RU2604476C2 - Способ повышения качества туннельного перехода в структуре солнечных элементов - Google Patents

Способ повышения качества туннельного перехода в структуре солнечных элементов Download PDF

Info

Publication number
RU2604476C2
RU2604476C2 RU2013152841/28A RU2013152841A RU2604476C2 RU 2604476 C2 RU2604476 C2 RU 2604476C2 RU 2013152841/28 A RU2013152841/28 A RU 2013152841/28A RU 2013152841 A RU2013152841 A RU 2013152841A RU 2604476 C2 RU2604476 C2 RU 2604476C2
Authority
RU
Russia
Prior art keywords
solar cell
group
substance
tunnel junction
group iii
Prior art date
Application number
RU2013152841/28A
Other languages
English (en)
Other versions
RU2013152841A (ru
Inventor
Ксинг-Кван ЛИУ
Кристофер М. ФЕТЦЕР
Дэниэл К. ЛО
Original Assignee
Зе Боинг Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зе Боинг Компани filed Critical Зе Боинг Компани
Publication of RU2013152841A publication Critical patent/RU2013152841A/ru
Application granted granted Critical
Publication of RU2604476C2 publication Critical patent/RU2604476C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре (100) солнечных элементов и управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V. Также предложено фотоэлектрическое устройство, включающее подложку (102); первый солнечный элемент (108), расположенный над подложкой (102); контакт (116), расположенный над первым солнечным элементом (108); туннельный переход (112), образованный между первым солнечным элементом (108) и контактом (116), и в котором туннельный переход (112) изготовлен методом эпитаксии со стимулированной миграцией (МЕЕ); буферный слой (106), расположенный между указанной подложкой (102) и указанным первым солнечным элементом (108); и слой (104) зарождения, расположенный между указанным буферным слоем (106) и указанной подложкой (102). Изобретение обеспечивает улучшение качества материала туннельного перехода, что обеспечивает высокую кристаллическую чистоту солнечных элементов над туннельным переходом, которая в свою очередь обеспечивает повышение эффективности преобразования солнечного излучения. 2 н. и 10 з.п. ф-лы, 4 ил.

