RU2606624C2 - Получение n-защищенного бис-3,6-(4-аминоалкил)-2,5-дикетопиперазина - Google Patents

Получение n-защищенного бис-3,6-(4-аминоалкил)-2,5-дикетопиперазина Download PDF

Info

Publication number
RU2606624C2
RU2606624C2 RU2013138609A RU2013138609A RU2606624C2 RU 2606624 C2 RU2606624 C2 RU 2606624C2 RU 2013138609 A RU2013138609 A RU 2013138609A RU 2013138609 A RU2013138609 A RU 2013138609A RU 2606624 C2 RU2606624 C2 RU 2606624C2
Authority
RU
Russia
Prior art keywords
trifluoroacetyl
mixture
diketopiperazine
lysine
concentration
Prior art date
Application number
RU2013138609A
Other languages
English (en)
Other versions
RU2013138609A (ru
Inventor
Джон Дж. ФРИМАН
Эдриенн СТАМПЕР
Мелисса ХЕЙТМАНН
Original Assignee
Маннкайнд, Корп
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Маннкайнд, Корп filed Critical Маннкайнд, Корп
Publication of RU2013138609A publication Critical patent/RU2013138609A/ru
Application granted granted Critical
Publication of RU2606624C2 publication Critical patent/RU2606624C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/06Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having one or two double bonds between ring members or between ring members and non-ring members
    • C07D241/08Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having one or two double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0259Phosphorus acids or phosphorus acid esters comprising phosphorous acid (-ester) groups ((RO)P(OR')2) or the isomeric phosphonic acid (-ester) groups (R(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу синтеза 3,6-бис-[N-защищенного аминоалкил]-2,5-дикетопиперазина. Способ включает нагревание смеси аминокислоты общей формулы I в присутствии катализатора в органическом растворителе. При этом указанный катализатор представляет собой пентоксид фосфора, который присутствует в концентрации от 20 мол.% до 50 мол.% относительно концентрации аминокислоты; n равно 2 или 3; PG представляет собой трифторацетил, а указанный растворитель выбран из группы, состоящей из диметилацетамида, N-метил-2-пирролидона, диглима, этилглима, проглима и этилдиглима. Изобретение относится также к способу синтеза 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина, который включает нагревание смеси ε-трифторацетил-L-лизина в присутствии пентоксида фосфора в N-метил-2-пирролидоне до температуры от 150°С до 175°С в течение 0,25-5 ч, причем концентрация пентоксида фосфора составляет от примерно 20 мол.% до примерно 35 мол.% от концентрации ε-трифторацетил-L-лизина, и гашение указанной смеси вторым растворителем. Предлагаемые способы позволяют обеспечить высокий выход реакции. 2 н. и 6 з.п. ф-лы, 4 табл., 3 ил., 10 пр.
Figure 00000012

