RU2599320C2 - Способ просверливания стенки камеры сгорания - Google Patents

Способ просверливания стенки камеры сгорания Download PDF

Info

Publication number
RU2599320C2
RU2599320C2 RU2013139371/02A RU2013139371A RU2599320C2 RU 2599320 C2 RU2599320 C2 RU 2599320C2 RU 2013139371/02 A RU2013139371/02 A RU 2013139371/02A RU 2013139371 A RU2013139371 A RU 2013139371A RU 2599320 C2 RU2599320 C2 RU 2599320C2
Authority
RU
Russia
Prior art keywords
wall
combustion chamber
axis
holes
drilling
Prior art date
Application number
RU2013139371/02A
Other languages
English (en)
Other versions
RU2013139371A (ru
Inventor
Жак Марсель Артюр БЮНЕЛЬ
Марио Сезар ДЕ СУЗА
Фабрис ДОМИНГЕС
Бузид РАБЬЯ
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2013139371A publication Critical patent/RU2013139371A/ru
Application granted granted Critical
Publication of RU2599320C2 publication Critical patent/RU2599320C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/26Perforating by non-mechanical means, e.g. by fluid jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0591Cutting by direct application of fluent pressure to work

Abstract

Изобретение относится к области самолетостроения и может быть использовано для процесса просверливания стенок (12, 13) деталей турбомашин. Способ (100) включает в себя этап предварительного расчета (101) механических напряжений, которые воздействуют на стенку (12, 13) детали при работе турбомашины, и этап просверливания (102) по меньшей мере одного отверстия (21) в предопределенной зоне упомянутой стенки (12, 13). При этом упомянутое просверливание (102) выполняется по меньшей мере одним режущим инструментом, имеющим поперечное сечение, которое соответствует рассчитанным механическим напряжениям. 3 н. и 9 з.п. ф-лы, 15 ил.

Description

Настоящее изобретение относится к способу просверливания стенки, в частности к области камер сгорания для газовой турбины авиационного двигателя, и к способу просверливания, по меньшей мере, одной стенки камеры сгорания.
Согласно описанию, приводимому во французской заявке на патент № 2668246, такая камера сгорания обычно содержит две соосных стенки, имеющих форму тела вращения, которые расположены одна внутри другой и соединены между собой одним из своих краев посредством кольцевой стенки дна камеры, содержащей отверстия для подачи воздуха и средства подачи топлива.
Внутренняя стенка и внешняя стенка образуют обводной кольцевой канал, в котором циркулирует воздух, подачу которого обеспечивает компрессор высокого давления, расположенный перед камерой сгорания.
Обычно часть этого воздуха подается в зону горения в осевом направлении через отверстия подачи воздуха, выполненные в дне камеры, и поперек через отверстия нагнетания первичного воздуха, просверленные во внутренней и внешней стенках камеры.
Кроме того, ввиду повышенных температур в камере сгорания внутренняя и внешняя стенки последней нуждаются, как правило, в охлаждении. Для этого в современных камерах сгорания используются хорошо известные способы охлаждения путем просверливания множества отверстий. Просверливание множества отверстий заключается в выполнении множества отверстий для нагнетания охлаждающего воздуха в стенках камеры сгорания. Воздух, проходящий через эти отверстия, понижает температуру стенок, а затем камеры сгорания.
Эти отверстия, как правило, выполнены путем сверления лазером. Для охлаждения большей поверхности отверстия 1, проходящие сквозь стенку 2 камеры сгорания (изображены на фиг.1), наклонены под углом α1, составляющим приблизительно 30°, относительно плоскости P, тангенциально расположенной по отношению к профилю стенки 2. Независимо от способа сверления геометрическая форма сечения режущего инструмента (в представленном примере - лазера) всегда имеет круглую форму. Сечение 3 внешнего края (т.е. края, расположенного на уровне внешней поверхности стенки) каждого отверстия 1 (ср. фиг.2), получаемого в результате врезания под углом режущего инструмента, имеющего круглое сечение, в профиль стенки 2, имеет, таким образом, эллипсовидную форму.
Кроме того, во время работы турбомашины внутренняя и внешняя стенки камеры сгорания имеют неодинаковое тепловое расширение и подвержены значительным вибрациям, что приводит к высоким напряжениям на уровне краев отверстий 1.
Как указывалось ранее, в стандартной камере сгорания просверлено множество отверстий охлаждения, расположенных в шахматном порядке, причем последние ориентированы в одном и том же направлении. Согласно практической реализации, каждый внешний край отверстия имеет сечение в форме эллипса, большая ось которого по существу параллельна оси камеры сгорания. Таким образом, в зоне, в которой более сильные напряжения перпендикулярны оси камеры сгорания (и, таким образом, большой оси эллипса), малый радиус r эллипса является местом сосредоточения наиболее сильных механических напряжений. Эти напряжения со временем приводят к появлению разрывов и трещин на краях отверстия 1, причем разрывы в последующем распространяются на соседние отверстия 1 по направлению оси камеры сгорания.
Данная особенность в значительной степени ограничивает срок службы стенок, образующих камеру сгорания.
Согласно другому стандарту, камера сгорания содержит стенки, в которых некоторые из отверстий также имеют эллипсовидную форму, но ориентированы в другом направлении. Так, например, большой радиус сечения, имеющего форму эллипса, перпендикулярен оси камеры сгорания. Таким образом, если в зоне, в которой расположено такое отверстие, самые большие напряжения перпендикулярны оси камера сгорания и, таким образом, параллельны большой оси эллипса; причем напряжения на уровне малого радиуса r эллипса будут менее значительными. Такая практическая реализация позволяет, в ущерб истечению потока воздуха, циркулирующего в камере сгорания, замедлять появление трещин или разрывов на краях каждого из отверстий.
Основной недостаток вышеупомянутого варианта выполнения состоит в том, что поток воздуха, поступающий в камеру сгорания через это множество отверстий, ориентированных в различных направлениях, не является равномерным. Эти различные направленности препятствуют истечению потоков в осевом направлении и создают аэродинамические возмущения.
В этом контексте задачей изобретения является разработка способа просверливания стенки, позволяющего ограничить напряжения, образующиеся по краям отверстий стенки. В случае стенки камеры сгорания, изобретение позволяет, кроме того, обеспечить невозмущенное истечение потока воздуха, поступившего в камеру сгорания.
Для решения задачи предлагается способ просверливания стенки, содержащий первый этап расчета механических напряжений, которые воздействуют на упомянутую стенку, для использования упомянутой стенки. Упомянутый способ содержит второй этап просверливания, по меньшей мере, одного отверстия в первой определенной зоне упомянутой стенки; причем упомянутое просверливание осуществляется посредством режущего инструмента, имеющего сечение, зависящего от механических напряжений, рассчитанных в упомянутой первой определенной зоне.
Благодаря изобретению, каждый внешний край отверстия, расположенный на уровне внешней поверхности стенки, имеет сечение, приведенное в соответствие с направлениями механических напряжений, которые будут на него воздействовать во время его применения.
Такой внешний край отверстия, сечение которого приведено в соответствие с направлениями механических напряжений, которые будут на него воздействовать во время его использования, позволяют ограничить концентрации напряжения и, таким образом, замедлить и даже воспрепятствовать появлению трещин или разрывов на краю этого отверстия.
Согласно еще одному варианту, не имеющему ограничительного характера, упомянутая стенка является стенкой камеры сгорания, а упомянутое использование упомянутой стенки является функционированием упомянутой камеры сгорания.