Description

Предшествующий уровень техники
Варианты осуществления настоящего изобретения в целом относятся к структурам солнечных элементов с множеством переходов, а более конкретно к способу повышения качества туннельных переходов в структурах солнечных элементов с множеством переходов.
Солнечные фотоэлектрические устройства - это устройства, способные преобразовывать энергию солнечных лучей в полезную электрическую энергию. Солнечная энергия, получаемая с помощью фотоэлектрических устройств, является основным источником энергии для многих космических аппаратов. Солнечные фотоэлектрические устройства также становятся привлекательной альтернативой для выработки электроэнергии для бытового, коммерческого и промышленного использования, поскольку солнечная энергия является экологически чистой и возобновляемой.
В структурах солнечных элементов с множеством переходов, предназначенных для применения в фотоэлектрическом концентраторе, туннельные переходы между отдельными солнечными элементами могут играть важную роль в определении эффективности структуры солнечных элементов. Один из способов повышения эффективности солнечных элементов может заключаться в повышении качества материала туннельного перехода и, следовательно, качества слоев, выращенных на туннельном переходе, и одновременно увеличить туннельный ток от туннельных переходов. Кроме того, туннельный переход должен быть достаточно прозрачным, чтобы через него мог проходить свет к расположенным ниже солнечным элементам.
Таким образом, было бы желательным обеспечить систему и способ, преодолевающие вышеуказанные проблемы.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Способ формирования туннельного перехода в структуре солнечных элементов предусматривает осаждение вещества Группы III и осаждения вещества Группы V после указанного осаждения вещества Группы III.
Способ формирования туннельного перехода в структуре солнечных элементов предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре солнечных элементов.
Фотоэлектрическое устройство имеет подложку. Первый солнечный элемент расположен над подложкой. Контакт располагается над первым солнечным элементом. Туннельный переход образован между первым солнечным элементом и контактом. Туннельный переход получают путем эпитаксии со стимулированной миграцией (MEE-migration enhanced epitaxial).
Признаки, функции и преимущества могут быть достигнуты независимо один от другого в различных вариантах осуществления данного изобретения или могут быть объединены в других вариантах осуществления изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Варианты осуществления настоящего изобретения будут более понятны из подробного описания и прилагаемых чертежей, на которых:
Фиг. 1 - упрощенная блок-схема структуры солнечного элемента, в которой для формирования туннельного перехода может использоваться способ эпитаксии со стимулированной миграцией;
Фиг. 2 - временной график последовательности потоков при эпитаксии со стимулированной миграцией в ходе формирования туннельного перехода;
Фиг. 3 - блок-схема последовательности потоков при эпитаксии со стимулированной миграцией в ходе формирования туннельного перехода;
Фиг. 4 - световая вольт-амперная (LIV) характеристика GaInP туннельного перехода, выращенного способом эпитаксии со стимулированной миграцией при высокой температуре (НТ), и выращенного способом обычной эпитаксии при той же температуре GaInP туннельного перехода (TuJn) в тестовой структуре.
ПОДРОБНОЕ ОПИСАНИЕ
Рассмотрим Фиг. 1, на которой изображена структура 100 из множества солнечных элементов (далее - структура 100 солнечных элементов). Структура 100 солнечных элементов может иметь подложку 102. Подложка 102 может быть выполнена из различных материалов. В соответствии с одним вариантом осуществления изобретения могут использоваться арсенид галлия (GaAs), германий (Ge) или другие подходящие вещества. Приведенный выше список веществ не должен рассматриваться как окончательный. При использовании подложки из германия (Ge) на подложку 102 может быть нанесен слой 104 зарождения (слой нуклеации). На подложке 102 или над слоем 104 зарождения может быть выполнен буферный слой 106. Солнечный элемент 108, например Солнечный Элемент 1, может быть сформирован на буферном слое 106. Солнечный элемент 108 может быть выполнен из слоя эмиттера n+ и слоя базы p-типа. В соответствии с одним вариантом осуществления изобретения галлий (Ga), индий (In), фосфор (P) могут использоваться для изготовления солнечного элемента 108. Однако упомянутое не следует рассматривать в ограничивающем смысле.