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Настоящая заявка испрашивает приоритет на основании предварительной заявки на патент США №61/441525, поданной 10 февраля 2011 года, содержание которой включено в настоящее описание посредством ссылки, как если бы было полностью приведено в настоящем описании.
ОБЛАСТЬ ТЕХНИКИ
[0002] Настоящее изобретение относится к композициям для доставки активных агентов и в частности биологически активных агентов. Описанные варианты реализации находятся в области химического синтеза и в частности относятся к улучшенным способам синтеза для получения и очистки 3,6-дизамещенных-2,5-дикетопиперазинов.
УРОВЕНЬ ТЕХНИКИ
[0003] Доставка лекарственных средств является постоянной проблемой, связанной с введением активных агентов пациентам. Традиционным способам доставки активных агентов зачастую присущи значительные ограничения биологического, химического и физического характера. Как правило, данные ограничения налагаются средой, через которую происходит доставка, средой мишени для доставки или самой мишенью.
[0004] Биологически активные вещества особенно чувствительны к таким барьерам. Например, при доставке фармакологических и терапевтических агентов людям барьеры установлены организмом. Примерами физических барьеров является кожа и различные мембраны органов, через которые необходимо пройти до достижения мишени. Химические барьеры включают, но не ограничиваются ими, изменения pH, липидные бислои и ферменты, способствующие распаду.
[0005] Данные барьеры имеют особое значение при создании систем для пероральной доставки. Пероральная доставка многих биологически активных агентов была бы предпочтительным путем введения у животных, если бы не биологические, химические и физические барьеры, такие как изменение pH в желудочно-кишечном (ЖК) тракте, активные пищеварительные ферменты и мембраны желудочно-кишечного тракта, непроницаемые для активных агентов. В число многочисленных агентов, которые, как правило, не подлежат пероральному введению, входят биологически активные пептиды, такие как кальцитонин и инсулин; полисахариды и, в частности, мукополисахариды, включая, но не ограничиваясь ими, гепарин; гепариноиды, антибиотики и другие органические вещества. Данные агенты быстро теряют эффективность или разрушаются в желудочно-кишечном тракте под действием кислотного гидролиза, ферментов и т.п.
[0006] Однако зачастую имеются препятствия для широкого использования систем доставки лекарственных средств, поскольку: (1) для указанных систем требуется применение токсичных количеств адъювантов или ингибиторов; (2) недоступны подходящие низкомолекулярные активные агенты; (3) системы демонстрируют низкую стабильность и недостаточный срок годности; (4) системы сложны в изготовлении; (5) системы не защищают активный агент; (6) системы неблагоприятным образом изменяют активный агент; или (7) системы не обеспечивают или не способствуют абсорбции активного агента.
[0007] В данной области техники по-прежнему существует необходимость в разработке простых недорогих систем доставки, которые легко получать и которые могут доставлять широкий диапазон активных агентов. Одним из классов системы доставки, оказавшимся перспективным в качестве наполнителей, являются дикетопиперазины (DKP). В частности, было показано, что 3,6-бис-замещенные-2,5-дикетопиперазины эффективно доставляют биологически активные агенты через выстилку легкого.
[0008] Традиционный синтез дикетопиперазинов протекает через циклоконденсацию двух молекул аминокислоты или дипептида. Один из типичных способов синтеза дикетопиперазинов включает нагревание аминокислоты (Cbz-L-лизина, например) в м-крезоле в течение 17-22 часов при 160-170°C и перекристаллизацию дикетопиперазина из уксусной кислоты с выходом примерно 48%.
[0009] В патенте США №7709639 Stevenson et al. подробно описаны способы синтеза бис-Cbz-N-защищенных дикетопиперазинов, при этом полное описание указанного патента включено в настоящее описание посредством ссылки, как если бы было полностью приведено в настоящем описании.
[0010] Другие авторы получали дикетопиперазины из выделенных дипептидов путем нагревания в соответствующем растворителе, при этом удаляя воду путем перегонки. Несмотря на то что данные способы позволяют получать желаемые дикетопиперазины, они обеспечивают недостаточные выходы и могут требовать применения длительной очистки. Таким образом, существует необходимость в разработке улучшенного способа синтеза дизамещенных 2,5-дикетопиперазинов, позволяющего получать N-защищенные дикетопиперазины с хорошим выходом при сохранении защитных групп и минимальной очистке.
КРАТКОЕ ОПИСАНИЕ
[0011] Эта и другие нереализованные потребности, существующие в данной области техники, решены путем обеспечения соединений и способов, более подробно описанных ниже. Использование N-замещенных 3,6-аминоалкил-2,5-дикетопиперазинов в качестве фармацевтических наполнителей оказалось в значительной степени перспективным. Как отмечено выше, данные соединения часто синтезируют путем циклоконденсации аминокислот. Если аминокислота содержит свободный азот в боковой цепи (как, например, в лизине или орнитине), часто необходимо блокировать данный азот перед проведением реакции циклизации. Поскольку возможно осуществление различных способов синтеза после циклизации, желательна совместимость с различными защитными группами. Таким образом, желательным является способ синтеза, для которого может быть предусмотрен ряд различных N-защитных групп и который может обеспечивать хороший выход N-защищенного дикетопиперазина.
[0012] Некоторые подходящие защитные группы включают трифторацетил, ацетил и другие амид-образующие защитные группы; карбаматные защитные группы, включая бензилоксикарбонил (Cbz) и трет-бутоксикарбонил (ВОС).
[0013] В одном из вариантов реализации 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазин получают путем нагревания ε-трифторацетил-L-лизина в смешивающемся с водой растворителе, таком как N-метил-2-пирролидон (NMP), в присутствии катализатора, выбранного из группы, включающей фосфорную кислоту, серную кислоту и пентоксид фосфора, до температуры примерно 150-175°C. Указанный дикетопиперазин выделяют путем гашения водой и фильтрации полученного твердого вещества.
Figure 00000001
