RU2610506C1 - Способ получения наночастиц магнетита (варианты) - Google Patents
Способ получения наночастиц магнетита (варианты) Download PDFInfo
- Publication number
- RU2610506C1 RU2610506C1 RU2015154755A RU2015154755A RU2610506C1 RU 2610506 C1 RU2610506 C1 RU 2610506C1 RU 2015154755 A RU2015154755 A RU 2015154755A RU 2015154755 A RU2015154755 A RU 2015154755A RU 2610506 C1 RU2610506 C1 RU 2610506C1
- Authority
- RU
- Russia
- Prior art keywords
- iron
- iii
- magnetite
- stabilizer
- ethylene glycol
- Prior art date
Links
- 239000002069 magnetite nanoparticle Substances 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 179
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000003381 stabilizer Substances 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000011541 reaction mixture Substances 0.000 claims abstract description 17
- 150000003839 salts Chemical group 0.000 claims abstract description 15
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 12
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 12
- 230000007062 hydrolysis Effects 0.000 claims abstract description 12
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 12
- 229920002125 Sokalan® Polymers 0.000 claims abstract description 9
- 239000004584 polyacrylic acid Substances 0.000 claims abstract description 9
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 7
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims abstract description 7
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 7
- 150000001735 carboxylic acids Chemical class 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 238000001556 precipitation Methods 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 42
- 150000001734 carboxylic acid salts Chemical class 0.000 claims description 14
- 150000002334 glycols Chemical class 0.000 claims description 11
- 230000002829 reductive effect Effects 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012716 precipitator Substances 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 229920000867 polyelectrolyte Polymers 0.000 claims 1
- 239000012798 spherical particle Substances 0.000 abstract description 25
- 230000015572 biosynthetic process Effects 0.000 abstract description 14
- 238000003786 synthesis reaction Methods 0.000 abstract description 11
- 229920001223 polyethylene glycol Polymers 0.000 abstract description 7
- 239000003814 drug Substances 0.000 abstract description 4
- 239000002202 Polyethylene glycol Substances 0.000 abstract description 3
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 239000013543 active substance Substances 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 abstract 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 74
- 239000003153 chemical reaction reagent Substances 0.000 description 40
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 37
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 27
- 239000001632 sodium acetate Substances 0.000 description 27
- 235000017281 sodium acetate Nutrition 0.000 description 27
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 21
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- 238000012797 qualification Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 150000002505 iron Chemical class 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000004280 Sodium formate Substances 0.000 description 4
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 description 4
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 4
- 235000019254 sodium formate Nutrition 0.000 description 4
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 229910021576 Iron(III) bromide Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 150000002506 iron compounds Chemical class 0.000 description 3
- 229910000398 iron phosphate Inorganic materials 0.000 description 3
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 3
- AQBLLJNPHDIAPN-LNTINUHCSA-K iron(3+);(z)-4-oxopent-2-en-2-olate Chemical compound [Fe+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O AQBLLJNPHDIAPN-LNTINUHCSA-K 0.000 description 3
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 description 3
- HEJPGFRXUXOTGM-UHFFFAOYSA-K iron(3+);triiodide Chemical compound [Fe+3].[I-].[I-].[I-] HEJPGFRXUXOTGM-UHFFFAOYSA-K 0.000 description 3
