуры процесса (2800°С) необходимо иметь толщину теплоизоляционных слоев не менее 400 мм для сохранения целостности стен и пода печи. Поэтому электросопротивление керна и суммарное сопротивление всех теплоизоляционных слоев, которые можно рассматривать как параллельный керну проводник, будут близки, что приведет к утечке электроэнергии через эти слои. Не случайно в примере приводится расход энергии 16000 кВт*ч на 2 тонны естественного графита. Обычные расходы электроэнергии процесса очистки составляют около 4300-4500 кВтч/т при температурах керна 2800°С.
Кроме того, при такой загрузке естественного графита в керн трудно определить границы керна при разгрузке печи, поскольку визуально будет трудно обозначить границы керна и отделить естественный графит от теплоизоляционной пересыпки. В приведенной таблице (4) выход годного материала (естественного графита с содержанием углерода 99,99%) не превышает в большинстве случаев 50%, такой низкий выход годной продукции обусловлен указанными недостатками прототипа.
Задачей предлагаемого способа очистки естественного графита является повышение выхода годного продукта и снижение удельных расходов энергии при термохимической очистке в аналогичных печах графитации Ачесона.
Предлагается естественный графит размещать в печи графитации Ачесона не сплошным керном по всей длине печи, а в виде отдельных одинаковых блоков сечением, равным сечению керна. Блоки отделены друг от друга плоскими стенками, выполненными из конструкционного или электродного графита с пористостью не менее 20%. Толщина графитовых стенок должна быть в пределах 0,25-0,35 от длины блока естественного графита.
Предлагаемые условия очистки естественного графита объясняются следующим образом. Следует иметь в виду, что естественный графит имеет удельное электросопротивление близким или одного порядка с удельным электросопротивлением теплоизоляционных пекококсовых пересыпок. Поскольку суммарная площадь теплоизоляционных слоев в поперечном сечении печи обычно превышает площадь керна, то сопротивление керна в этом случае будет близко сопротивлению всех теплоизоляционных слоев. Это приведет, в соответствии с законом Кирхгофа, к тому, что электрический ток распределится между керном и теплоизоляционными слоями, то есть будет разогреваться не только керн, но и теплоизоляционные слои углеродной дисперсной пересыпки. Поэтому, чтобы снизить электросопротивление керна и тем самым создать максимально выгодное для керна распределение силы тока по сечению печи, вводятся разделительные стенки из графита, удельное электросопротивление которого на два порядка ниже, чем у любых дисперсных углеродных материалов. Предлагается толщину поперечных стенок между блоками естественного графита ограничить, а именно брать их не более 0,35 и не менее 0,25 от длины блока естественного графита. В этом случае мы уменьшаем электросопротивление керна примерно на 25-30% и способствуем лучшему распределению силы тока по сечению печи, то есть увеличению силы тока, протекающего по керну печи, и тем самым более быстрому его нагреву и увеличению КПД.
Кроме того, опыт термической очистки показал, что только нагреванием до температур 2900-3000°C не удается добиться чистоты материала <0,01% (по содержанию углерода 99,99%), поскольку одновременно с керном разогреваются и зазоленные теплоизоляционные материалы (зола до 2 мас.%). В процессе охлаждения печи зола (примесные элементы: Si, Fe, Mn, Al, Ca и т.