[0014] В предложенных вариантах реализации описаны способы синтеза 3,6-бис-[N-защищенного аминоалкил]-2,5-дикетопиперазина, включающие нагревание смеси аминокислоты общей формулы I в присутствии катализатора в органическом растворителе; при этом указанный катализатор выбран из группы, включающей в том числе серную кислоту, фосфорную кислоту, п-толуолсульфоновую кислоту, циклический ангидрид 1-пропилфосфоновой кислоты, трибутилфосфат, фенилфосфоновую кислоту и пентоксид фосфора; и при этом указанный растворитель выбран из группы, включающей в том числе: диметилацетамид, N-метил-2-пирролидон, диглим, этилглим, проглим, этилдиглим, м-крезол, п-крезол, о-крезол, ксилолы, этиленгликоль и фенол.
[0015] В предложенных вариантах реализации также описаны способы, в которых n составляет от 1 до 7, в которых n равно 3, в которых n равно 2, в которых PG представляет собой амид-образующую защитную группу, в которых указанная защитная группа представляет собой трифторацетил, в которых PG представляет собой карбамат-образующую защитную группу, в которых указанная защитная группа представляет собой Cbz, в которых растворитель, по существу, смешивается с водой, в которых указанный растворитель представляет собой N-метил-2-пирролидон, в которых аминокислота представляет собой ε-трифторацетил-L-лизин, в которых аминокислота представляет собой ε-Cbz-L-лизин, в которых аминокислота представляет собой γ-трифторацетилорнитин, в которых аминокислота представляет собой γ-Cbz-орнитин, в которых катализатор представляет собой пентоксид фосфора, при этом концентрация пентоксида фосфора составляет от 10% до примерно 50% концентрации аминокислоты, и варианты реализации, дополнительно включающие этап гашения смеси водой.
[0016] В предложенных вариантах реализации описаны способы синтеза 3,6-бис-[N-защищенного аминобутил]-2,5-дикетопиперазина, включающие: нагревание смеси N-защищенного лизина в присутствии катализатора в органическом растворителе до температуры от 110° до 175°C в течение 0,25-5 часов; при этом указанный катализатор выбран из группы, включающей серную кислоту, фосфорную кислоту и пентоксид фосфора, концентрация катализатора составляет от 5% до примерно 50% от концентрации лизина; и указанный растворитель выбран из группы, включающей диметилацетамид, N-метил-2-пирролидон, диглим, этилглим, проглим, этилдиглим, м-крезол, п-крезол, о-крезол, ксилолы, этиленгликоль и фенол.
[0017] В предложенных вариантах реализации описаны способы синтеза 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина, включающие: нагревание смеси ε-трифторацетил-L-лизина в присутствии пентоксида фосфора в N-метил-2-пирролидоне до температуры от 150° до 175°C в течение 0,25-5 часов; при этом концентрация пентоксида фосфора составляет от 10% до примерно 40% от концентрации лизина; и гашение указанной смеси вторым растворителем или, в качестве альтернативы, концентрация пентоксида фосфора относительно лизина составляет от 20% до 35% и смесь гасят водой.
[0018] Любая комбинация описанных выше элементов во всех их возможных вариантах включена в описанные варианты реализации, если в настоящем описании не указано иное или если это не противоречит явным образом контексту.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0019] Лучшее понимание типичных вариантов реализации настоящего изобретения будет достигнуто при ссылке на прилагаемые чертежи, на которых одинаковые части обозначены одинаковыми номерами позиций и где
[0020] ФИГ.1 представляет собой схему, демонстрирующую циклоконденсацию N-защищенной аминокислоты с получением дикетопиперазина.
[0021] ФИГ.2 представляет собой схему, демонстрирующую циклоконденсацию ε-трифторацетиллизина.
[0022] ФИГ.3 представляет собой схему, демонстрирующую циклоконденсацию γ-Cbz-орнитина.
ПОДРОБНОЕ ОПИСАНИЕ
[0023] В настоящем описании метил, этил, н-пропил, изопропил, н-бутил, изобутил, втор-бутил, трет-бутил, пентил, гексил, гептил или октил и все изомеры по положению связи следует считать алкилом. Указанные группы могут быть моно- или полизамещены (C1-C8)-алкокси, (C1-C8)-галогеналкилом, OH, галогеном, NH2, NO2, SH, S-(C1-C8)алкилом. (C2-C8)-алкенил за исключением метила означает (C1-C8)-алкильную группу, показанную выше, содержащую по меньшей мере одну двойную связь.
[0024] Группа боковой цепи α-аминокислоты означает переменную группу при атоме α-С глицина в качестве основной аминокислоты. Природные аминокислоты представлены, например, в Bayer-Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag, Stuttgart, 22nd edition, страница 822ff. Предпочтительные синтетические аминокислоты и защищенные аминокислоты могут быть приобретены в компании Sigma-Aldrich. Группы боковой цепи могут быть получены из указанных там групп.
[0025] Указанные химические структуры относятся ко всем возможным стереоизомерам, которые могут быть получены путем изменения конфигурации индивидуальных хиральных центров, осей или поверхностей, другими словами, ко всем возможным диастереомерам, а также ко всем оптическим изомерам (энантиомерам), входящим в данную группу.
[0026] Обращаясь к чертежам для лучшего понимания, на ФИГ.1 показана общая схема синтеза дизамещенного дикетопиперазина. На данной схеме показана N-защищенная аминокислота, подвергающаяся циклоконденсации со второй молекулой аминокислоты. В данном варианте реализации PG представляет собой защитную группу для азота, и n может составлять от 0 до 7. Из схемы видно, что при получении дикетопиперазина с помощью амина в боковой цепи необходимо блокировать атом (атомы) азота перед проведением реакции циклизации или на выходы будут влиять нежелательные побочные конденсации. В зависимости от химических взаимодействий, которые будут осуществляться после образования кольца, желательны различные защитные группы и, таким образом, предпочтительным является способ, для которого предусмотрено множество групп. Некоторые подходящие защитные группы включают трифторацетил, ацетил и другие амид-образующие защитные группы; карбаматные защитные группы, включая бензилоксикарбонил (Cbz) и трет-бутоксикарбонил (ВОС).
[0027] В известных способах циклоконденсации аминокислот с образованием DKP использовали растворители, такие как н-бутанол (смешиваемость с водой примерно 7-8%), тогда как такие растворители, как NMP, больше смешиваются с водой, что позволяет просто гасить/промывать водой с удалением реакционного растворителя, и если катализатор обладает значительной растворимостью в воде, одновременно катализатора. В одном из вариантов реализации катализатор для циклоконденсации аминокислот растворим в воде, что обеспечивает гашение водой и последующее удаление путем фильтрации.
[0028] ФИГ.2 иллюстрирует вариант реализации, в котором PG представляет собой трифторацетил и n равно 3. Таким образом, исходная аминокислота представляет собой ε-трифторацетиллизин, и продукт представляет собой 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазин. Далее следует пример способа синтеза 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина:
ПРИМЕРЫ
[0029] Пример 1 и 2
[0030]
Figure 00000002
[0031] В 1-л трехгорлую круглодонную колбу, оснащенную устройством для продувки азотом, аппаратом для перегонки, механической мешалкой и термопарой с индикатором температуры, добавляли: NMP (256 мл), трифторуксусная кислота-Lys (ТФУ-Lys) (125 г, 0,52 моль) и Р205 (22 г, 0,15 моль). Реакционную смесь нагревали до 160°C и выдерживали при данной температуре в течение 1,5 часов. Затем смесь охлаждали до 100°C и вливали в деионизированную воду. Затем смесь охлаждали до менее 25°C и выделяли твердые вещества путем фильтрации, промывали деионизированной водой и сушили в вакууме при 50°C с получением 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина (65,28 г, 56,4%). 1H-ЯМР (ДМСО-d6): 1,3 (m, 4H), 1,5 (m, 4H), 1,7 (m, 4H), 3,2 (q, 4H), 3,8 (m, 2H), 8,1 (s, 2H), 9,4 (s, 2H). Элементный анализ, рассчитано C: 42,86; H: 4,95; N 12,50; F: 25,42. Обнаружено: C: 42,95; H: 4,91; N: 12,53; F: 24,99.
[0032] В футерованный стеклом реактор объемом 100 галлонов добавляли М-метил-2-пирролидон (200 л) и начинали перемешивание. К указанному растворителю добавляли ТФУ-лизин (100 кг, 413 моль) при температуре окружающей среды. К полученной суспензии добавляли пентоксид фосфора (15,2 кг, 107 моль). Затем смесь нагревали до 160°C течение 1 часа. Через 1 час при 160°C смесь охлаждали до 100°C и добавляли воду (500 л). Полученную смесь охлаждали до 25°C и выдерживали при данной температуре в течение 90 минут. Полученные твердые вещества дважды промывали водой (265 л каждый раз) и выделяли путем фильтрации с получением 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина с выходом 50%.
[0033] Исследовали различные катализаторы на предмет образования бис-замещенных дикетопиперазинов. Результаты исследования катализаторов приведены в Таблице 1. Далее следует общая схема и пример данного исследования:
[0034] Пример 3
Figure 00000003
[0035] Cbz-лизин (10,0 г), диметиловый эфир диэтиленгликоля (диглим; 50 мл) и катализатор загружали в 250-мл круглодонную колбу. Смесь нагревали до 160-165°C в течение 2,5 часов. Реакционную смесь вливали в воду и охлаждали до температуры окружающей среды в течение ночи. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали водой и сушили в вакууме при 50°C.
[0036]
Таблица 1
Катализаторы для синтеза дикетопиперазинов
Катализатор Количество Выход реакции
P2O5 0,76 г (0,15 экв.) 55%
P2O5 1,76 г (0,30 экв.) 45%
H2SO4 1,27 мл (0,35 экв.) 55%
H3PO4 0,73 мл (0,30 экв.) 65%
п-толуолсульфоновая кислота 3,39 г (0,50 экв.) 52%
циклический ангидрид 1-пропилфосфоновой кислоты 4,54 г (0,20 экв.) 79%
трибутилфосфат 2,44 г (0,30 экв.) 89%
этилфосфоновая кислота 1,18 г (0,30 экв.) 0%
фенилфосфоновая кислота 1,13 г (0,20 экв.) 78%
[0037] Далее исследовали применение серной кислоты и пентоксида фосфора (в двух концентрациях) для синтеза 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина в диглиме. Результаты приведены в Таблице 2.
[0038] Пример 4
[0039]
Figure 00000004
[0040] ТФУ-лизин (10,0 г), диметиловый эфир диэтиленгликоля (50 мл) и катализатор загружали в 250-мл круглодонную колбу. Смесь нагревали до 160-165°C в течение 2,5 часов. Реакционную смесь вливали в воду и охлаждали до температуры окружающей среды. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали водой и сушили в вакууме при 50°C.
[0041]
Таблица 2
Катализаторы для синтеза дикетопиперазина с помощью ТФУ-лизина
Катализатор Количество Выход реакции
P2O5 0,88 г (0,15 экв.) 41%
P2O5 0,76 г (0,30 экв.) 55%
H2SO4 0,8 мл (0,35 экв.) 40%
[0042] Далее исследовали применение серной кислоты и пентоксида фосфора (в двух концентрациях) для синтеза 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина в диметилацетамиде (DMАс). Результаты приведены в Таблице 3.
[0043] Пример 5
[0044]
Figure 00000005
[0045] ТФУ-лизин (25,0 г), диметилацетамид (125 мл) и катализатор загружали в 250-мл круглодонную колбу. Смесь нагревали до 160-165°C в течение 2,5 часов. Реакционную смесь охлаждали до 100°C, вливали в воду, а затем охлаждали до температуры окружающей среды. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали водой и сушили в вакууме при 50°C. Результаты приведены в Таблице 3.
Таблица 3
Катализаторы для синтеза дикетопиперазина с помощью ТФУ-лизина
Катализатор Количество Выход реакции
P2O5 2,2 г (0,15 экв.) 35%
P2O5 5,13 г (0,35 экв.) 50%
H2SO4 4,19 г (0,40 экв.) 16%
[0046] Исследовали применение пентоксида фосфора для синтеза 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина в N-метил-2-пирролидоне (NMP) при разном времени и температурах. Результаты приведены в Таблице 4.
[0047] Пример 6
[0048]
Figure 00000006
[0049] ТФУ-лизин (50 г), N-метилпирролидон (125 мл) и P2O5 (8,8 г, 0,3 экв.) загружали в круглодонную колбу. Смесь нагревали до температуры реакции в течение реакционного времени. Реакционную смесь охлаждали, вливали в воду, а затем охлаждали до температуры окружающей среды. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали водой и сушили в вакууме при 50°C.
[0050]
Таблица 4
Время реакции и температуры для синтеза дикетопиперазина с помощью ТФУ-лизина
Температура реакции (°C) Время реакции Выход реакции
110 0,25 19%
110 5 54%
170 0,25 59%
170 5 42%
[0051] Пример 7
[0052]
Figure 00000007
[0053] ТФУ-лизин (10,0 г), м-крезол (22 мл) и P2O5 загружали в 250-мл круглодонную колбу. Смесь нагревали до 160-165°C в течение 1 часа. Реакционную смесь охлаждали до 65°C, вливали в раствор 5% водного NaOH и метанола, а затем охлаждали до температуры окружающей среды. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали водой и сушили в вакууме при 50°C. Выход продукта составил 12%.
[0054] Пример 8
[0055]
Figure 00000008
[0056] ТФУ-лизин (50,0 г) и этиленгликоль (150 мл) загружали в 500 мл круглодонную колбу. Смесь нагревали до 160-170°C в течение 2 часов. Реакционную смесь вливали в воду и охлаждали до температуры окружающей среды. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали водой и сушили в вакууме при 50°C. Выход продукта составил 2%.