- NPFOYSMITVOQOS-UHFFFAOYSA-K iron(III) citrate Chemical compound [Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NPFOYSMITVOQOS-UHFFFAOYSA-K 0.000 description 3
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 3
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 3
- -1 nitrogen-containing organic compounds Chemical class 0.000 description 3
- 238000004729 solvothermal method Methods 0.000 description 3
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 2
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 2
- 229910021579 Iron(II) iodide Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- KAEAMHPPLLJBKF-UHFFFAOYSA-N iron(3+) sulfide Chemical compound [S-2].[S-2].[S-2].[Fe+3].[Fe+3] KAEAMHPPLLJBKF-UHFFFAOYSA-N 0.000 description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 2
- LNOZJRCUHSPCDZ-UHFFFAOYSA-L iron(ii) acetate Chemical compound [Fe+2].CC([O-])=O.CC([O-])=O LNOZJRCUHSPCDZ-UHFFFAOYSA-L 0.000 description 2
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 2
- FZGIHSNZYGFUGM-UHFFFAOYSA-L iron(ii) fluoride Chemical compound [F-].[F-].[Fe+2] FZGIHSNZYGFUGM-UHFFFAOYSA-L 0.000 description 2
- BQZGVMWPHXIKEQ-UHFFFAOYSA-L iron(ii) iodide Chemical compound [Fe+2].[I-].[I-] BQZGVMWPHXIKEQ-UHFFFAOYSA-L 0.000 description 2
- WALCGGIJOOWJIN-UHFFFAOYSA-N iron(ii) selenide Chemical compound [Se]=[Fe] WALCGGIJOOWJIN-UHFFFAOYSA-N 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 2
- 235000010334 sodium propionate Nutrition 0.000 description 2
- 239000004324 sodium propionate Substances 0.000 description 2
- 229960003212 sodium propionate Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000004674 formic acids Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 239000002122 magnetic nanoparticle Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000004672 propanoic acids Chemical class 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- KJUJKCNXQZCICQ-UHFFFAOYSA-N selanylideneiron(1+) Chemical compound [Fe+]=[Se] KJUJKCNXQZCICQ-UHFFFAOYSA-N 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/08—Ferroso-ferric oxide [Fe3O4]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Compounds Of Iron (AREA)
Abstract
Изобретение может быть использовано в медицине, фотонике, электронике. Получение наночастиц магнетита Fe3O4 осуществляют методом высокотемпературного восстановительного гидролиза соединений железа (III) среде этиленгликоля в присутствии осадителя и стабилизатора. В качестве осадителя используют соли низших карбоновых кислот и щелочных металлов. Стабилизатор выбирают из группы полиэлектролитов, полимеров или поверхностно-активных веществ. В качестве стабилизатора используют вещества, выбранные из группы: додецилсульфат натрия, цетилтриметиламмоний бромид, полиэтиленгликоль, полиакриловая кислота. В качестве исходного раствора используют смесь, содержащую воду в количестве 0,6-8,0 об.%, соль низшей карбоновой кислоты и щелочного металла в количестве, соответствующем мольному соотношению Fe3+/соль карбоновой кислоты, равному 1/3-1/15, и стабилизатор в количестве, соответствующем мольному соотношению стабилизатор/Fe3+, равному 1/5-1/10, остальное этиленгликоль. Полученную реакционную смесь нагревают в атмосферной среде до 150-190°С и выдерживают при этой температуре до полного осаждения магнетита. Изобретение позволяет проводить синтез в одну стадию, получать сферические частицы магнетита со средним диаметром от 50 до 300 нм. 2 н.п. ф-лы, 1 ил., 11 табл., 11 пр.
Description
Изобретение относится к технологии получения оксидов железа и непосредственно касается получения наночастиц Fe3O4 - магнетита, который может быть использован в медицине, фотонике, электронике и катализе.
Магнетит (Fe3O4) - сложный оксид железа, иначе называемый закись-окись железа (FeO⋅Fe2O3), широко распространен как минерал черного цвета, обладающий магнитными свойствами.
В последние десятилетия особое внимание со стороны ученых и технологов уделяется синтезу наноразмерных частиц, в том числе магнетита. Известно применение магнетита в форме наночастиц в биомедицине [US 2014227176, A61K 33/02, 2014; US 20100224823, B82Y 30/00, 2010], радиотехнике и фотокатализе [US 2013089492, С01В 13/00, 2013]. Известны способы получения магнетита в дисперсионной среде при использовании в качестве исходных реагентов железосодержащих соединений.
Известны способы получения сферических частиц магнетита диаметром более 30 нм, предусматривающие использование автоклава (сольвотермальный синтез) или добавление щелочи в качестве осадителя (высокотемпературный восстановительный гидролиз/полиольный синтез). Сольвотермальный синтез предполагает проведение реакций с образованием магнетита при повышенных температуре и давлении. Для обеспечения этих условий используют автоклав [Deng Н., Li X. L., Peng Q., Wang, X., Chen J.P., Li Y.D. Monodisperse magnetic single-crystal ferrite microspheres // Angew. Chem. Int. Ed. 2005. Vol. 44. P. 2782-2785; Lin M., Huang H., Liu Z., Liu Y., Ge J., Fang Y. Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions // Langmuir. 2013. Vol. 29. №49. P. 15433-15441; Xuan S.; Wang Y.-X.J.; Yu J.C; Leung K.C. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles // Chem. Mater. 2009. Vol. 21. P. 5079-5087]. Описан метод высокотемпературного восстановительного гидролиза соединений железа (III) мягким восстановителем при повышенной температуре [Nanomaterials: A danger or a promise? A chemical and biological perspective, edited by R. Brayner, F. Fievet, Th. Coradin. Springer-Verlag, London, 2013, 399 р.]. В качестве растворителей в данной работе выбраны полиолы, что обусловлено тем, что они являются полярными дисперсионными средами и мягкими восстановителями, а также обладают высокой температурой кипения.
Известно, что для получения частиц магнетита размером более 30 нм применяется сольвотермальный метод синтеза или высокотемпературный восстановительный гидролиз. В этих методах в качестве исходных соединений используется широкая группа солей железа, а именно: хлорид железа (III), хлорид железа (II), сульфат железа (III), сульфат железа (II), нитрат железа (III), нитрат железа (II), фторид железа (III), фторид железа (II), бромид железа (III), бромид железа (II), йодид железа (III), йодид железа (II), сульфид железа (III), сульфид железа (II), селенид железа (III), селенид железа (II), теллурид железа (III), теллурид железа (II), ацетат железа (III), ацетилацетонат железа (III), ацетат железа (II), оксалат железа (III), оксалат железа (II), цитрат железа (III), цитрат железа (II), фосфат железа (III) [US 20100224823, B82Y 30/00, 2010].
В качестве дисперсионной среды в данных методах используют, в основном, гликоли: этиленгликоль, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль и полиэтиленгликоли [US 20100224823, B82Y 30/00, 2010], или смесь гликолей с аминоспиртами (этаноламином, диэтаноламином, триэтаноламином, 3-аминопропанолом [CN 103274477 В, B82Y 30/00, 2013]) или с другими спиртами, такими как сорбитол, этанол, глицерин, триэтиленгликоль [CN 102258978 В, B01J 20/30, 2012].
Процесс образования магнетита из соединений железа в среде гликолей в ряде случаев проводят в присутствии стабилизаторов, например органических кислот (янтарной, адипиновой, лимонной, яблочной, винной), полиакриловой кислоты [US 20100224823 A1, C01G 49/08, 2007; CN 102895958 В, B82Y 30/00, 2013] или азотсодержащих органических соединений (гексаметилендиамина, полиэтиленимина) [CN 103274477 В, B82Y 30/00, 2013; CN 102895958 В, B82Y 30/00, 2013], ПАВ и электролитов [US 20100224823]. При получения частиц магнетита рассматриваемыми методами в исходную реакционную среду добавляют осадители, в качестве которых используется широкая группа химических соединений, таких как гидроксиды, например гидроокись натрия [CN 102895958 В, B82Y 30/00, 2013], карбонаты, бикарбонаты, фосфаты, гидрофосфаты, дигидрофосфаты [US 20100224823 A1, C01G 49/08, 2007]. Процессы во всех цитированных выше способах проводят при высоких температурах (в пределах 180-300°С).
Наиболее близким по своей технической сущности аналогом предлагаемого изобретения является известный способ получения коллоидного магнетита нанокристаллической структуры с размерами наночастиц 30-300 нм, заключающийся в проведении высокотемпературного восстановительного гидролиза соединений железа в среде гликолей в присутствии стабилизаторов (ПАВ и электролитов) и осадителя при температуре 100-320°С в среде азота [US 20100224823, B82Y 30/00, 2010]. Среди возможных исходных реагентов в данном изобретении в качестве растворителей названы гликоли, такие как этиленгликоль, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль и полиэтиленгликоль, в качестве стабилизаторов - полиакриловая кислота, полиметакриловая кислота и в качестве осадителей - гидроксиды, карбонаты, бикарбонаты, фосфаты, гидрофосфаты, дигидрофосфаты. В качестве исходных железосодержащих соединений в данном известном способе используется широкая группа солей железа: хлорид железа (II), хлорид железа (III), сульфат железа (III), сульфат железа (II), нитрат железа (III), нитрат железа (II), фторид железа (III), фторид железа (II), бромид железа (III), бромид железа (II), йодид железа (III), йодид железа (II), сульфид железа (III), сульфид железа (II), селенид железа (III), селенид железа (II), теллурид железа (III), теллурид железа (II), ацетат железа (III), ацетат железа (II), ацетилацетонат железа (III), ацетилацетонат железа (II), оксалат железа (III), оксалат железа (II), цитрат железа (III), цитрат железа (II), фосфат железа (III), фосфат железа (II).