Туннельный переход 112 может быть образован между солнечным элементом 108 и другим солнечным элементом 114, например Солнечным Элементом 2. Туннельный переход 112 может использоваться для соединения солнечного элемента 114 с солнечным элементом 108. Солнечный элемент 114 может быть аналогичен солнечному элементу 108. Солнечный элемент 114 может быть выполнен из слоя эмиттера n+ и слоя базы p-типа. В соответствии с одним вариантом осуществления изобретения галлий (Ga), индий (In), фосфор (P) могут использоваться для изготовления солнечного элемента 114. Однако упомянутое не следует рассматривать в ограничивающем смысле. Верхний слой 116 может быть сформирован на солнечном элементе 114. Верхний слой 116 служит контактом для структуры 100 солнечных элементов. Хотя на Фиг. 1 изображены только солнечные элементы 108 и 114, однако могут использоваться дополнительные солнечные элементы и туннельные переходы.
Качество туннельного перехода 112 может иметь решающее значение для поддержания высокой кристаллической чистоты солнечного элемента 114 над туннельным переходом 112. При обеспечении высокого качества туннельного перехода 112 можно получить больший ток туннельного перехода. Это может повысить эффективность структуры 100 солнечных элементов.
В настоящее время в существующих высокоэффективных солнечных элементах с множеством переходов для достижения высокой концентрации легирующей примеси, особенно при использовании материалов с широкой запрещенной зоной, таких как GaInP, могут применяться пониженные температуры. Рассмотрим теперь Фиг. 2 и 3, иллюстрирующие способ, который может повысить качество туннельного перехода 112. Способ может использовать метод эпитаксии со стимулированной миграцией (МЕЕ) для формирования туннельного перехода 112.
МЕЕ является методом осаждения монокристаллов. В способе МЕЕ могут альтернативно использоваться атомы группы III и группы V, таким образом атомы группы III имеют большую длину диффузии на поверхности перед реакцией с атомами группы V, благодаря чему достигается более высокое качество кристаллов. При формировании туннельного перехода 112 могут использоваться различные сочетания элементов Группы III и Группы V, перечисленные в периодической таблице. Различные сочетания могут быть выбраны на основе постоянной решетки и требований к запрещенной зоне. Элементы Группы III могут включать, без ограничения перечисленным: бор (B), алюминий (Al), галлий (Ga), индий (In) и таллий (Tl). Элементы Группы V могут включать (без ограничения перечисленным): азот (N), фосфор (P), мышьяк (As), сурьму (Sb) и висмут (Bi).
Миграция поверхностных атомов вдоль поверхности может играть важную роль для выращивания высококачественных слоев и атомарно-плоских гетеропереходов. В МЕЕ используется модуляция Группы III и Группы V во время эпитаксии, которая может улучшить миграцию атомов Группы III на поверхности подложки и, следовательно, повысить качество. Как показано на Фиг. 2 и 3, происходит попеременное нанесение веществ Группы III и Группы V. Таким образом, вещество Группы III может вначале наноситься на слой TuJn 112. Это может позволить веществу Группы III диффундировать в течение более длительного времени, что может обеспечить более высокое качество кристалла. После нанесения вещества Группы III может наноситься вещество Группы V. Попеременное (альтернативное) нанесение веществ Группы III и Группы V продолжается до завершения формирования туннельного перехода 112. При нанесении веществ Группы III и Группы V могут применяться различные временные интервалы, в зависимости от используемых веществ. Чередующиеся промежутки времени могут составлять от 1 до 1000 секунд или более.
МЕЕ может обеспечить возможность управления соотношением V/III и улучшить легирование, в частности, такими легирующими примесями, как теллур (Te), сера (S), углерод (C) и т.д., которые занимают место атома группы V. МЕЕ может осуществляться при очень низком соотношении V/III. В частности, при обездвиживании атомов алкила на поверхности, вещество группы V не впрыскивается в камеру, поэтому мгновенное отношение V/III является очень низким, и концентрация легирующей примеси выше.