[0057] Пример 9
Figure 00000009
[0058] Cbz-лизин (100,0 г) и этиленгликоль (300 мл) загружали в 1000-мл круглодонную колбу. Смесь нагревали до 160-170°C в течение 6 часов. Реакционную смесь вливали в смесь воды и метанола и охлаждали до температуры окружающей среды. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали водой и сушили в вакууме при 50°C. Выход продукта составил 64%.
[0059] На Фиг.3 показана общая схема циклоконденсации γ-Cbz-орнитина.
[0060] Пример 10
[0061]
Figure 00000010
[0062] Cbz-орнитин (100 г), N-метилпирролидон (194 мл) и P2O5 (8 г) загружали в 1000-мл круглодонную колбу. Смесь нагревали до 160-165°C в течение 2 часов. Реакционную смесь вливали в воду и охлаждали до температуры окружающей среды. Выпавшее в осадок твердое вещество выделяли путем фильтрации, промывали метанолом и водой и сушили в вакууме при 50°C. Выход продукта составил 51%.
[0063] Если не указано иное, все числа, выражающие количества ингредиентов, свойства, такие как молекулярная масса, условия реакции и т.д., используемые в настоящем описании и формуле изобретения, следует понимать как модифицируемые во всех случаях термином «примерно». Соответственно, если не указано иное, числовые параметры, приведенные в следующем описании и прилагаемой формуле изобретения, представляют собой приблизительные значения, которые могут варьироваться в зависимости от желаемых свойств, которые пытались получить в описанных вариантах реализации. По меньшей мере, и не в качестве попытки ограничить применение доктрины эквивалентов объемом формулы изобретения, каждый числовой параметр следует рассматривать, по меньшей мере, с учетом количества приведенных значащих цифр и с применением обычных методик округления. Несмотря на то что числовые диапазоны и параметры, определяющие широкий объем описанных вариантов реализации, являются приблизительными значениями, численные значения, указанные в конкретных примерах, приведены настолько точно, насколько возможно. Однако любое численное значение, по существу, включает определенные ошибки, неизбежно являющиеся следствием стандартного отклонения, обнаруживаемые в соответствующих контрольных измерениях.
[0064] Термины в единственном числе и подобные обозначения, используемые в контексте описанных вариантов реализации (особенно в контексте следующей формулы изобретения), следует рассматривать как включающие и единственное, и множественное число, если в настоящем описании не указано иное или если это явным образом не противоречит контексту.
[0065] Перечисление диапазонов величин в настоящем описании предназначено только для краткости индивидуального указания каждой отдельной величины, входящей в указанный диапазон. Если в настоящем описании не указано иное, каждая отдельная величина включена в настоящее описание, как если бы она была отдельно указана в настоящем описании. Все способы, описанные в настоящем документе, могут быть осуществлены в любом подходящем порядке, если в настоящем описании не указано иное, или если это явным образом не противоречит контексту. Использование любого или всех примеров или использование типичных выражений (например, «такой как»), в настоящем описании предназначено только для более подробного пояснения описанных вариантов реализации и не ограничивает объем описанных вариантов реализации, если в формуле изобретения не указано иное. Выражения, употребляемые в настоящем описании, не следует рассматривать в том смысле, что какой-либо не указанный в формуле изобретения элемент является существенным для реализации описанных вариантов или любых их вариантов.
[0066] Группировки альтернативных элементов или вариантов реализации, описанных в настоящем документе, не следует рассматривать в качестве ограничений. Каждый элемент группы может быть упомянут и указан в формуле изобретения отдельно или в любой комбинации с другими элементами группы или другими элементами, встречающимися в настоящем описании. Ожидается, что один или более элементов группы могут быть включены в группу или исключены из группы, исходя из соображений удобства и/или патентоспособности. Когда происходит любое такое включение или исключение, считается, что в настоящем документе описание включает модифицированную группу, что, таким образом, соответствует письменному описанию любой и всех групп Маркуша, используемых в прилагаемой формуле изобретения.
[0067] В настоящем документе описаны предпочтительные варианты реализации настоящего изобретения, включая лучший вариант, известный авторам изобретения для осуществления настоящего изобретения (изобретений). Конечно, вариации описанных вариантов реализации будут очевидны специалисту в данной области техники после прочтения приведенного выше описания. Авторы настоящего изобретения ожидают, что специалист в данной области техники будет использовать такие вариации в случае необходимости, и авторы настоящего изобретения предполагают практически использовать изобретение (изобретения) иначе, чем, в частности, описано в настоящем документе. Соответственно, настоящее описание включает все модификации и эквиваленты объекта изобретения, изложенного в формуле изобретения, прилагаемой к настоящему документу, как это допускается действующим законом. Кроме того, любая комбинация описанных выше элементов во всех их возможных вариациях включена в описанные варианты реализации, если в настоящем описании не указано иное или если это явным образом не противоречит контексту.
[0068] Кроме того, на протяжении всего описания приведены ссылки на патенты и печатные публикации. Полное содержание каждого из указанных выше источников и печатных публикаций индивидуально включено в настоящее описание посредством ссылок.
[0069] После демонстрации и описания варианта реализации настоящего изобретения специалисту в данной области техники будет понятно, что могут быть осуществлены многочисленные вариации и модификации для того, чтобы повлиять на описанное изобретение, и указанные вариации и модификации по-прежнему будут входить в объем заявленного изобретения. Кроме того, многие элементы, указанные выше, могут быть изменены или заменены другими элементами, которые будут обеспечивать такой же результат и находиться в пределах сущности заявленного изобретения. Следовательно, настоящее изобретение ограничивается только объемом формулы изобретения.