Согласно способу-прототипу синтез магнетита включает следующие стадии:
1) приготовление гликолевых растворов исходных реагентов (раствор осадителя и раствор, содержащий соль железа и стабилизатор);
2) барботирование азота через нагретый раствор осадителя;
3) нагревание раствора, содержащего соль железа, и стабилизатор и выдерживание его при заданной температуре в течение 30 мин;
4) введение в нагретый раствор, содержащий соль железа, стабилизатор, раствор осадителя;
5) выдерживание реакционной смеси при заданной температуре до получения конечного продукта;
6) промывку конечного продукта смесью воды и спирта.
В качестве недостатка известного способа-прототипа можно назвать стадии нагрева раствора осадителя в атмосфере азота и раствора соли железа и стабилизатора перед синтезом частиц, а также проведение синтеза путем введения осадителя в раствор соли железа и стабилизатора. Данные манипуляции являются излишними, поскольку усложняют подготовку исходных реагентов и предполагают существенно большую трудоемкость при проведении процесса.
С целью повышения технологичности процесса получения наночастиц магнетита предлагаются 2 варианта осуществления Способа получения наночастиц магнетита. Способ получения наночастиц магнетита (Вариант 1) осуществляют высокотемпературным восстановительным гидролизом соединений железа (III), растворимых в гликолях, и процесс проводят в среде этиленгликоля в присутствии осадителя и стабилизатора, причем в качестве осадителя используют соли низших карбоновых кислот и щелочных металлов, в качестве стабилизатора используют вещества, выбранные из группы: додецилсульфат натрия, цетилтриметиламмоний бромид, полиэтиленгликоль, полиакриловая кислота, а в качестве исходного гликолевого раствора используют смесь, содержащую воду в количестве 0,6-8,0 об. %, соль низшей карбоновой кислоты и щелочного металла в количестве, соответствующем мольному соотношению Fe3+/соль карбоновой кислоты, равному 1/3-1/15, и стабилизатор в количестве, соответствующем мольному соотношению стабилизатор/Fe3+, равному 1/5-1/10, и остальное этиленгликоль, и полученную реакционную смесь нагревают в атмосферной среде до 150-190°С и выдерживают при этом температурном режиме до полного осаждения магнетита.
Способ получения наночастиц магнетита (Вариант II) осуществляют высокотемпературным восстановительным гидролизом соединений железа (III), растворимых в гликолях, и процесс проводят в среде этиленгликоля в присутствии осадителя, в качестве которого используют соли низших карбоновых кислот и щелочных металлов, а в качестве исходного раствора используют смесь, содержащую воду в количестве 3 об. %, а также соль низшей карбоновой кислоты и щелочного металла в количестве, соответствующем мольному соотношению Fe3+/соль карбоновой кислоты, равному 1/9, и этиленгликоль - остальное, и полученную реакционную смесь нагревают в атмосферной среде до 175°С и выдерживают при этом температурном режиме до полного осаждения магнетита.
Оба варианта направлены на выполнении е одной и той же технической задачи и имеют ряд общих признаков. В обоих вариантах процесс синтеза проводится по одной и той же схеме в схожих условиях: высокотемпературным восстановительным гидролизом соединений железа (III), растворимых в гликолях, и процесс проводят в этиленгликоле в атмосферной среде в присутствии осадителя, в качестве которого используют соли низших карбоновых кислот и щелочных металлов. Предлагаемый способ включает следующие стадии:
1) получение реакционной среды путем смешивания исходных реагентов;
2) нагревание и выдерживание реакционной массы в атмосферной среде при температуре 150-190°С (Вариант I) и при 175°С (Вариант II), осуществляемые до полного осаждения магнетита;
3) выделение целевого продукта.