д.), из теплоизоляции в результате диффузии, опять попадает в керн, загрязняя очищаемый продукт. Поэтому для обеспечения нужной степени очистки углеродных материалов керн подвергается обработке очистным реагентом, содержащим галогены. Чаще всего используют либо хлор, либо один из хладонов, содержащих хлор и фтор. В частности, в (2) предлагается использовать хладон-22 (CHF2Cl). Газообразные хлориды и фториды примесных элементов легко удаляются из керна, что обеспечивает низкое содержание золы в очищаемом продукте, в частности в естественном графите, и достижение чистоты до уровня 99,99% и 99,999% по содержанию углерода. Мелкодисперсные материалы, в том числе естественный графит, имеют низкую гидравлическую проницаемость для газов. Поэтому для обеспечения движения очистных реагентов по керну служат разделительные стенки из графита. Предлагается брать графит с пористостью не менее 20%, так как при такой пористости большая часть пор (~90%) является открытой. Механизм очистки в данном случае такой: газообразный очистной реагент разлагается на атомарные хлор и фтор, которые движутся по порам графитовых стенок и вступают в реакцию с зольными элементами, образуя хлориды и фториды. Газообразные хлориды и фториды движутся под зонт, где отсосом воздуха обеспечивается небольшое разрежение (10-15 мм вод. ст.). При этом за счет диффузии зольные примеси (Ca, Fe, Mn, Mg и т.д.) из нагретого до температуры от 2000°C до 2700°С естественного графита движутся к графитовым стенкам, в порах которых концентрация указанных зольных примесей значительно меньше, чем в естественном графите.
Таким образом, размещение в составе керна графитовых разделительных стенок необходимо как для снижения электросопротивления керна, так и для организации химической очистки естественного графита при высоких температурах. При этом соотношение размеров - толщины разделительных стенок и длины блоков естественного графита, указанных выше, а именно δст=(0,35-0,25) lбл - определяет по существу компоновку керна при термохимической очистке по предлагаемому способу. Сумма толщин разделительных стенок определяет, насколько уменьшается сопротивление печи по сравнению с тем, какое она имеет при полном заполнении керна естественным графитом.
Кроме того, наличие разделительных стенок четко фиксирует керн по ширине и длине, тем самым облегчает вопрос организации керна как при загрузке печи, так и при разгрузке. Не случайно в патенте (4) низкие значения выхода годной продукции, возможно, связаны и с трудностями фиксации границ керна при разгрузке печи.
Введение принципа блочной загрузки естественного графита в печь графитации для его очистки и установка графитовых разделительных стенок решает три важных вопроса для очистки естественного графита. Во-первых, снижение общего сопротивления печи, что облегчает ведение процесса нагревания керна. Во-вторых, обеспечивает обработку керна очистными реагентами, содержащими галогены, и, в-третьих, четко фиксирует положение керна как при загрузке печи, так и особенно при ее разгрузке.
Предложенное решение обеспечивает получение естественного графита с содержанием золы не более 0,01%, а также 0,001% (с содержанием углерода 99,99% и 99,999% соответственно).
Предлагаемый способ был опробован в производственных условиях. В печь с керном 1000×1000×8000 мм были загружены 9 блоков естественного графита размерами 1000×1000×630 (b×h×l) мм, разделенных стенками из заготовок 200×200×1000 мм (5 заготовок на одну стенку) из графита ГМЗ, имеющего разброс значений по пористости от 20% до 27%.
Всего в печь было загружено примерно 3,25 т графита ГМЗ (10 стенок) и 5,67 м3 (2,55 т) естественного графита. Кампания термохимической очистки естественного графита проведена за 20 часов. Керн нагрели до 2500°C. Обработку керна фреоном-22 вели в течение 7 часов. Фреона-22 израсходовано 175 кг. В результате очистки получили зольность естественного графита менее 0,01% (<100 ppm) (по элементному составу: Si ~ 35 ppm, Mn, Fe, Cu, Ca ~ по 15 ppm каждого).
Источники информации
1. В.П. Соседов, Е.Ф. Чалых. Графитация углеродных материалов. М.: «Металлургия», 1987, с. 31-42.
2. Патент RU 2394758 от 08.08.2008 г. «Способ получения чистого графита».
3. А.С. Фиалков. Процессы и аппараты производства порошковых углеграфитовых материалов. М.: Аспект-Пресс, 2008. С. 590-604.
4. Патент RU 2427531 от 02.10.2010 г. «Способ получения графита высокой чистоты».