Рассмотрим Фиг. 4, на которой приведены световые вольт-амперные характеристики (LIV) для разных концентраций. На Фиг. 4 приведены световые вольт-амперные (LIV) характеристики туннельного перехода НТ GaInP, выращенного с использованием МЕЕ, и выращенного путем традиционной эпитаксии GaInP НТ туннельного перехода. Хотя кривые LIV выращенного методом МЕЕ НТ GaInP туннельного перехода получены в тестовой структуре, включающей один переход, очевидно, что туннельный переход МЕЕ НТ TuJn демонстрирует больший туннельный ток по сравнению с выращенным методом традиционной эпитаксии туннельным переходом TuJn.
В существующих высокоэффективных солнечных элементах с множеством переходов для достижения высокой концентрации легирующей примеси, особенно при использовании материалов с широкой запрещенной зоной, таких как GaInP, обычно применяются пониженные температуры. МЕЕ может использоваться как при высоко-, так и при низкотемпературном выращивании слоев туннельного перехода (TuJn) и может обеспечивать более высокое легирование и более высокое качество TuJn-слоев, в то время как при традиционном выращивании достижение высокого легирования связано с ухудшением качества, снижением максимального туннельного тока, а также ухудшением качества последующих слоев. Данное изобретение может повысить туннельный ток по сравнению с существующими значениями и, следовательно, увеличить эффективность.
В тексте настоящей заявки и на прилагаемых Фиг. 1-4 раскрыт способ формирования туннельного перехода 112 в структуре 100 солнечных элементов. Способ включает попеременное осаждение вещества Группы III и вещества Группы V на структуре 100 солнечных элементов. В одном варианте попеременное осаждение вещества Группы III и вещества Группы V включает осаждение вещества Группы III на структуре 100 солнечных элементов и осаждение вещества Группы V после осаждения вещества Группы III. Кроме этого, способ может предусматривать осаждение вещества Группы III на первый солнечный элемент 108, например Солнечный Элемент 1, структуры 100 солнечных элементов. В одном варианте осуществления способ может включать осаждение вещества Группы V на первый солнечный элемент 108 структуры 100 солнечных элементов. В еще одном альтернативном варианте способ может включать управление отношением при осаждении вещества Группы III и вещества Группы V. В одном варианте попеременное осаждение вещества Группы III может включать нанесение веществ Группы III и Группы V в течение около 1-1000 секунд. В одном альтернативном варианте вещества Группы III включают по меньшей мере один из следующих: бор (B), алюминий (Al), галлий (Ga), индий (In) и таллий (Tl). В еще одном примере вещества Группы V включают по меньшей мере один из следующих: азот (N), фосфор (P), мышьяк (As), сурьму (Sb) и висмут (Bi).
В тексте настоящей заявки и на прилагаемых Фиг. 1-4 раскрыто фотоэлектрическое устройство, содержащее подложку 102, первый солнечный элемент 108, например Солнечный Элемент 1, расположенный над подложкой 102, контакт 116, расположенный над первым солнечным элементом 108; и туннельный переход 112, сформированный между первым солнечным элементом 108 и контактом, отличающееся тем, что туннельный переход 112 образован методом эпитаксии со стимулированной миграцией (МЕЕ). В одном варианте осуществления туннельный переход 112 образован указанным способом МЕЕ при попеременном осаждении веществ Группы III и Группы V. В одном примере вещества Группы III включают по меньшей мере один из следующих: бор (B), алюминий (Al), галлий (Ga), индий (In) и таллий (Tl).
В одном варианте указанные вещества Группы V могут включать по меньшей мере один из следующих: азот (N), фосфор (P), мышьяк (As), сурьму (Sb) и висмут (Bi). Кроме того, фотоэлектрическое устройство может содержать буферный слой 106, расположенный между указанной подложкой 100 и первым солнечным элементом 108. Кроме того, фотоэлектрическое устройство может содержать слой зарождения 104, расположенный между указанным буферным слоем 106 и указанной подложкой 102. В одном варианте осуществления второй солнечный элемент 114, например Солнечный Элемент 2, расположен между указанным первым солнечным элементом 108 и указанным контактом 116.
Хотя варианты осуществления данного изобретения были описаны с использованием различных конкретных вариантов осуществления, специалистам в данной области техники будет понятно, что варианты осуществления изобретения могут быть реализованы на практике с изменениями, не выходя за рамки объема и сущности изобретения.