Claims (15)

1. Способ синтеза 3,6-бис-[N-защищенного аминоалкил]-2,5-дикетопиперазина, включающий:
Figure 00000011
нагревание смеси аминокислоты общей формулы I в присутствии катализатора в органическом растворителе;
при этом указанный катализатор представляет собой пентоксид фосфора; причем указанный пентоксид фосфора присутствует в концентрации от 20 мол.% до 50 мол.% относительно концентрации аминокислоты;
при этом n равно 2 или 3;
при этом PG представляет собой трифторацетил; и
при этом указанный растворитель выбран из группы, состоящей из диметилацетамида, N-метил-2-пирролидона, диглима, этилглима, проглима и этилдиглима.
2. Способ по п.1, отличающийся тем, что растворитель, по существу, смешивается с водой.
3. Способ по п.1, отличающийся тем, что растворитель представляет собой N-метил-2-пирролидон.
4. Способ по п.1, отличающийся тем, что аминокислота представляет собой ε-трифторацетил-L-лизин.
5. Способ по п.1, отличающийся тем, что аминокислота представляет собой γ-трифторацетилорнитин.
6. Способ по п.1, дополнительно включающий этап гашения смеси водой.
7. Способ синтеза 3,6-бис-4-(N-трифторацетил)аминобутил-2,5-дикетопиперазина, включающий:
нагревание смеси ε-трифторацетил-L-лизина в присутствии пентоксида фосфора в N-метил-2-пирролидоне до температуры от 150°С до 175°С в течение 0,25-5 ч; при этом концентрация пентоксида фосфора составляет от примерно 20 мол.% до примерно 35 мол.% от концентрации ε-трифторацетил-L-лизина; и гашение указанной смеси вторым растворителем.
8. Способ по п.7, отличающийся тем, что смесь гасят водой.
RU2013138609A 2011-02-10 2012-02-07 Получение n-защищенного бис-3,6-(4-аминоалкил)-2,5-дикетопиперазина RU2606624C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161441525P 2011-02-10 2011-02-10
US61/441,525 2011-02-10
PCT/US2012/024160 WO2012109256A2 (en) 2011-02-10 2012-02-07 Formation of n-protected bis-3,6-(4-aminoalkyl) -2,5,diketopiperazine

Publications (2)

Publication Number Publication Date
RU2013138609A RU2013138609A (ru) 2015-03-20
RU2606624C2 true RU2606624C2 (ru) 2017-01-10

Family

ID=46639161

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013138609A RU2606624C2 (ru) 2011-02-10 2012-02-07 Получение n-защищенного бис-3,6-(4-аминоалкил)-2,5-дикетопиперазина

Country Status (13)

Country Link
US (6) US8912328B2 (ru)
EP (1) EP2673265B1 (ru)
JP (1) JP6018586B2 (ru)
KR (1) KR20140027937A (ru)
CN (2) CN103534242B (ru)
AU (2) AU2012214592B2 (ru)
BR (1) BR112013020514B1 (ru)
CA (1) CA2826973C (ru)
IL (1) IL227904A (ru)
MX (1) MX346331B (ru)
RU (1) RU2606624C2 (ru)
SG (3) SG10201802008TA (ru)
WO (1) WO2012109256A2 (ru)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006175B2 (en) 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
CA2479751C (en) 2002-03-20 2008-06-03 Trent Poole Inhalation apparatus
ES2385934T3 (es) 2004-08-20 2012-08-03 Mannkind Corporation Catálisis de la síntesis de dicetopiperazina.
KR101644250B1 (ko) 2004-08-23 2016-07-29 맨카인드 코포레이션 약물 전달용 디케토피페라진염, 디케토모르포린염 또는 디케토디옥산염
DK1928423T3 (en) 2005-09-14 2016-02-29 Mannkind Corp A method for drug formulation based on increasing the affinity of the active substances to the crystalline microparticle surfaces
US8039431B2 (en) 2006-02-22 2011-10-18 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
AU2009257311B2 (en) 2008-06-13 2014-12-04 Mannkind Corporation A dry powder inhaler and system for drug delivery
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
US9364619B2 (en) 2008-06-20 2016-06-14 Mannkind Corporation Interactive apparatus and method for real-time profiling of inhalation efforts
TWI532497B (zh) 2008-08-11 2016-05-11 曼凱公司 超快起作用胰島素之用途
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
JP5667095B2 (ja) 2009-03-11 2015-02-12 マンカインド コーポレイション 吸入器の抵抗を測定するための装置、システムおよび方法
CA2764505C (en) 2009-06-12 2018-09-25 Mannkind Corporation Diketopiperazine microparticles with defined specific surface areas
WO2011056889A1 (en) 2009-11-03 2011-05-12 Mannkind Corporation An apparatus and method for simulating inhalation efforts
RU2571331C1 (ru) 2010-06-21 2015-12-20 Маннкайнд Корпорейшн Системы и способы доставки сухих порошковых лекарств
CN103534242B (zh) * 2011-02-10 2016-04-20 曼坎德公司 N-保护的双-3,6-(4-氨基烷基)-2,5-二酮哌嗪的形成
CN105667994B (zh) 2011-04-01 2018-04-06 曼金德公司 用于药物药盒的泡罩包装
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
CA2852536A1 (en) 2011-10-24 2013-05-02 Mannkind Corporation Methods and compositions for treating pain
CN104284918B (zh) * 2012-03-28 2017-03-29 高剑萍 氨酯型和脲酯型化合物及其制备方法
WO2013162764A1 (en) 2012-04-27 2013-10-31 Mannkind Corp Methods for the synthesis of ethylfumarates and their use as intermediates
US9802012B2 (en) 2012-07-12 2017-10-31 Mannkind Corporation Dry powder drug delivery system and methods
US10159644B2 (en) 2012-10-26 2018-12-25 Mannkind Corporation Inhalable vaccine compositions and methods
BR112015023224B1 (pt) 2013-03-15 2021-03-30 Mannkind Corp Método para a síntese de um bis-3,6-aminoalquil-2,5- dicetopiperazina n-protegido a partir de um éster de amino ativo a-n-protegido cíclico
ES2754388T3 (es) 2013-03-15 2020-04-17 Mannkind Corp Composiciones y métodos de dicetopiperazina microcristalina
US9925144B2 (en) 2013-07-18 2018-03-27 Mannkind Corporation Heat-stable dry powder pharmaceutical compositions and methods
EP3030294B1 (en) 2013-08-05 2020-10-07 MannKind Corporation Insufflation apparatus
CN103788367B (zh) * 2014-02-26 2017-01-11 中国科学院长春应用化学研究所 一种聚酯酰胺及其制备方法
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
WO2017025031A1 (zh) * 2015-08-10 2017-02-16 于跃 一种抗病毒活性双氮氧杂环螺二酮哌嗪生物碱衍生物及其制备方法
WO2017221869A1 (ja) 2016-06-20 2017-12-28 塩野義製薬株式会社 置換された多環性ピリドン誘導体の製造方法およびその結晶
CN108997168B (zh) * 2018-07-14 2021-09-28 上海应用技术大学 一种含氟非天然赖氨酸衍生物的通用合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU95108387A (ru) * 1992-08-14 1996-12-10 Ксенова Лимитед (Gb) Дикетопиперазин, способ его получения, фармацевтическая композиция, применение дикетопиперазина
WO2001081321A1 (de) * 2000-04-20 2001-11-01 Degussa Ag Verfahren zur herstellung von 2,5-diketopiperazinen, 2,5-diketopiperazine, dipeptide und deren verwendung
WO2006023849A2 (en) * 2004-08-20 2006-03-02 Mannkind Corporation Catalysis of diketopiperazine synthesis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352461A (en) * 1992-03-11 1994-10-04 Pharmaceutical Discovery Corporation Self assembling diketopiperazine drug delivery system
JPH06321916A (ja) * 1993-05-14 1994-11-22 Mitsui Toatsu Chem Inc 3,6−ビス[(4−ヒドロキシフェニル)メチル]−2,5−ジケトピペラジンの製造方法。
BR9806266A (pt) 1997-02-13 2000-10-17 Monsanto Co "método de preparação de ácidos de amino carboxìlicos"
US6337678B1 (en) * 1999-07-21 2002-01-08 Tactiva Incorporated Force feedback computer input and output device with coordinated haptic elements
US6590993B2 (en) * 1999-09-06 2003-07-08 Koninklijke Philips Electronics N.V. Panel-shaped loudspeaker
JP4968848B2 (ja) * 2008-01-30 2012-07-04 株式会社Adeka ポリオレフィン樹脂組成物
CN101851213A (zh) * 2010-06-21 2010-10-06 于清 3,6-双(4-双反丁烯二酰基氨丁基)-2,5-二酮哌嗪及其盐取代物的合成方法
CN101914032B (zh) * 2010-07-15 2013-06-05 启东市沪东化工有限公司 (s)-n-三氟乙酰基-对甲氧基苯乙胺的合成方法
CN103534242B (zh) * 2011-02-10 2016-04-20 曼坎德公司 N-保护的双-3,6-(4-氨基烷基)-2,5-二酮哌嗪的形成

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU95108387A (ru) * 1992-08-14 1996-12-10 Ксенова Лимитед (Gb) Дикетопиперазин, способ его получения, фармацевтическая композиция, применение дикетопиперазина
WO2001081321A1 (de) * 2000-04-20 2001-11-01 Degussa Ag Verfahren zur herstellung von 2,5-diketopiperazinen, 2,5-diketopiperazine, dipeptide und deren verwendung
WO2006023849A2 (en) * 2004-08-20 2006-03-02 Mannkind Corporation Catalysis of diketopiperazine synthesis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. A. JASS et al., Use of N-trifluoroacetyl-protected amino acid chlorides in peptide coupling reactions with virtually complete preservation of stereochemistry, TETRAHEDRON, 2003, 59, pp.9019-9029. *

Also Published As

Publication number Publication date
JP2014513045A (ja) 2014-05-29
BR112013020514A2 (pt) 2016-07-12
MX2013009260A (es) 2014-08-21
CN105884700A (zh) 2016-08-24
CA2826973A1 (en) 2012-08-16
US20130012710A1 (en) 2013-01-10
AU2012214592A1 (en) 2013-08-29
US20200262797A1 (en) 2020-08-20
MX346331B (es) 2017-03-15
AU2012214592B2 (en) 2017-03-09
US11440891B2 (en) 2022-09-13
US20190169135A1 (en) 2019-06-06
US10196366B2 (en) 2019-02-05
KR20140027937A (ko) 2014-03-07
WO2012109256A2 (en) 2012-08-16
CN103534242A (zh) 2014-01-22
US9416113B2 (en) 2016-08-16
RU2013138609A (ru) 2015-03-20
US10640471B2 (en) 2020-05-05
BR112013020514B1 (pt) 2020-12-08
CA2826973C (en) 2020-03-24
SG10201802008TA (en) 2018-04-27
US20150073149A1 (en) 2015-03-12
US20230034201A1 (en) 2023-02-02
AU2017203860A1 (en) 2017-06-22
CN103534242B (zh) 2016-04-20
EP2673265A2 (en) 2013-12-18
SG10201600967VA (en) 2016-03-30
IL227904A (en) 2016-12-29
WO2012109256A3 (en) 2013-01-24
US20160347721A1 (en) 2016-12-01
EP2673265A4 (en) 2014-08-06
AU2017203860B2 (en) 2020-02-20
IL227904A0 (en) 2013-09-30
US8912328B2 (en) 2014-12-16
SG192708A1 (en) 2013-09-30
EP2673265B1 (en) 2016-10-19
JP6018586B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
RU2606624C2 (ru) Получение n-защищенного бис-3,6-(4-аминоалкил)-2,5-дикетопиперазина
ES2343679T3 (es) Copolimeros de bloques con bajo contenido de impurezas; vehiculo polimerico; preparaciones farmaceuticas en forma polimerica y procedimiento para la preparacion del mismo.
EP2070971B1 (en) Compound of resorcinol derivative with polymer
EP2641605B1 (en) Polymer derivative of cytidine metabolism antagonist
US20060263328A1 (en) Hydrophilic polymers with pendant functional groups and method thereof
CN113143965A (zh) 一种抑制肿瘤增殖的氨基富勒烯材料
US20240025866A1 (en) Synthesis of prostate specific membrane antigen (psma) ligands
JP6402172B2 (ja) 環状α−N−保護活性アミノエステル中間体を介するN−保護3,6−ビス−(4−アミノブチル)−2,5−ジケトピペラジンの生成
US20240018099A1 (en) Synthesis of prostate specific membrane antigen (psma) ligands
US10945997B2 (en) Polymer derivative of macrolide immunosuppressant
CN100546658C (zh) 含有肝癌靶向肽的聚氧乙烯配体及其合成方法
CN116813698A (zh) 奈玛特韦衍生物及其药物组合物
KR100603024B1 (ko) 온도 감응성을 갖는 포스파젠 삼량체-5-플루오로우라실복합체 및 그 제조 방법
EA023323B1 (ru) Разветвленный ацилазидный пегилирующий агент, способ его получения и способ получения пегилированного интерферона