Предлагаемый способ (Вариант I), как и способ-прототип, осуществляется путем восстановительного гидролиза соединений железа (III) в присутствии осадителя и стабилизатора или в присутствии только осадителя (Вариант II), но в отличие от прототипа все этапы предлагаемого способа проводят в атмосферной среде, а не в среде инертного газа (азота), а синтез частиц осуществляют в одну стадию, что приводит к упрощению аппаратурного оформления процесса.
В предлагаемом способе в качестве источника железа могут быть использованы соединения железа (III), растворимые в гликолях, например хлорид железа (III), сульфат железа (III), нитрат железа (III), фторид железа (III), бромид железа (III), йодид железа (III), ацетат железа (III), ацетилацетонат железа (III), оксалат железа (III), цитрат железа (III), фосфат железа (III). Предпочтительным является использование хлорида железа (III) 6-водного.
Необходимым компонентом при синтезе частиц магнетита согласно предлагаемому способу является осадитель, так как его использование обусловлено необходимостью образования в процессе синтеза промежуточного соединения железа, которое в процессе гидролиза и восстановления Fe3+ до Fe2+ образует Fe(OH)2 с последующим получением магнетита Fe3O4. В прототипе в качестве осадителя предлагают соединения, выбранные из группы: гидроксиды, карбонаты, гидрокарбонаты, дигидрофосфаты. В отличие от прототипа в предлагаемом способе (обоих его вариантах) в качестве осадителя используются соли низших карбоновых кислот и щелочных металлов, растворимые в гликолях, например натриевые соли уксусной, муравьиной и пропионовой кислот. Выбор именно этих солей в качестве осадителей объясняется тем, что они, с одной стороны, обеспечивают относительно постоянный рН и, с другой, - являются исходным реагентом для образования промежуточных соединений при синтезе сферических частиц магнетита.
По варианту 1 предлагаемый способ, как и в прототипе, осуществляется в присутствии стабилизаторов. В качестве стабилизаторов в предлагаемом способе используются: додецилсульфат натрия, цетилтриметиламмоний бромид, относящиеся к классу поверхностно-активных веществ, полиэтиленгликоли с разной молекулярной массой, например полиэтиленгликоль-400, относящиеся к классу электролитов, полимеры на примере полиакриловой кислоты. Роль стабилизатора в данном процессе заключается в том, что его молекулы адсорбируются на поверхности частиц магнетита, предотвращая их агрегацию. По варианту 2 процесс протекает без присутствия стабилизатора.
По данным метода динамического светорассеяния по предлагаемому способу, варьируя условия синтеза, получаются частицы со средним размером от 50 до 300 нм. Результаты сканирующей электронной микроскопии показали, что по предлагаемому способу в обоих его вариантах исполнения образуются сферические частицы, представляющие собой агломераты частиц размером 5-15 нм. Ниже приводится микрофотография частиц магнетита, полученных по предлагаемому способу (Фиг. 1).
Таким образом, по предлагаемому способу получаются наночастицы магнетита, удовлетворяющие требованиям различных областей техники, например медицины, электроники, фотоники и катализа. Достоинство нового способа заключается и в том, что он является технологически простым и легко масштабируемым, поскольку осуществляется в атмосферной среде, в одну стадию, а также с использованием доступных реактивов и стандартного оборудования, не требующего для работы специальных допусков.
Ниже изобретение иллюстрируется следующими примерами.
Пример 1
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда», полиэтиленгликоль-400 (ПЭГ-400).
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и ацетата натрия 3-водного помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 110 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 24 мл раствора ацетата натрия (0,25 М) и 0,036 мл ПЭГ-400 (10 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/5, мольное соотношение стабилизатор/ Fe3+ - 1/5. Общее содержание воды - 3,0 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 175°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 2
В качестве исходных реактивов используют хлорид железа (III) 6-водный, формиат натрия, этиленгликоль, все не ниже квалификации «чда», полиэтиленгликоль-400 (ПЭГ-400).