Claims (1)

  1. Способ очистки естественного графита, включающий размещение его в керне печи графитации Ачесона, нагревание путем пропускания через него электростатического тока до температуры 2000-2700°C и обработку очистным реагентом, содержащим галогены, отличающийся тем, что естественный графит размещают в керне печи графитации в виде отдельных одинаковых по размерам блоков сечением, равным сечению керна, отделенных друг от друга плоскими стенками с толщиной, равной 0,25-0,35 длины блока, выполненными из конструкционного или электродного графита с пористостью 20-27%.
RU2016109580A 2016-03-17 2016-03-17 Способ получения естественного графита высокой чистоты RU2612713C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109580A RU2612713C1 (ru) 2016-03-17 2016-03-17 Способ получения естественного графита высокой чистоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109580A RU2612713C1 (ru) 2016-03-17 2016-03-17 Способ получения естественного графита высокой чистоты

Publications (1)

Publication Number Publication Date
RU2612713C1 true RU2612713C1 (ru) 2017-03-13

Family

ID=58458053

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109580A RU2612713C1 (ru) 2016-03-17 2016-03-17 Способ получения естественного графита высокой чистоты

Country Status (1)

Country Link
RU (1) RU2612713C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210017029A1 (en) * 2017-12-27 2021-01-21 Applied Materials, Inc. Process for manufacturing a silicon carbide coated body
CN114368747A (zh) * 2020-10-15 2022-04-19 沈阳铝镁设计研究院有限公司 一种负极石墨化炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1692937A1 (ru) * 1988-07-05 1991-11-23 Предприятие П/Я М-5409 Способ пакетировки углеродных цилиндрических заготовок дл графитации
SU1765115A1 (ru) * 1990-06-12 1992-09-30 Запорожский Филиал Всесоюзного Научно-Исследовательского И Конструкторского Института "Цветметавтоматика" Способ укладки углеродистых заготовок в печи графитации
RU2333152C1 (ru) * 2006-12-15 2008-09-10 Институт физики твердого тела РАН Способ очистки графитовых изделий
RU2394758C2 (ru) * 2008-08-08 2010-07-20 Общество с ограниченной ответственностью "ГрафитЭл-Московский электронный завод" Способ получения чистого графита
RU2427531C1 (ru) * 2010-02-10 2011-08-27 Институт новых углеродных материалов и технологий (Закрытое акционерное общество), (ИНУМиТ(ЗАО)) Способ получения графита высокой чистоты

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1692937A1 (ru) * 1988-07-05 1991-11-23 Предприятие П/Я М-5409 Способ пакетировки углеродных цилиндрических заготовок дл графитации
SU1765115A1 (ru) * 1990-06-12 1992-09-30 Запорожский Филиал Всесоюзного Научно-Исследовательского И Конструкторского Института "Цветметавтоматика" Способ укладки углеродистых заготовок в печи графитации
RU2333152C1 (ru) * 2006-12-15 2008-09-10 Институт физики твердого тела РАН Способ очистки графитовых изделий
RU2394758C2 (ru) * 2008-08-08 2010-07-20 Общество с ограниченной ответственностью "ГрафитЭл-Московский электронный завод" Способ получения чистого графита
RU2427531C1 (ru) * 2010-02-10 2011-08-27 Институт новых углеродных материалов и технологий (Закрытое акционерное общество), (ИНУМиТ(ЗАО)) Способ получения графита высокой чистоты

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210017029A1 (en) * 2017-12-27 2021-01-21 Applied Materials, Inc. Process for manufacturing a silicon carbide coated body
CN114368747A (zh) * 2020-10-15 2022-04-19 沈阳铝镁设计研究院有限公司 一种负极石墨化炉

Similar Documents

Publication Publication Date Title
JP6151747B2 (ja) グラファイト粉末の製造および処理方法
RU2546268C2 (ru) Углеродное изделие, способ изготовления углеродного изделия и его использование
RU2612713C1 (ru) Способ получения естественного графита высокой чистоты
Shang et al. Phase stability in α-and β-rhombohedral boron
JP6065007B2 (ja) 金属ケイ素及び多孔質炭素の製造方法
US9637387B2 (en) Method for repairing reduced graphene oxide
Yasuda et al. Electrolytic reduction of a powder-molded SiO2 pellet in molten CaCl2 and acceleration of reduction by Si addition to the pellet
JP4856422B2 (ja) 耐久性のある黒鉛体及びその製造方法
PL110648B1 (en) Method of obtaining carbon black from acetylene
EP3348677A1 (en) Lining of cathode assembly of electrolysis cell for producing aluminium
ES2978980T3 (es) Aditivos de acción catalítica para coques procedentes de petróleo o procedentes de carbón
US1271713A (en) Method for the production of silicon tetrachlorid.
CN105645396A (zh) 一种连续式直流超高温石墨化电炉及使用方法
CN109072464B (zh) 一种对生产原铝的电解槽的阴极进行衬里的方法
US2983600A (en) Purifying titanium sponge
GB1586367A (en) Electrical resistance furnaces
WO2017105389A1 (en) A high carbon grade graphite block and a method to make it
RU2707304C2 (ru) Катодная подина для производства алюминия
JP2004143557A (ja) 金属チタン製錬用の消耗性炭素陽極
US749418A (en) Method of making carbon articles
US417943A (en) James burgess readman
JP7002170B2 (ja) 黒鉛粉末の製造方法
AU2016301095B2 (en) Method for lining a cathode assembly of an electrolysis tank for producing primary aluminium (variants)
RU2593247C1 (ru) Способ футеровки катодного устройства электролизера для получения алюминия
KR102703820B1 (ko) 코크스의 표면 개질 및 고순도화 방법