Благодаря изобретению, каждый внешний край отверстия, расположенный на уровне внешней поверхности стенки, имеет сечение, приведенное в соответствие с направлениями механических напряжений, которые на него будут воздействовать во время функционирования камеры сгорания. Если быть более точным, то такой внешний край отверстия, сечение которого приведено в соответствие с направлениями механических напряжений, которые будут на него воздействовать во время функционирования камеры сгорания, позволяет ограничить концентрации напряжения и, таким образом, замедлить и даже воспрепятствовать появлению трещин или разрывов на краю этого отверстия.
Способ, согласно изобретению, может также содержать одну или множество отмеченных ниже характеристик, рассматриваемых по отдельности или в любом технически возможном сочетании.
Предпочтительно выполняют просверливание множества отверстий; причем каждое из отверстий просверлено согласно особенной оси просверливания, проходящей через ту же линию окружности к оси вращения камеры сгорания; причем совокупность осей просверливания пересекается в одной и той же точке. Другими словами, все отверстия сходятся в одной и той же зоне. Таким образом, когда воздух попадает в центр камеры сгорания через эти отверстия, поток воздуха, циркулирующий в камере сгорания, не возмущен.
Предпочтительно также, чтобы каждая ось просверливания образовывала с плоскостью, тангенциально расположенной к упомянутой стенке, угол от 20° до 70°.
Предпочтительно, чтобы каждая ось просверливания образовывала с тангенциально расположенной плоскостью угол порядка 30°.
Предпочтительно, чтобы этап просверливания выполнялся повторно во второй определенной зоне.
Предпочтительно, чтобы отверстие выполнялось путем формирования контура. Не ограничиваясь этим, формирование контура осуществляется путем выполнения множества соседних отверстий или перемещения режущего инструмента по определенной траектории.
Предпочтительно, чтобы, по меньшей мере, одно из отверстий содержало внешний край, имеющий эллипсовидное сечение; причем упомянутое внешнее сечение, имеющее эллипсовидное сечение, расположено на уровне внешней поверхности стенки.
Предпочтительно, чтобы, по меньшей мере, одно из отверстий содержало внешний край, имеющий круглое сечение; причем упомянутое внешнее сечение, имеющее круглое сечение, расположено на уровне внешней поверхности стенки.
Предпочтительно, чтобы упомянутый режущий инструмент являлся лазерным лучом, струей воды, лезвием для электроискровой обработки или любым другим типом режущего инструмента.
Изобретение также касается стенки, в которой просверлено множество отверстий. Упомянутые отверстия выполнены путем практической реализации способа просверливания по любому из предшествующих пунктов; причем каждое отверстие содержит внешний край, сечение которого зависит от механического напряжения, рассчитанного в зоне, где расположено упомянутое отверстие.
Технической задачей изобретения также является стенка, в которой просверлено множество отверстий, имеющих одинаковую направленность. Упомянутая стенка содержит:
- отверстия, содержащие внешний край с круглым сечением;
- отверстия, содержащие внешний край с сечением, имеющим форму эллипса, большая ось которого по существу параллельна определенной оси;
- отверстия, содержащие внешний край с сечением, имеющим форму эллипса, большая ось которого по существу перпендикулярна упомянутой определенной оси.
Предпочтительно, чтобы стенка являлась стенкой камеры сгорания. Отверстия имеют одинаковую направленность для обеспечения невозмущенного истечения воздуха внутри камеры сгорания.
Другие характеристики и преимущества способа, согласно изобретению, более ясно станут видны из нижеследующего описания, приводимого в качестве примера и не имеющего ограничительного характера, со ссылкой на прилагаемые чертежи, на которых:
- фиг.1 изображает часть стенки камеры сгорания на базе известного уровня техники;
- фиг.2 изображает сечение внешнего края отверстия, проходящего сквозь стенку камеры сгорания на базе известного уровня техники;
- фиг.3 схематически изображает пример практической реализации камеры сгорания, согласно изобретению;
- фиг.4 изображает блок-схему этапов реализации способов, согласно изобретению;
- фиг.5A, 5B, 5C, 5D и 5E изображают различные формы практической реализации отверстий, выполняемых при помощи способа, соответствующего способу, изображенному на фиг.4;
- фиг.6, 6A, 6B и 6C схематически изображают три типа нагружения напряжениями, которые может испытывать стенка камеры сгорания;
- фиг.7 схематически изображает продольный разрез части внутренней стенки камеры сгорания;
- фиг.8 схематически изображает продольный разрез части внутренней стенки камеры сгорания.
Фиг.1 и 2 были использованы для иллюстрации известного уровня техники.
В интересах обеспечения ясности понимания изобретения изображены только основные конструктивные элементы, при этом схематически и без соблюдения масштаба.
Примеры изобретения проиллюстрированы, причем не ограничиваясь этим, при помощи стенок камеры сгорания. Понятно, что изобретение не ограничивается такими стенками и может быть применимо к другим типам стенки, таким как, например, рубашка с проходящими сквозь нее выпускными отверстиями (или дырами); причем упомянутая рубашка составляет часть лопатки. Такие рубашки хорошо известны специалистам и описаны, в частности, во французских заявках на патент FR2893080 и FR2899271.
Изобретение касается, в частности, камеры сгорания 10 турбомашины, которая соответствует изображенной на фиг.3.
Камера сгорания 10 размещена на выходе диффузора 11, который, в свою очередь, расположен на выходе компрессора (не показан), и содержит первую стенку 12 (образована внутренней кольцевой стенкой) и вторую стенку 13 (образована внешней кольцевой стенкой), соединенные спереди кольцевой стенкой 14 дна камеры. Эти первая и вторая стенки 12 и 13 закреплены сзади внутренним 15 и внешним 16 кольцевыми хомутами, соответственно, на внутренней, имеющей форму усеченного конуса оболочке 17 диффузора 11 и на краю внешнего корпуса 18 камеры сгорания 10.
Часть объема воздуха, подаваемого компрессором и выходящего из диффузора 11, снабжает кольцевой канал 19. Воздух, проходящий в этот кольцевой канал 19, поступает в камеру 10 через отверстия подачи первичного воздуха 20, равномерно рассредоточенные по окружности внутренней стенки 12 и по окружности внешней стенки 13.
Внутренняя стенка 12 и внешняя стенка 13 содержат, кроме того, множество отверстий охлаждения 21 для прохождения охлаждающего воздуха, позволяющего охладить внутреннюю стенку 12 и внешнюю стенку 13.