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и формиата натрия помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 70 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 37,5 мл раствора формиата натрия (0,45 мМ), 1,4 мл воды (общее содержание воды 2,0 об. %) и 0,018 мл ПЭГ-400 (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9, мольное соотношение стабилизатор/Fe3+ - 1/10. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 185°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 3
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда», додецилсульфат натрия.
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного, ацетата натрия 3-водного и додецилсульфата натрия помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 100 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 44 мл раствора ацетата натрия (0,45 М) и 50 мл додецилсульфата натрия (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9, мольное соотношение стабилизатор/Fe3+ - 1/10. Общее содержание воды - 3,0 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 175°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 4
В качестве исходных реактивов используют хлорид железа (III) 6-водный, пропионат натрия, этиленгликоль, все не ниже квалификации «чда», полиэтиленгликоль-400 (ПЭГ-400).
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и формиата натрия помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 50 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 37,5 мл раствора пропионата натрия (0,45 М), 5,4 мл воды (общее содержание воды 6,0 об. %) и 0,018 мл ПЭГ-400 (5 мМ).
Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9, мольное соотношение стабилизатор/Fe3+ - 1/10. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 160°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 5
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда», полиэтиленгликоль-400 (ПЭГ-400).
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и ацетата натрия 3-водного помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 80 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 14,4 мл раствора ацетата натрия (0,15 М) и 0,018 мл ПЭГ-400 (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/3, мольное соотношение стабилизатор/Fe3+ - 1/10. Общее содержание воды - 1,4 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 175°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 6
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия, этиленгликоль, все не ниже квалификации «чда», полиэтиленгликоль-400 (ПЭГ-400).
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и ацетата натрия помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 300 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 44 мл раствора ацетата натрия (0,45 М) и 0,018 мл ПЭГ-400 (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9, мольное соотношение стабилизатор/Fe3+ - 1/10. Общее содержание воды - 0,6 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 190°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 7
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда», полиэтиленгликоль-400 (ПЭГ-400).
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и ацетата натрия 3-водного помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл.
Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 55 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 44 мл раствора ацетата натрия (0,45 М), 5 мл воды (общее содержание воды 8 об. %) и 0,018 мл ПЭГ-400 (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9, мольное соотношение стабилизатор/Fe3+ - 1/10. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 150°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 8
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда», цетилтриметиламмоний бромид.
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного, ацетата натрия 3-водного и цетилтриметиламмоний бромида помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 85 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 44 мл раствора ацетата натрия (0,45 М) и 50 мл цетилтриметиламмоний бромида (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9, мольное соотношение стабилизатор/Fe3+ - 1/10. Общее содержание воды - 3,0 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 175°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 9
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда», полиакриловая кислота.
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного, ацетата натрия 3-водного и полиакриловой кислоты помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 100 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 44 мл раствора ацетата натрия (0,45 М) и 50 мл полиакриловую кислоту (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9, мольное соотношение стабилизатор/Fe3+ - 1/10. Общее содержание воды - 3,0 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 175°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 10
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда», полиэтиленгликоль-400 (ПЭГ-400).
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и ацетата натрия 3-водного помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 90 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 73 мл раствора ацетата натрия (0,75 М) и 0,018 мл ПЭГ-400 (5 мМ). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/15, мольное соотношение стабилизатор/Fe3+ - 1/10. Общее содержание воды - 4,6 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 175°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Пример 11 (Без стабилизатора)
В качестве исходных реактивов используют хлорид железа (III) 6-водный, ацетат натрия 3-водный, этиленгликоль, все не ниже квалификации «чда».
Для получения сферических частиц магнетита, в первую очередь, готовят растворы исходных реагентов в этиленгликоле. Навески хлорида железа (III) 6-водного и ацетата натрия 3-водного помещают в мерные колбы объемом 100 мл, добавляют этиленгликоль до конечного объема 100 мл. Навеска исходных реактивов, необходимая для приготовления 100 мл раствора, а также концентрация полученных растворов представлены в таблице:
Для получения сферических частиц магнетита со средним диаметром 100 нм в химический стакан объемом 100 мл добавляют 4,1 мл раствора хлорида железа (III) (50 мМ), 44 мл раствора ацетата натрия (0,45 М). Мольное соотношение Fe3+/соль карбоновой кислоты составляет 1/9. Общее содержание воды - 3,0 об. %. Добавляют этиленгликоль до объема 100 мл, перемешивают, после чего нагревают реакционную смесь до 175°С, выдерживая систему при данной температуре до полного осаждения магнетита.
Claims (2)
1. Способ получения наночастиц магнетита методом высокотемпературного восстановительного гидролиза соединений железа (III), растворимых в гликолях, осуществляемый в среде этиленгликоля в присутствии осадителя и стабилизатора, выбранного из группы полиэлектролитов, полимеров и поверхностно-активных веществ, отличающийся тем, что в качестве осадителя используют соли низших карбоновых кислот и щелочных металлов, в качестве стабилизатора используют вещества, выбранные из группы: додецилсульфат натрия, цетилтриметиламмоний бромид, полиэтиленгликоль, полиакриловая кислота, а в качестве исходного раствора используют смесь, содержащую воду в количестве 0,6-8,0 об.%, соль низшей карбоновой кислоты и щелочного металла в количестве, соответствующем мольному соотношению Fe3+/соль карбоновой кислоты, равному 1/3-1/15, и стабилизатор в количестве, соответствующем мольному соотношению стабилизатор/Fe3+, равному 1/5-1/10, и остальное этиленгликоль, а полученную реакционную смесь нагревают в атмосферной среде до 150-190°С и выдерживают при этом температурном режиме до полного осаждения магнетита.
2. Способ получения наночастиц магнетита методом высокотемпературного восстановительного гидролиза соединений железа (III), растворимых в гликолях, осуществляемый в среде этиленгликоля в присутствии осадителя, отличающийся тем, что в качестве осадителя используют соли низших карбоновых кислот и щелочных металлов, а в качестве исходного раствора используют смесь, содержащую воду в количестве 3 об.%, а также соль низшей карбоновой кислоты и щелочного металла в количестве, соответствующем мольному соотношению Fe3+/соль карбоновой кислоты, равному 1/9, и этиленгликоль - остальное, и полученную реакционную смесь нагревают в атмосферной среде до 175°С и выдерживают при этом температурном режиме до полного осаждения магнетита.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015154755A RU2610506C1 (ru) | 2015-12-21 | 2015-12-21 | Способ получения наночастиц магнетита (варианты) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015154755A RU2610506C1 (ru) | 2015-12-21 | 2015-12-21 | Способ получения наночастиц магнетита (варианты) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2610506C1 true RU2610506C1 (ru) | 2017-02-13 |
Family
ID=58458518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015154755A RU2610506C1 (ru) | 2015-12-21 | 2015-12-21 | Способ получения наночастиц магнетита (варианты) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2610506C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2686931C1 (ru) * | 2017-12-19 | 2019-05-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Способ получения стержневых наночастиц магнетита |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100224823A1 (en) * | 2007-04-27 | 2010-09-09 | Yadong Yin | Superparamagnetic colloidal nanocrystal structures |
CN102190332A (zh) * | 2011-04-01 | 2011-09-21 | 山东大学 | 单分散纳米四氧化三铁空心球电磁波吸收材料及其制备方法与应用 |
CN102674478A (zh) * | 2012-06-04 | 2012-09-19 | 复旦大学 | 一种基于微波技术的Fe3O4磁性纳米晶团簇的制备方法 |
RU2462420C1 (ru) * | 2011-04-18 | 2012-09-27 | Учреждение Российской академии наук Институт химии растворов РАН (ИХР РАН) | Способ получения магнитной жидкости |
RU2013103696A (ru) * | 2010-06-29 | 2014-08-10 | Конинклейке Филипс Электроникс Н.В. | Синтез высокопроизводительных индикаторных частиц оксида железа для визуализации с применением намагниченных частиц (мрi) |
RU2558882C2 (ru) * | 2009-12-15 | 2015-08-10 | Колороббия Италия С.П.А. | Магнетит в форме наночастиц |
-
2015
- 2015-12-21 RU RU2015154755A patent/RU2610506C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100224823A1 (en) * | 2007-04-27 | 2010-09-09 | Yadong Yin | Superparamagnetic colloidal nanocrystal structures |
RU2558882C2 (ru) * | 2009-12-15 | 2015-08-10 | Колороббия Италия С.П.А. | Магнетит в форме наночастиц |
RU2013103696A (ru) * | 2010-06-29 | 2014-08-10 | Конинклейке Филипс Электроникс Н.В. | Синтез высокопроизводительных индикаторных частиц оксида железа для визуализации с применением намагниченных частиц (мрi) |
CN102190332A (zh) * | 2011-04-01 | 2011-09-21 | 山东大学 | 单分散纳米四氧化三铁空心球电磁波吸收材料及其制备方法与应用 |
RU2462420C1 (ru) * | 2011-04-18 | 2012-09-27 | Учреждение Российской академии наук Институт химии растворов РАН (ИХР РАН) | Способ получения магнитной жидкости |
CN102674478A (zh) * | 2012-06-04 | 2012-09-19 | 复旦大学 | 一种基于微波技术的Fe3O4磁性纳米晶团簇的制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2686931C1 (ru) * | 2017-12-19 | 2019-05-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Способ получения стержневых наночастиц магнетита |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
William et al. | Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts | |
Gao et al. | Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties | |
CN100594186C (zh) | 壳聚糖水凝胶诱导原位合成超顺磁性纳米四氧化三铁颗粒 | |
Wang et al. | Shape-control and characterization of magnetite prepared via a one-step solvothermal route | |
Bertuit et al. | Structure–property–function relationships of iron oxide multicore nanoflowers in magnetic hyperthermia and photothermia | |
Marchegiani et al. | Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles | |
JP5700590B2 (ja) | 球状フェライトナノ粒子及びその製造方法 | |
Lee et al. | Preparation of silica coated magnetic nanoparticles for bioseparation | |
US20140356272A1 (en) | Volume production method for uniformly sized silica nanoparticles | |
CN101599335A (zh) | 一种耐氧化二甲基硅油基磁性液体及其制备方法 | |
KR101480169B1 (ko) | 초고압 균질기를 이용한 단분산 산화철 나노입자의 제조방법 및 이에 따라 제조된 단분산 산화철 나노입자 | |
JPWO2004083124A1 (ja) | 貴金属・磁性金属酸化物複合微粒子およびその製造法 | |
Xiong et al. | In situ growth of gold nanoparticles on magnetic γ-Fe 2 O 3@ cellulose nanocomposites: a highly active and recyclable catalyst for reduction of 4-nitrophenol | |
CN104722276A (zh) | 一种瓜环/氧化石墨烯磁性复合材料及其制备方法 | |
JP5688807B2 (ja) | ポリマー被覆フェライト微粒子および製造方法 | |
CN113385143B (zh) | 一种磁性纳米碳点/四氧化三铁复合材料及其制备方法和应用 | |
CN1843671A (zh) | 一种铁纳米线及制备方法 | |
KR102387805B1 (ko) | 복합구조 메조결정 나노입자 및 그의 제조방법 | |
CN105536877A (zh) | 超顺磁性Fe3O4-PAMAM-ZnO/TiO2核-复合壳结构纳米颗粒的制备 | |
JP4979492B2 (ja) | 貴金属・磁性金属酸化物複合微粒子およびその製造法 | |
Wang et al. | Synthesis of hierarchical nickel anchored on Fe 3 O 4@ SiO 2 and its successful utilization to remove the abundant proteins (BHb) in bovine blood | |
RU2610506C1 (ru) | Способ получения наночастиц магнетита (варианты) | |
CN103739020B (zh) | 一种制备多孔性纳米四氧化三铁的方法 | |
KR101127864B1 (ko) | 전자빔 조사를 이용한 단분산 산화철 나노입자 제조방법 및 이에 따라 제조되는 단분산 산화철 나노입자 | |
CN104649261A (zh) | 一种催化还原氧化石墨烯的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
QB4A | Licence on use of patent |
Free format text: LICENCE FORMERLY AGREED ON 20180609 Effective date: 20180609 |