Claims (12)

1. Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, содержащий
попеременное осаждение вещества Группы III и вещества Группы V на указанной структуре (100) солнечных элементов; и
управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V.
2. Способ по п. 1, отличающийся тем, что попеременное осаждение вещества Группы III и вещества Группы V дополнительно содержит:
осаждение вещества Группы III на указанной структуре (100) солнечных элементов и
осаждение вещества Группы V после осаждения указанного вещества Группы III.
3. Способ по п. 1, дополнительно содержащий осаждение указанного вещества Группы III на первый солнечный элемент (108) указанной структуры (100) солнечных элементов.
4. Способ по п. 3, дополнительно содержащий осаждение указанного вещества Группы V на первый солнечный элемент (108) указанной структуры (100) солнечных элементов.
5. Способ по п. 1, отличающийся тем, что попеременное осаждение указанного вещества Группы III и вещества Группы V содержит нанесение указанного вещества Группы III или указанного вещества Группы V в течение от около 1 до около 1000 с.
6. Способ по п. 1, отличающийся тем, что указанные вещества Группы III включают по меньшей мере одно из следующих: бор (В), алюминий (Al), галлий (Ga), индий (In) и таллий (Tl).
7. Способ по п. 1, отличающийся тем, что указанные вещества Группы V включают по меньшей мере одно из следующих: азот (N), фосфор (Р), мышьяк (As), сурьму (Sb) и висмут (Bi).
8. Фотоэлектрическое устройство, включающее:
подложку (102);
первый солнечный элемент (108), расположенный над подложкой (102);
контакт (116), расположенный над первым солнечным элементом (108);
туннельный переход (112), образованный между первым солнечным элементом (108) и контактом (116), и в котором туннельный переход (112) изготовлен методом эпитаксии со стимулированной миграцией (МЕЕ);
буферный слой (106), расположенный между указанной подложкой (102) и указанным первым солнечным элементом (108); и
слой (104) зарождения, расположенный между указанным буферным слоем (106) и указанной подложкой (102).
9. Фотоэлектрическое устройство по п. 8, отличающееся тем, что туннельный переход (112) образован указанным способом МЕЕ при попеременном осаждении веществ Группы III и Группы V.
10. Фотоэлектрическое устройство по п. 9, отличающееся тем, что вещества Группы III содержат по меньшей мере одно из следующих: бор (В), алюминий (Al), галлий (Ga), индий (In) и таллий (Tl).
11. Фотоэлектрическое устройство по п. 9, отличающееся тем, что указанные вещества Группы V содержат по меньшей мере один из следующих: азот (N), фосфор (Р), мышьяк (As), сурьму (Sb) и висмут (Bi).
12. Фотоэлектрическое устройство по п. 8, дополнительно содержащее второй солнечный элемент (114), расположенный между указанным первым солнечным элементом (108) и указанным контактом (116).
RU2013152841/28A 2011-04-29 2012-03-28 Способ повышения качества туннельного перехода в структуре солнечных элементов RU2604476C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/098,122 US20120273042A1 (en) 2011-04-29 2011-04-29 Method for improving the quality of a tunnel junction in a solar cell structure
US13/098,122 2011-04-29
PCT/US2012/030983 WO2012148618A1 (en) 2011-04-29 2012-03-28 A method for improving the quality of a tunnel junction in a solar cell structure

Publications (2)

Publication Number Publication Date
RU2013152841A RU2013152841A (ru) 2015-06-10
RU2604476C2 true RU2604476C2 (ru) 2016-12-10

Family

ID=45932551

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013152841/28A RU2604476C2 (ru) 2011-04-29 2012-03-28 Способ повышения качества туннельного перехода в структуре солнечных элементов

Country Status (6)

Country Link
US (1) US20120273042A1 (ru)
EP (1) EP2702617A1 (ru)
JP (1) JP2014512703A (ru)
CN (1) CN103503167B (ru)
RU (1) RU2604476C2 (ru)
WO (1) WO2012148618A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098818A (zh) * 2016-08-26 2016-11-09 扬州乾照光电有限公司 一种锗基砷化镓多结柔性薄膜太阳电池及其制备方法
US10593818B2 (en) * 2016-12-09 2020-03-17 The Boeing Company Multijunction solar cell having patterned emitter and method of making the solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027587A1 (en) * 1997-11-26 1999-06-03 Sandia Corporation High-efficiency solar cell and method for fabrication
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
RU2308122C1 (ru) * 2006-06-05 2007-10-10 Институт физики полупроводников Сибирского отделения Российской академии наук Каскадный солнечный элемент
RU2382439C1 (ru) * 2008-06-05 2010-02-20 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" (ООО "Национальная инновационная компания "НЭП") Каскадный фотопреобразователь и способ его изготовления