Каждое отверстие 20 и 21 содержит внешний край 22, причем сечение этого внешнего края 22 зависит от механических напряжений, рассчитанных для работы камеры сгорания 10 в зоне, в которой расположено отверстие. Внешние края 22 отверстий 20 и 21 расположены на уровне внешней поверхности 23 внутренней стенки 12 и внешней поверхности 24 внешней стенки 13. Эта предпочтительная особенность детально описывается в последующем.
Фиг.4 изображает этапы способа 100 просверливания, по меньшей мере, одной стенки камеры сгорания, согласно изобретению. Способ 100 содержит первый этап 101 вычисления механических напряжений, которые воздействуют на стенку камеры сгорания для функционирования камеры сгорания. Действительно, во время функционирования стенка подвержена воздействию очень высоких температур, образующих множество механических напряжений, неравномерно рассредоточенных на стенке; причем эти напряжения, например, сильнее сзади камеры сгорания. Для справки и как это изображено на фиг.3, внутренняя 12 и внешняя 13 стенки камеры сгорания 10 удерживаются их задними краями хомутами, соответственно, внутренним 15 и внешним 16, которые относительно более холодные. Таким образом, более сильная концентрация напряжений, как правило, присутствует сзади внутренней 12 и внешней 13 стенок ввиду разницы температур между этими последними и хомутами, к которым они прикреплены.
Указанный первый этап расчета 101 позволяет определить поле механических напряжений, которые испытывает стенка, и определить, в частности, направление и интенсивность механических напряжений.
Вычисление механических напряжений выполняется теоретическим образом, т.е. цифровым моделированием.
Способ 100 содержит, кроме того, второй этап просверливания 102, по меньшей мере, одного отверстия согласно первой оси просверливания и в определенной зоне стенки (т.е. в зоне, в которой во время первого этапа расчета 101 теоретически определены механические напряжения, которые в ней оказывают воздействие). Следует отметить, что это просверливание 102 выполнено согласно особенной оси просверливания. Эта особенная ось просверливания наклонена относительно плоскости, тангенциально расположенной к стенке, для облегчения подачи воздуха, поступающего снаружи камеры сгорания внутрь камеры сгорания.
Кроме того, чем больше наклон, тем больше поверхность подачи воздуха, что позволяет охлаждать большее количество материала стенки.
Кроме того, в зависимости от напряжений, которые оказывают воздействие в этой определенной зоне, выбирается сечение режущего инструмента, который будет использоваться для осуществления просверливания 102.
Действительно, благодаря изобретению можно получить желаемый внешний край отверстия (в зависимости от пересечения режущего инструмента со стенкой), изменяя исключительно сечение режущего инструмента.
Не ограничиваясь этим, фиг.5A-5E позволяют проиллюстрировать различные сечения внешнего края отверстия, которое можно выполнить посредством осуществления способа 100, который совпадает со способом, согласно изобретению. В частности, различные сечения внешнего края отверстия получаются при помощи режущего инструмента, сечение которого меняется, выполняющего отверстия всегда согласно особенной оси просверливания, образуя, например, угол в 30° с плоскостью, тангенциально расположенной к внешнему профилю стенки камеры сгорания.
Иначе говоря, различные сечения образуются путем изменения исключительно сечения режущего инструмента, представленного, например, лазерным лучом.
Таким образом, для режущего инструмента, имеющего цилиндрическое сечение A1 (например, диаметром D 0,6 мм), сечение внешнего края A2 соответствующего отверстия имеет эллипсовидную форму (ср. фиг.5A). Большая ось A3 сечения внешнего края A2 отверстия параллельна определенной оси A, образованной, например, осью камеры сгорания A. Таким образом, такая геометрическая форма эллипса используется предпочтительным образом в зоне, в которой направление напряжений параллельно оси A камеры сгорания.
Как это показано на фиг.5B, для режущего инструмента, имеющего эллипсовидное сечение B1, большая ось B2, составляющая 0,6 мм, параллельна оси A камеры сгорания, а малая ось B3, составляющая 0,4 мм, перпендикулярна большой оси B2; причем сечение внешнего края B4 соответствующего отверстия образует эллипс, большая ось B5 которого параллельна оси A камеры сгорания. По сравнению с сечением внешнего края A2, изображенного на фиг.5A, большая ось B5 сечения внешнего края B4 меньше большой оси A3 сечения внешнего края A2. Эта разница обусловлена исключительно сечением режущего инструмента, используемого для просверливания стенки. Таким образом, такая геометрическая форма эллипса используется предпочтительным образом в зоне, содержащей напряжения, где направление основных напряжений параллельно оси A камеры сгорания, а направление минимальных напряжений перпендикулярно оси A камеры сгорания.
Согласно другой практической реализации, изображенной на фиг.5C, для сечения режущего инструмента C1, имеющего эллипсовидную форму, с большой осью C2, равной 0,8 мм и параллельной оси A камеры сгорания, и малой осью C3, равной 0,4 мм, сечение внешнего края C4 соответствующего отверстия является круглым.
Таким образом, такая круглая геометрическая форма используется предпочтительным образом в зоне, содержащей напряжения, параллельные, и напряжения, перпендикулярные оси А камеры сгорания, которые обладают по существу одинаковой интенсивностью.
Также согласно другому варианту, изображенному на фиг.5D, для сечения режущего инструмента D1, имеющего форму эллипса, в котором большая ось D2, равная 1 мм, параллельна оси A камеры сгорания, а малая ось D3 равна 0,4 мм, сечение внешнего края D4 соответствующего отверстия образует эллипс. Следует отметить, что это эллипсовидное сечение D4 отличается от сечения, образуемого режущим инструментом, имеющим круглую форму, изображенную на фиг.5A. Действительно, согласно практической реализации, изображенной на фиг.5D, безусловно, образуется сечение D4 эллипсовидной формы, но этот эллипс содержит большую ось D5, перпендикулярную оси A камеры сгорания, и малую ось D6, параллельную оси A. Таким образом, эллипс является обратным. Таким образом, такая геометрическая форма эллипса используется предпочтительным образом в зоне, в которой направление основных напряжений перпендикулярно оси A камеры сгорания.
Согласно еще одному варианту, изображенному на фиг.5E, для режущего инструмента, имеющего сечение эллипсовидной формы E1, с большой осью E2, равной 1,2 мм и параллельной оси A камеры сгорания, и малой осью E3, равной 0,3 мм, сечение внешнего края E4 соответствующего отверстия образует эллипс, ориентированный, аналогично сечению внешнего края D4, изображенного на фиг.5D. Однако, большая ось E5 сечения эллипсовидной формы E4 больше большой оси, изображенной на фиг.5D. Таким образом, такая геометрическая форма эллипса используется предпочтительным образом в зоне, содержащей напряжения, направление которых перпендикулярно оси A камеры сгорания.
Таким образом, в контексте вышеприведенного описания становится ясно, что факт изменения сечения используемого режущего инструмента позволяет получить внешние края отверстия, имеющие различные геометрические формы и (или) направленности.
Следует отметить, что большая ось каждого сечения внешнего края отверстия, образующая эллипс, по существу параллельна направлению ввода, т.е. направлению основных напряжений.
Согласно примеру, не имеющему ограничительного характера, режущий инструмент, используемый в способе, согласно изобретению, является лазерным лучом. Таким образом, во время просверливания 102 стенки происходит изменение сечения лазерного луча для получения сечения внешнего края отверстия в зависимости от механических напряжений, вычисленных в зоне, в которой располагается отверстие.
Согласно другому примеру, не имеющему ограничительного характера, режущий инструмент, используемый в способе, согласно изобретению, является струей воды.
Кроме того, когда расчетное отверстие имеет сечение небольшого размера, например, диаметром 0,6 мм, оно может быть просверлено в течение одного этапа просверливания 102.
И наоборот, когда расчетное отверстие имеет сечение большего размера, оно выполняется путем оформления контура. В частности, оформление контура заключается в выполнении множества малых отверстий; причем каждое отверстие окружено, по меньшей мере, двумя отверстиями. Совокупность малых отверстий огранивает периметр расчетного отверстия и периметр внешнего края отверстия, в частности. Другими словами, оформление контура заключается в осуществлении вырезания внешнего края расчетного отверстия путем множественного просверливания 102.
Согласно другой практической реализации, оформление контура осуществляется просто путем перемещения режущего инструмента по особой траектории.
Фиг.6, 6A, 6B и 6C схематически изображают расчетные механические напряжения на части стенки 60 камеры сгорания, аналогичной стенке, согласно изобретению.
При практической реализации, не имеющей ограничительного характера, этапа расчета 101 вычисляется:
- для первой зоны 61 стенки 60 механические напряжения F1, перпендикулярные, и механические напряжения F1, параллельные оси A камеры сгорания; причем эти перпендикулярные и параллельные механические напряжения F1 по существу одинаковые (ср. фиг.6A);
- для второй зоны 62 стенки 60 большие механические напряжения F2, параллельные оси A камеры сгорания (ср. фиг.6B);
- для третьей зоны 63 стенки 60 большие механические напряжения F3, перпендикулярные оси A камеры сгорания.
Благодаря способу 100 согласно изобретению, для недопущения какого-либо образования трещины или разрыва в процессе последующего функционирования камеры сгорания осуществляется просверливание 102 в зависимости от механических напряжений, рассчитанных во время этапа расчета 101:
- в первой зоне 61 камеры сгорания: отверстия 65, содержащие внешний край с круглым сечением;
- во второй зоне 62 камеры сгорания: отверстия 66, содержащие внешний край с сечением, имеющим форму эллипса, большая ось Ga которого параллельна оси A камеры сгорания;
- в третьей зоне 63 камеры сгорания: отверстия 67, содержащие внешний край с сечением, имеющим форму эллипса, большая ось Ga которого перпендикулярна оси A камеры сгорания.
Кроме того, следует отметить, что совокупность отверстий 65, 66 и 67 имеют одинаковую направленность для достижения невозмущенного истечения воздуха внутри камеры сгорания.
Следует отметить, что согласно другим практическим реализациям, определенная ось A может отличаться от оси камеры сгорания и может быть образована, например, осью вращения лопатки.
В частности, на фиг.7 схематически изображено продольное сечение части внутренней стенки 12 камеры сгорания 10, содержащей ось A вращения. Во внутренней стенке 12 просверлено множество отверстий 21 (на фиг.7 видны только два). Отверстия 21 рассредоточены по окружности внутренней стенки 12. Каждое отверстие 21 содержит продольную ось 25, совпадающую с особой осью просверливания 26. Через каждую продольную ось 25 проходит одна и та же линия 27, окружная к оси A вращения камеры сгорания 10. Под окружной линией 27 понимается линия 27, образующая периферийный круг к оси A, центр которого совпадает с осью A.
Совокупность осей просверливания 26 (также продольных осей 25), кроме того, пересекаются в одной и той же точке 28.
В частности, ось просверливания 26 соответствует продольной оси режущего инструмента, посредством которого было просверлено отверстие 21.
Как это изображено на фиг.8, во внутренней стенке 12 просверлено множество отверстий 21. Некоторые содержат продольные оси 25, через которые проходит первая линия 27a, периферийная к оси вращения A камеры сгорания, причем совокупность этих продольных осей 25 пересекается в одной и той же первой точке 28a.
Другие отверстия 21 содержат продольные оси 25, через которые проходит вторая линия 27b, окружная к оси вращения A камеры сгорания, причем вторая окружная линия 27b смещена в осевом направлении относительно первой окружной линии 27a. Совокупность этих продольных линий 25, через которые проходит вторая линия 27b, кроме того, пересекаются в одной и той же второй точке 28b.
Другие отверстия 21 содержат продольные оси 25, через которые проходит n-ная линия 27n, окружная к оси вращения A камеры сгорания; причем n-ная линия 27n смещена в осевом направлении относительно первой 27a и второй 27b окружных линий. Совокупность этих продольных линий 25, через которые проходит n-ная линия 27n, пересекающиеся в одной и той же n-ной точке 28n.
Способ просверливания и камера сгорания, согласно изобретению, находят в области самолетостроения применение, представляющее особенный интерес.

Claims (12)

1. Способ (100) просверливания стенки (12, 13) детали турбомашины, включающий этап, на котором просверливают (102) по меньшей мере одно отверстие (21) в первой предопределенной зоне упомянутой стенки (12, 13) по меньшей мере одним режущим инструментом, отличающийся тем, что он содержит этап предварительного определения (101) механических напряжений, которые испытывает упомянутая стенка (12, 13) в упомянутой первой предопределенной зоне при работе детали турбомашины, при этом используют режущий инструмент, имеющий поперечное сечение, выбранное в соответствии с упомянутыми механическими напряжениями в данной зоне.
2. Способ по п. 1, отличающийся тем, что упомянутая стенка (12, 13) является стенкой камеры сгорания (10).
3. Способ по п. 2, отличающийся тем, что просверливают отверстия (21), оси (26) которых проходят через одну линию (27) окружности, проведенную вокруг оси (А) вращения камеры сгорания (10), и пересекаются в одной точке.
4. Способ по п. 3, отличающийся тем, что ось (26) каждого из просверленных отверстий (21) образует с плоскостью, касательной к упомянутой стенке (12, 13), угол величиной от 20° до 70°.
5. Способ по любому из пп. 1-4, отличающийся тем, что этап просверливания (102) выполняют во второй предопределенной зоне.
6. Способ по любому из пп. 1-4, отличающийся тем, что отверстие (21) выполняют путем контурного выреза.
7. Способ по любому из пп. 1-4, отличающийся тем, что по меньшей мере одно из отверстий (21) имеет внешний край (22) в форме эллипса, который расположен на уровне внешней поверхности (23, 24) упомянутой стенки (12, 13).
8. Способ по любому из пп. 1-4, отличающийся тем, что по меньшей мере одно из отверстий (21) имеет внешний край (22) в форме окружности, который расположен на уровне внешней поверхности (23, 24) упомянутой стенки (12, 13).
9. Способ по любому из пп. 1-4, отличающийся тем, что используют режущий инструмент в виде луча лазера или струи воды.
10. Стенка (12, 13) детали турбомашины, имеющая отверстия (21), просверленные способом (100) по любому из пп. 1-9, при этом каждое отверстие (21) имеет внешний край (22), сечение которого выбрано в соответствии с механическими напряжениями, испытываемыми стенкой (12, 13) при работе детали турбомашины в зоне расположения упомянутых отверстий (21).
11. Стенка (12, 13) детали турбомашины, имеющая отверстия (65, 66, 67), просверленные способом (100) по любому из пп. 1-9, имеющих одинаковую направленность, которая содержит:
- отверстия (65), имеющие внешний край в форме окружности,
- отверстия (66), имеющие внешний край в форме эллипса, большая ось (Ga) которого расположена параллельно заданной оси (А),
- отверстия (67), имеющие внешний край в форме эллипса, большая ось (Ga) которого расположена перпендикулярно заданной оси (А).
12. Стенка (12, 13) по п. 11, отличающаяся тем, что она является стенкой камеры сгорания (10).
RU2013139371/02A 2011-01-24 2012-01-24 Способ просверливания стенки камеры сгорания RU2599320C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1150547A FR2970666B1 (fr) 2011-01-24 2011-01-24 Procede de perforation d'au moins une paroi d'une chambre de combustion
FR1150547 2011-01-24
PCT/FR2012/050153 WO2012101376A1 (fr) 2011-01-24 2012-01-24 Procede de perforation d'une paroi d'une chambre de combustion

Publications (2)

Publication Number Publication Date
RU2013139371A RU2013139371A (ru) 2015-03-10
RU2599320C2 true RU2599320C2 (ru) 2016-10-10

Family

ID=45755392

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013139371/02A RU2599320C2 (ru) 2011-01-24 2012-01-24 Способ просверливания стенки камеры сгорания

Country Status (9)

Country Link
US (1) US10532429B2 (ru)
EP (1) EP2667999B1 (ru)
JP (1) JP2014503747A (ru)
CN (1) CN103328149B (ru)
BR (1) BR112013017950A2 (ru)
CA (1) CA2824006A1 (ru)
FR (1) FR2970666B1 (ru)
RU (1) RU2599320C2 (ru)
WO (1) WO2012101376A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998512A1 (en) * 2014-09-17 2016-03-23 United Technologies Corporation Film cooled components and corresponding operating method
WO2018021993A1 (en) * 2016-07-25 2018-02-01 Siemens Aktiengesellschaft Cooling features for a gas turbine engine
FR3095260B1 (fr) * 2019-04-18 2021-03-19 Safran Aircraft Engines Procede de definition de trous de passage d’air a travers une paroi de chambre de combustion
CN110509011A (zh) * 2019-08-30 2019-11-29 中国航发动力股份有限公司 一种筒体翻边孔加工和组装的方法
FR3121854B1 (fr) * 2021-04-20 2024-03-08 Safran Aircraft Engines Procédé de perçage d’un trou de refroidissement dans un composant d’une turbomachine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329632B1 (en) * 1998-07-30 2001-12-11 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Method and device for machining holes or shapes of varying profile using an excimer laser
RU2192341C2 (ru) * 2000-07-03 2002-11-10 Басиев Тасолтан Тазретович Способ прошивки прецизионных отверстий лазерным излучением
US20070065283A1 (en) * 2005-05-16 2007-03-22 Masaru Sekihara Gas turbine rotor blade, gas turbine using the rotor blade, and power plant using the gas turbine
RU2007144482A (ru) * 2006-11-30 2009-06-10 Снекма (Fr) Способ выполнения при помощи лазерного пучка отверствий в детали, изготовленной из композитного материала с керамической основой
EP2149675A2 (en) * 2008-07-29 2010-02-03 General Electric Company A turbine blade and method of fabricating the same
RU2397852C2 (ru) * 2006-01-24 2010-08-27 Сименс Акциенгезелльшафт Способ изготовления отверстия

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE482256A (ru) * 1947-05-23
FR1500110A (fr) * 1966-07-08 1967-11-03 Snecma Perfectionnements aux turbo-réacteurs
US4550562A (en) * 1981-06-17 1985-11-05 Rice Ivan G Method of steam cooling a gas generator
US5139888A (en) * 1983-05-07 1992-08-18 Alcan International Limited Structures fabricated from aluminium components and processes involved in making these structures
US4824712A (en) * 1984-07-16 1989-04-25 Ppg Industries, Inc. Treatment of glass to reduce venting during thermal treatment and a glass article made thereby
US4923371A (en) * 1988-04-01 1990-05-08 General Electric Company Wall having cooling passage
FR2668246B1 (fr) 1990-10-17 1994-12-09 Snecma Chambre de combustion munie d'un dispositif de refroidissement de sa paroi.
JPH0596760U (ja) * 1992-05-20 1993-12-27 川崎重工業株式会社 高温下使用の板金製構造部材
US5683600A (en) * 1993-03-17 1997-11-04 General Electric Company Gas turbine engine component with compound cooling holes and method for making the same
KR100395393B1 (ko) * 1998-05-29 2003-08-21 모토로라 인코포레이티드 컴퓨터 주변장치의 초기화 및 컴퓨터 주변장치와의 통신을위한 시스템, 장치 및 방법
US6368060B1 (en) * 2000-05-23 2002-04-09 General Electric Company Shaped cooling hole for an airfoil
GB0016149D0 (en) * 2000-06-30 2000-08-23 Short Brothers Plc A noise attenuation panel
US7078088B2 (en) * 2000-10-02 2006-07-18 S.C. Johnson Home Storage, Inc. Disposable cutting sheet
US6573474B1 (en) * 2000-10-18 2003-06-03 Chromalloy Gas Turbine Corporation Process for drilling holes through a thermal barrier coating
DE10106809A1 (de) * 2001-02-14 2002-09-19 Siemens Ag Verfahren zur Herstellung eines Lochs in einem Körper, insbesondere eines Einspritzlochs in einem Kraftstoffinjektor
US6737607B2 (en) * 2001-03-16 2004-05-18 Tip Engineering Group, Inc. Apparatus for laser cutting a workpiece
NL1017834C2 (nl) * 2001-04-12 2002-10-15 Stork Screens Bv Werkwijze voor het uitvoeren van een bewerking van een dunne folie.
US6640547B2 (en) * 2001-12-10 2003-11-04 Power Systems Mfg, Llc Effusion cooled transition duct with shaped cooling holes
US6663919B2 (en) * 2002-03-01 2003-12-16 General Electric Company Process of removing a coating deposit from a through-hole in a component and component processed thereby
NL1023005C2 (nl) * 2002-11-12 2004-05-13 Stork Prints Bv Zeefmateriaal, werkwijze voor de vervaardiging en toepassingen daarvan.
GB2395157B (en) * 2002-11-15 2005-09-07 Rolls Royce Plc Laser driliing shaped holes
DE10330179A1 (de) * 2003-07-02 2005-01-20 Jenoptik Automatisierungstechnik Gmbh Verfahren zum Trennen flacher Werkstücke aus Keramik
NL1028999C2 (nl) * 2004-12-22 2006-06-23 Carlisle Process Systems B V Fluïdisatiebodem.
US20060191878A1 (en) * 2005-02-28 2006-08-31 Israel Stol Control of cracking in heat affected zones of fusion welded structures
EP1739285B1 (de) * 2005-07-01 2009-10-21 Siemens Aktiengesellschaft Gekühlte Gasturbinenleitschaufel für eine Gasturbine, Verwendung einer Gasturbinenleitschaufel sowie Verfahren zum Betreiben einer Gasturbine
GB2428608A (en) * 2005-07-30 2007-02-07 Siemens Ind Turbomachinery Ltd A method for production of a set of holes by monitoring fluid flow
FR2893080B1 (fr) 2005-11-07 2012-12-28 Snecma Agencement de refroidissement d'une aube d'une turbine, aube de turbine le comportant, turbine et moteur d'aeronef en etant equipes
FR2899271B1 (fr) 2006-03-29 2008-05-30 Snecma Sa Ensemble d'une aube et d'une chemise de refroidissement, distributeur de turbomachine comportant l'ensemble, turbomachine, procede de montage et de reparation de l'ensemble
FR2921462B1 (fr) * 2007-09-21 2012-08-24 Snecma Chambre de combustion annulaire de moteur a turbine a gaz
US20090098404A1 (en) * 2007-10-16 2009-04-16 Honda Motor Co., Ltd. System for forming holes in metal sheet
US8157525B2 (en) * 2008-11-20 2012-04-17 General Electric Company Methods and apparatus relating to turbine airfoil cooling apertures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329632B1 (en) * 1998-07-30 2001-12-11 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Method and device for machining holes or shapes of varying profile using an excimer laser
RU2192341C2 (ru) * 2000-07-03 2002-11-10 Басиев Тасолтан Тазретович Способ прошивки прецизионных отверстий лазерным излучением
US20070065283A1 (en) * 2005-05-16 2007-03-22 Masaru Sekihara Gas turbine rotor blade, gas turbine using the rotor blade, and power plant using the gas turbine
RU2397852C2 (ru) * 2006-01-24 2010-08-27 Сименс Акциенгезелльшафт Способ изготовления отверстия
RU2007144482A (ru) * 2006-11-30 2009-06-10 Снекма (Fr) Способ выполнения при помощи лазерного пучка отверствий в детали, изготовленной из композитного материала с керамической основой
EP2149675A2 (en) * 2008-07-29 2010-02-03 General Electric Company A turbine blade and method of fabricating the same

Also Published As

Publication number Publication date
EP2667999A1 (fr) 2013-12-04
BR112013017950A2 (pt) 2019-09-24
EP2667999B1 (fr) 2022-09-14
CA2824006A1 (fr) 2012-08-02
RU2013139371A (ru) 2015-03-10
FR2970666A1 (fr) 2012-07-27
JP2014503747A (ja) 2014-02-13
US10532429B2 (en) 2020-01-14
US20130299472A1 (en) 2013-11-14
FR2970666B1 (fr) 2013-01-18
WO2012101376A1 (fr) 2012-08-02
CN103328149A (zh) 2013-09-25
CN103328149B (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
RU2599320C2 (ru) Способ просверливания стенки камеры сгорания
CN203147824U (zh) 涡轮发动机燃烧室的环形壁,涡轮发动机的燃烧室及涡轮发动机
RU2568353C2 (ru) Статор осевой турбомашины, способ его производства и турбомашина, содержащая указанный статор
US9810073B2 (en) Turbine blade having swirling cooling channel and cooling method thereof
RU2007104608A (ru) Камера сгорания для газотурбинного двигателя
US9920626B2 (en) Balanced rotor disc, and balancing method
US7806650B2 (en) Method and apparatus for fabricating a nozzle segment for use with turbine engines
US20170101871A1 (en) Blade for fluid flow machine, turbo fan engine and method for manufacturing a blade
US9696036B2 (en) Gas turbine combustion chamber tile having effusion cooling holes including straight and offset sections
US9599342B2 (en) Annular combustion chamber for a turbine engine including improved dilution openings
EP3000972B1 (en) Turbine blade cooling structure
US20180045056A1 (en) Impingement system for an airfoil
CN107683391A (zh) 具有优化冷却的燃烧室的环形壁
CN107466338B (zh) 涡轮发动机的包括具有可变设置的vbv格栅的排出流管道
US10711625B2 (en) Wall construction for gaspath traversing component
US20200326071A1 (en) Turbomachine exhaust casing and method for manufacturing same
US10443403B2 (en) Investment casting core
RU2012107860A (ru) Камера сгорания турбомашины с улучшенными отверстиями для входа воздуха
US20160153313A1 (en) Flange partial section replacement repair
RU2483217C2 (ru) Канал охлаждения, выполненный в стенке
US10443435B2 (en) Slots for turbomachine structures
US20150010396A1 (en) Blade row poisitioning device, blade-device combination, method and turbomachine
CN107709709B (zh) 用于涡轮机的组件
US11739690B2 (en) Attritable engine additively manufactured inlet cap
RU2548221C1 (ru) Способ доводки рабочего колеса газотурбинного двигателя (гтд)

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner