RU2605255C1 - Способ получения сорбента рутения - Google Patents

Способ получения сорбента рутения Download PDF

Info

Publication number
RU2605255C1
RU2605255C1 RU2015141799/05A RU2015141799A RU2605255C1 RU 2605255 C1 RU2605255 C1 RU 2605255C1 RU 2015141799/05 A RU2015141799/05 A RU 2015141799/05A RU 2015141799 A RU2015141799 A RU 2015141799A RU 2605255 C1 RU2605255 C1 RU 2605255C1
Authority
RU
Russia
Prior art keywords
ruthenium
sorbent
formaldehyde
exchange resin
extraction
Prior art date
Application number
RU2015141799/05A
Other languages
English (en)
Inventor
Василиса Борисовна Барановская
Юлия Сагитовна Дальнова
Ольга Александровна Дальнова
Дарья Геннадьевна Филатова
Олег Рамилевич Хуснутдинов
Original Assignee
Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" filed Critical Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет"
Priority to RU2015141799/05A priority Critical patent/RU2605255C1/ru
Application granted granted Critical
Publication of RU2605255C1 publication Critical patent/RU2605255C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к получению сорбентов для извлечения ионов металлов из водных сред. Предложен способ получения сорбента рутения, заключающийся в осуществлении процесса сорбции сульфид-ионов на гранулированном макропористом анионите с последующей конденсацией сорбированных сульфид-ионов с формальдегидом. На стадии конденсации вводят тиомочевину при мольном отношении тиомочевины к формальдегиду не менее 1:3. Изобретение обеспечивает высокую степень извлечения рутения в динамических условиях сорбции. 8 пр.

Description

Изобретение относится к получению сорбентов для извлечения ценных компонентов из водных сред, а именно к способу получения сорбента для извлечения рутения.
Рутений относится к группе платиновых металлов и в их числе входит в группу благородных металлов. Обладая в основном свойствами, сходными со свойствами других благородных металлов, рутений все же отличается от аналогов тем, что известные способы выделения рутения часто протекают с недостаточной полнотой извлечения, поэтому поиск эффективных способов извлечения рутения из растворов актуален.
Задачей заявленного изобретения является получение сорбента, эффективного при извлечении рутения из водных сред при динамических условиях проведения процессов.
Известны способы получения сорбентов ионообменного типа реакциями полимеризации/сополимеризации непредельных соединений либо поликонденсации /1. Л.А. Вольф. Волокна с особыми свойствами. -М.: Химия, 1980, С. 78-79/.
Недостатком сорбентов этого типа является низкая селективность по определенным группам ионов, т.е. неспособность к избирательной сорбции в присутствии солевого фона.
Повышению селективности по отдельным группам элементов служат способы модификации известных ионообменных смол реагентами, прививающими специфические функциональные группы к данной полимерной матрице.
Известен способ модификации известных ионообменных смол нековалентным закреплением вводимых функциональных групп по типу "змея в клетке" путем полимеризации или поликонденсации полифункциональных соединений внутри пористых катионитов и полиамфолитов (Патент США N 3875085, кл. 521 - 28, 1975), в частности, способ получения сорбента путем сорбции на макропористом анионите Dowex-11 (анионит полимеризационного типа, содержащий сильноосновные группы четвертичного аммониевого основания) фенола в качестве противоиона, с последующей его конденсацией с формальдегидом внутри пор анионита и получением сорбента по типу "змея в клетке" (Патент США N 3803059, кл. 521 - 28, 1974). Данные способы позволяют расширить диапазон вводимых функциональных групп за счет возможности варьирования состава полимерных соединений внутри пористой матрицы. Недостатком известных вариантов указанных способов является отсутствие сорбции благородных металлов.
Известен способ получения сорбента путем сорбции на макропористом анионите сульфид-ионов, предоставляемых сероводородом или его солями, и последующей их конденсации с формальдегидом. В качестве анионита используют макропористые аниониты полимеризационного или поликонденсационного типа как сильноосновные, так и слабоосновные, т.е. содержащие как группы четвертичного аммониевого основания, так и/или первичные и вторичные аминогруппы, например АВ-17-10п (сильноосновный анионит полимеризационного типа); АН-221 (слабоосновный анионит полимеризационного типа); ЭДЭ-10 (поликонденсационный эпоксиполиаминовый анионит, содержащий слабоосновные аминогруппы и до 10% групп) и другие. В качестве источника сульфид-ионов - сероводород, сульфид или гидросульфид натрия (Патент РФ №2081130, кл. C08J 15/20, C08F 8/34, опубл. 10.06.1997 г.). Способ выбран за прототип.
Сорбент, описанный в прототипе, получен в результате сорбции анионообменной смолой сульфид-ионов и конденсации последних с формальдегидом внутри пор ионообменника. Реакция конденсации сульфид-ионов с формальдегидом известна как реакция тиометилирования (Известия ВУЗов, серия химическая, №7, С. 1631, 1982). Указанный модифицированный сульфид-ионами и формальдегидом сорбент предложен для селективного извлечения серебра и ртути из водных сред. Однако он не извлекает рутений, что является недостатком.
Известен способ получения сорбентов ряда благородных металлов, в том числе рутения, введением в реакцию тиометилирования третьего компонента - амина или фенола. Продуктами данной реакции являются гетероцепные циклические, полимерные или олигомерные аминометилентиоэфиры, известные как эффективные сорбенты ряда благородных металлов, в том числе рутения. (Р.С. Алеев, Ю.С. Дальнова, Ю.Н. Попов, Р.М. Масагутов, чл-корр АН СССР С.Р. Рафиков. // Реакция тиометилирования. Доклады Академии Наук СССР, т. 303, №4, С. 873, 1988).
Известен способ извлечения благородных металлов аминометилентиоэфиром, полученным по описанному в указанной статье методу (Патент РФ №2201983, МПК С22В 11/00, 3/24, опубл. 10.04 2003). По описанному в указанном патенте способу сорбентом извлекают весь ряд благородных металлов, но степень извлечения рутения невелика, не превышает 58%, что является недостатком.
Известные продукты реакции тиометилирования аминов являются жидкостями или негранулируемыми порошками, что не позволяет применить указанные сорбенты в динамических технологических процессах, что является недостатком.
Техническим результатом изобретения является получение сорбента, эффективного при извлечении рутения из водных сред при динамических условиях проведения процессов.
Технический результат достигается тем, что в способе получения сорбента для извлечения рутения, включающем сорбцию на гранулированном макропористом анионите сульфид-ионов, с последующей конденсацией сорбированных сульфид-ионов с формальдегидом, согласно изобретению в процесс конденсации сорбированных сульфид-ионов с формальдегидом вводят тиомочевину в мольном отношении к формальдегиду не менее 1:3.
Сущность изобретения заключается в модифицировании гранулированной ионообменной смолы, не являющейся сорбентом рутения, продуктами реакции тиометилирования аминов, причем в качестве аминосоединения выбрана тиомочевина. Тиомочевина известна как комплексообразующий реагент ряда благородных металлов, в том числе рутения, однако применение тиомочевины ограничивается только областью аналитической химии, т.к. применению в технологических процессах мешает невозможность использования порошкового реагента в динамических технологических процессах.
Способ получения сорбента заключается в сорбции на гранулированном макропористом анионите сульфид-ионов, источником которых являются водорастворимые сульфиды и гидросульфиды щелочных металлов или газообразный сероводород, с последующей конденсацией сорбированных сульфид-ионов с формальдегидом и тиомочевиной внутри пор анионита для образования нековалентно закрепленного на ионообменной матрице активного по отношению к рутению сорбирующего центра. Таким образом, на атомах азота полимерной матрицы «нарастают» активные сорбционные центры, образованные реакцией конденсации тиомочевины, формальдегида и сорбированного на матричном полимере сульфид-иона.
В качестве анионита используют гранулированные макропористые аниониты полимеризационного или поликонденсационного типа как сильноосновные, так и слабоосновные, т.е. содержащие как группы четвертичного аммониевого основания, так и/или первичные и вторичные аминогруппы, например АВ-17-10п (сильноосновный анионит полимеризационного типа); АН-221 (слабоосновный анионит полимеризационного типа); ЭДЭ-10-п (поликонденсационный эпоксиполиаминовый анионит, содержащий слабоосновные аминогруппы и до 10% сильноосновных групп) и другие.
Отличием от прототипа является введение в состав сорбента дополнительного модифицирующего компонента - тиомочевины, которая, взаимодействуя с формальдегидом и сорбированным на анионите сульфидом, образует в структуре анионита аминометилентиоэфиры, благодаря чему сорбент приобретает способность к сорбции рутения. Более того, по сравнению с индивидуальными амиометилентиоэфирами, использование заявляемого сорбента значительно повышает степень извлечения рутения - до 86% (по сравнению с 58% по прототипу).
Полученные модифицированные полимеры способны сорбировать рутений из водных растворов при динамической технологической схеме сорбции, т.к. сорбционно-активные по рутению комплексообразующие центры, представленные аминометилентиоэфирами, находятся в порах предназначенного для динамических процессов гранулированного анионита.
Синтезированные сорбенты были испытаны на сорбцию рутения. Максимальная величина емкости по рутению составила для заявляемого сорбента 8,5 мМ/г, а степень извлечения рутения составила 86%.
Изобретение иллюстрируется примерами.
Пример 1
Через 10 г сильноосновного анионита АВ-17-10п (стирол-дивинилбензольная матрица) пропускали 100 мл 0,1 Н водного раствора сульфида натрия для сорбции сульфид-ионов, анионит промывали водой и переносили в колбу, в которую добавляли 2,2 мл (0,03 М) формальдегида в водном растворе, затем 0,76 г (0,01 М) тиомочевины и выдерживали при перемешивании без нагревания в течение 2 ч. Готовый продукт промывали водой.
Пример 2
По примеру 1 через анионит АВ-17-10п пропускали 100 мл 0,1 Н водного раствора гидросульфида натрия. Далее по примеру 1
Пример 3
По примеру 1 через анионит АН-221, смоченный водой, пропускали газообразный сероводород. Далее по примеру 1.
Пример 4
В колонку, заполненную полученным по примеру 1 сорбентом в количестве 10 г, пропускали со скоростью 1 мл/мин 100 мл раствора, содержащего 1 г рутения в 0,1 Н соляной кислоте. В фильтрате, выходящем из колонки, определяли содержание рутения, и по разности вычисляли количество рутения, поглощенного сорбентом, и степень извлечения рутения из раствора. Максимальная степень извлечения рутения составила 86%.
Пример 5
Через 10 г сильноосновного анионита АВ-17-10п (стирол-дивинилбензольная матрица) пропускали 100 мл 0,1 Н водного раствора сульфида натрия для сорбции сульфид-ионов, анионит промывали водой и переносили в колбу, в которую добавляли 2,2 мл (0,03 М) формальдегида в водном растворе, затем 1,52 г (0,02 М) тиомочевины и выдерживали при перемешивании без нагревания в течение 2 ч. Готовый продукт промывали водой.
Пример 6
В колонку, заполненную полученным по примеру 5 сорбентом в количестве 10 г, пропускали со скоростью 1 мл/мин. 100 мл раствора, содержащего 1 г рутения в 0,1 Н соляной кислоте. В фильтрате, выходящем из колонки, определяли содержание рутения, и по разности вычисляли количество рутения, поглощенного сорбентом, и степень извлечения рутения из раствора. Максимальная степень извлечения рутения составила 86%.
Пример 7
Через 10 г сильноосновного анионита АВ-17-10п (стирол-дивинилбензольная матрица) пропускали 100 мл 0,1 Н водного раствора сульфида натрия для сорбции сульфид-ионов, анионит промывали водой и переносили в колбу, в которую добавляли 2,2 мл (0,03 М) формальдегида в водном растворе, затем 0,38 г (0,005 М) тиомочевины и выдерживали при перемешивании без нагревания в течение 2 ч. Готовый продукт промывали водой.
Пример 8
В колонку, заполненную полученным по примеру 7 сорбентом в количестве 10 г, пропускали со скоростью 1 мл/мин 100 мл раствора, содержащего 1 г рутения в 0,1 Н соляной кислоте. В фильтрате, выходящем из колонки, определяли содержание рутения, и по разности вычисляли количество рутения, поглощенного сорбентом, и степень извлечения рутения из раствора. Максимальная степень извлечения рутения составила 34%.
Таким образом, заявляемый способ позволяет увеличить степень извлечения рутения из растворов, если соотношение реагентов при синтезе соответствует заявляемому: не менее 1 моля тиомочевины на 3 моля формальдегида. Уменьшение количества тиомочевины менее 1 моля на 3 моля формальдегида вызывает снижение степени извлечения рутения. Увеличение количества тиомочевины выше указанного не влечет за собой увеличения степени извлечения рутения.

Claims (1)

  1. Способ получения сорбента для извлечения рутения, включающий сорбцию на гранулированном макропористом анионите сульфид-ионов с последующей конденсацией сорбированных сульфид-ионов с формальдегидом, отличающийся тем, что в процесс конденсации сорбированных сульфид-ионов с формальдегидом вводят тиомочевину в мольном отношении к формальдегиду не менее 1:3.
RU2015141799/05A 2016-01-22 2016-01-22 Способ получения сорбента рутения RU2605255C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015141799/05A RU2605255C1 (ru) 2016-01-22 2016-01-22 Способ получения сорбента рутения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015141799/05A RU2605255C1 (ru) 2016-01-22 2016-01-22 Способ получения сорбента рутения

Publications (1)

Publication Number Publication Date
RU2605255C1 true RU2605255C1 (ru) 2016-12-20

Family

ID=58697370

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015141799/05A RU2605255C1 (ru) 2016-01-22 2016-01-22 Способ получения сорбента рутения

Country Status (1)

Country Link
RU (1) RU2605255C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660148C1 (ru) * 2017-12-04 2018-07-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения сорбента для извлечения селена, теллура

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2081130C1 (ru) * 1995-05-05 1997-06-10 Российский химико-технологический университет им.Д.И.Менделеева Способ получения сорбента
RU2201983C1 (ru) * 2001-08-20 2003-04-10 ООО Научно-производственная фирма "Паллада" Способ извлечения благородных металлов из растворов сорбцией
RU2230034C2 (ru) * 2002-04-22 2004-06-10 Федеральное государственное унитарное предприятие Государственный научный центр РФ Научно-исследовательский институт атомных реакторов Способ выделения рутения-106 из рафинатов производства трансплутониевых элементов
RU2370763C1 (ru) * 2008-07-14 2009-10-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" Способ определения рутения (iv) в присутствии осмия (iv)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2081130C1 (ru) * 1995-05-05 1997-06-10 Российский химико-технологический университет им.Д.И.Менделеева Способ получения сорбента
RU2201983C1 (ru) * 2001-08-20 2003-04-10 ООО Научно-производственная фирма "Паллада" Способ извлечения благородных металлов из растворов сорбцией
RU2230034C2 (ru) * 2002-04-22 2004-06-10 Федеральное государственное унитарное предприятие Государственный научный центр РФ Научно-исследовательский институт атомных реакторов Способ выделения рутения-106 из рафинатов производства трансплутониевых элементов
RU2370763C1 (ru) * 2008-07-14 2009-10-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" Способ определения рутения (iv) в присутствии осмия (iv)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛОСЕВ В.Н. и др., Сорбция рутения силикагелями, химически модифицированными меркапто- и дисульфидными группами, ЖНХ, 2005, т.50, 4, с.640-644. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660148C1 (ru) * 2017-12-04 2018-07-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения сорбента для извлечения селена, теллура

Similar Documents

Publication Publication Date Title
Dong et al. Recovery of Au (III) by radiation synthesized aminomethyl pyridine functionalized adsorbents based on cellulose
CN101829609B (zh) 含叔氨基的大孔阴离子交换树脂及其制备方法
US20100252506A1 (en) Method for producing chelate resins
RU2545978C2 (ru) Улучшенный способ стадийного элюирования нагруженной смолы
AU2013306149B2 (en) Elution of metal ions from chelating resin using amino acid eluant
US20130118986A1 (en) High Capacity Oxoanion Chelating Media From Hyperbranched Macromolecules
RU2605255C1 (ru) Способ получения сорбента рутения
KR20090074208A (ko) 이온 교환 수지 및 그 사용 방법
CN103301890A (zh) 一种选择性强碱阴离子交换树脂及其制备方法
Wang et al. New insights into selective flotation recovery of gold using dye-derived thermo-responsive polymeric surfactant: DFT calculation and adsorption mechanism
US10882038B2 (en) Aluminum-doped, iminoacetic acid group-containing chelate resins
RU2579133C1 (ru) Способ получения сорбента редкоземельных металлов
JP4744494B2 (ja) 熱安定性アニオン交換体
Balanovsky et al. Synthesis and properties of strongly basic acrylate polyfunctional anion-exchange resin for uranium extraction
RU2081130C1 (ru) Способ получения сорбента
RU2479651C1 (ru) Способ извлечения и разделения платины и родия в сульфатных растворах
JP4605432B2 (ja) キレート樹脂及びその製造法
RU2660148C1 (ru) Способ получения сорбента для извлечения селена, теллура
CN104028238B (zh) 一种基于聚丙烯腈-衣康酸除砷吸附剂的制备方法
US9079177B2 (en) Methylene aminoethyl sulfonic acid chelating resins
Chanda et al. Polybenzimidazole resin based new chelating agents uranyl ion selectivity of resins with immobilized glyoxal-bis-2-hydroxyanil and salicylaldehyde-ethylenediimine
RU2616064C1 (ru) Способ получения сорбента на основе полимерного гидрогеля
RU2695065C1 (ru) Способ получения сорбента для извлечения ионов золота
KR101564029B1 (ko) 인 제거용 키토산 비드 및 그 제조방법
CN105731593B (zh) 从溶液中去除汞的方法