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437060A (en) * 1987-08-03 1989-02-07 Nippon Telegraph & Telephone Semiconductor element
JPH03235372A (ja) * 1990-02-10 1991-10-21 Sumitomo Electric Ind Ltd 超高効率太陽電池
JPH05201792A (ja) * 1992-01-27 1993-08-10 Hitachi Ltd 薄膜結晶製造装置
JPH08162659A (ja) * 1994-12-06 1996-06-21 Japan Energy Corp 太陽電池
JPH0964386A (ja) * 1995-08-18 1997-03-07 Japan Energy Corp 多接合太陽電池
JPH1012905A (ja) * 1996-06-27 1998-01-16 Hitachi Ltd 太陽電池及びその製造方法
JPH1074968A (ja) * 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> 太陽電池およびその製造方法
US6380601B1 (en) * 1999-03-29 2002-04-30 Hughes Electronics Corporation Multilayer semiconductor structure with phosphide-passivated germanium substrate
JP2001111074A (ja) * 1999-08-03 2001-04-20 Fuji Xerox Co Ltd 半導体素子及び太陽電池
US7329554B2 (en) * 2001-11-08 2008-02-12 Midwest Research Institute Reactive codoping of GaAlInP compound semiconductors
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
CN101373798B (zh) * 2007-08-22 2010-07-21 中国科学院半导体研究所 倒装双结铟镓氮太阳能电池结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027587A1 (en) * 1997-11-26 1999-06-03 Sandia Corporation High-efficiency solar cell and method for fabrication
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
RU2308122C1 (ru) * 2006-06-05 2007-10-10 Институт физики полупроводников Сибирского отделения Российской академии наук Каскадный солнечный элемент
RU2382439C1 (ru) * 2008-06-05 2010-02-20 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" (ООО "Национальная инновационная компания "НЭП") Каскадный фотопреобразователь и способ его изготовления

Also Published As

Publication number Publication date
US20120273042A1 (en) 2012-11-01
CN103503167A (zh) 2014-01-08
WO2012148618A1 (en) 2012-11-01
CN103503167B (zh) 2016-09-14
JP2014512703A (ja) 2014-05-22
RU2013152841A (ru) 2015-06-10
EP2702617A1 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
McLaughlin et al. Progress in indium gallium nitride materials for solar photovoltaic energy conversion
CA2743346C (en) Combined pn junction and bulk photovoltaic device
CN102388466B (zh) 光伏电池
Soga et al. MOCVD growth of high efficiency current-matched AlGaAsSi tandem solar cell
CN101752444B (zh) p-i-n型InGaN量子点太阳能电池结构及其制作方法
RU2604476C2 (ru) Способ повышения качества туннельного перехода в структуре солнечных элементов
Shi et al. Polycrystalline silicon thin‐film solar cells: The future for photovoltaics?
US20110048537A1 (en) Method of fabricating a semiconductor junction
Lu et al. Improving GaP solar cell performance by passivating the surface using AlxGa1-xP epi-layer
CN101853889B (zh) 用于光伏器件的多频带半导体组合物
CN103367480B (zh) GaAs隧道结及其制备方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
Hudait et al. High-performance In/sub 0.53/Ga/sub 0.47/As thermophotovoltaic devices grown by solid source molecular beam epitaxy
JPH11103080A (ja) 太陽電池
Onton Compound semiconductor alloys
KR101464086B1 (ko) 다중접합 화합물 태양전지 구조
Yu et al. Photovoltaic performance of lattice-matched gallium indium arsenide/germanium stannide dual-junction cell
Späh et al. n‐ZrS3/p‐WSe2 heterojunctions
Jons Doped 3C-SiC Towards Solar Cell Applications
Saeed et al. AFORS-HET-based numerical exploration of tunnel oxide passivated contact solar cells incorporating n-and p-type silicon substrates
JPH10135494A (ja) 太陽電池
Li et al. Growth of tellurium doped ultra-broadband tunnel junction for the next generation 5J solar cell
JPS60218880A (ja) InP太陽電池
JPS6214110B2 (ru)
Konagai Present Status and Future Prospects of Polycrystalline Thin-Film Solar Cells in Japan

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant