RU2598863C2 - Магнитный туннельный переход с усовершенствованным туннельным барьером - Google Patents

Магнитный туннельный переход с усовершенствованным туннельным барьером Download PDF

Info

Publication number
RU2598863C2
RU2598863C2 RU2012138544/07A RU2012138544A RU2598863C2 RU 2598863 C2 RU2598863 C2 RU 2598863C2 RU 2012138544/07 A RU2012138544/07 A RU 2012138544/07A RU 2012138544 A RU2012138544 A RU 2012138544A RU 2598863 C2 RU2598863 C2 RU 2598863C2
Authority
RU
Russia
Prior art keywords
layer
barrier layer
tunnel barrier
formation
mgo
Prior art date
Application number
RU2012138544/07A
Other languages
English (en)
Other versions
RU2012138544A (ru
Inventor
Иоан Люсиан ПРЕЖБЕАНЮ
Селин ПОРТЕМОН
Кларисс ДЮКРЮЭ
Original Assignee
Крокус Текнолоджи Са
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Крокус Текнолоджи Са filed Critical Крокус Текнолоджи Са
Publication of RU2012138544A publication Critical patent/RU2012138544A/ru
Application granted granted Critical
Publication of RU2598863C2 publication Critical patent/RU2598863C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

Изобретение относится к электротехнике. Технический результат состоит в уменьшении дефектности и повышении напряжения пробоя. Способ изготовления магнитного туннельного перехода для ячейки магнитной оперативной памяти (MRAM), содержащего первый ферромагнитный слой, туннельный барьерный слой и второй ферромагнитный слой, содержит: образование первого ферромагнитного слоя; образование туннельного барьерного слоя; и образование второго ферромагнитного слоя; в котором упомянутое образование туннельного барьерного слоя содержит осаждение слоя металлического Mg; и окисление осажденного слоя металлического Mg для того, чтобы преобразовать металлический Mg в MgO. Этап образования туннельного барьерного слоя выполняют, по меньшей мере, дважды, таким образом туннельный барьерный слой содержит, по меньшей мере, два слоя MgO. 3 н. и 7 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение относится к способу изготовления магнитного туннельного перехода, подходящего для ячейки магнитной оперативной памяти (MRAM), имеющей низкую дефектность и более высокое напряжение пробоя.
Уровень техники
Фиг. 1 представляет собой традиционную ячейку 1 магнитной оперативной памяти (MRAM). Ячейка 1 MRAM содержит магнитный туннельный переход 2, образованный из первого ферромагнитного слоя 21, второго ферромагнитного слоя 23 и туннельного барьерного слоя 22, имеющего произведение RA сопротивление перехода-площадь. В примере Фиг. 1 ячейка MRAM может записываться, используя операцию термической (ТА) записи, и магнитный туннельный переход 2 дополнительно содержит второй антиферромагнитный слой 25, устанавливающий обменную связь со вторым ферромагнитным слоем 23. Во время операции записи, ток 32 нагрева может проходить через линию 4 тока в магнитный туннельный переход 2 для того, чтобы нагревать магнитный туннельный переход 2 до высокотемпературной пороговой величины, при которой намагничивание запоминающего устройства может свободно переключаться. Первый ферромагнитный слой 21 может иметь намагничивание, являющееся свободным для переключения, или также быть обменно-связан посредством первого антиферромагнитного слоя 24 так, чтобы иметь постоянное намагничивание.
Туннельный барьерный слой 22 часто выполнен из слоя оксида магния (MgO). В действительности, большое туннельное магнитное сопротивление (TMR), например, вплоть до 200%, может быть получено для магнитного туннельного перехода 2, содержащего туннельный барьерный слой 22 на основе кристаллического MgO. Такой туннельный барьерный слой 22, выполненный из MgO, может быть получен посредством использования способа ВЧ магнетронного напыления. Однако способ образования MgO посредством ВЧ магнетронного напыления может вызывать разброс нормализованного туннельного резистивного значения (RA) и возможно ухудшение коэффициента выхода во время изготовления устройства.
В US6841395 барьерный слой MgO образуется посредством способа, содержащего этапы образования пленки слоя металлического Mg, образования легированных кислородом слоев металлического Mg и образования уложенных слоев в процессе окисления. Однако, во время этапа окисления слоя Mg, на поверхности слоя MgO могут образовываться дефекты, такие как маленькие отверстия. Образование дефектов может возникать вследствие того, что оксид MgO имеет больший объем, чем металлический Mg. В результате, может возникать утечка тока, приводя к меньшему сопротивлению и меньшему напряжению пробоя туннельного барьера 22 MgO, особенно для низких значений RA, ниже 50 ОмЧмкм2. Такая утечка тока может возникать, когда ток проходит в магнитном туннельном переходе 2 для нагревания магнитного туннельного перехода 2 во время операции ТА записи ячейки 1 MRAM и для считывания сопротивления перехода во время операции считывания ячейки 1 MRAM. Наличие дефектов, таким образом, может уменьшить сопротивление туннельного барьера 22 MgO, и туннельное магнитное сопротивление TMR магнитного туннельного перехода 2, содержащего такой туннельный барьер 22 MgO, также уменьшается. Кроме того, может наблюдаться меньшее напряжение пробоя барьерного слоя 22.
Уменьшение влияния маленьких отверстий требует наличия относительно толстого слоя Mg и/или выращивания относительно толстых оксидных слоев. Увеличение толщины туннельного барьерного слоя 22 MgO может привести к RA, которое является слишком большим, таким образом напряжение для приведения в действие устройства магнитного туннельного перехода становится слишком высоким. Также, если начальный слой Mg является слишком толстым, окисление за один этап не полностью окисляет этот слой Mg. Слой Mg будет в таком случае недостаточно окислен, с меньшим RA, меньшим TMR и меньшим напряжением пробоя.
Краткое изложение сущности изобретения
Настоящее описание изобретения относится к способу изготовления магнитного туннельного перехода, подходящего для ячейки магнитной оперативной памяти (MRAM) и содержащего первый ферромагнитный слой, туннельный барьерный слой и второй ферромагнитный слой, при этом способ содержит: образование первого ферромагнитного слоя; образование туннельного барьерного слоя; и образование второго ферромагнитного слоя; в котором упомянутое образование туннельного барьерного слоя содержит осаждение слоя металлического Mg; и окисление осажденного слоя металлического Mg для того, чтобы преобразовать металлический Mg в MgO; при этом этап образования туннельного барьерного слоя выполняется, по меньшей мере, дважды, таким образом туннельный барьерный слой содержит, по меньшей мере, два слоя MgO.
Способ, раскрытый здесь, обеспечивает возможность образования туннельного барьера, имеющего низкую дефектность и более высокое напряжение пробоя по сравнению с традиционным туннельным барьером.
Краткое описание чертежей
Изобретение будет лучше понятно с помощью описания варианта осуществления, данного в качестве примера и показанного посредством фигур, на которых:
На Фиг. 1 показана традиционная ячейка магнитной оперативной памяти (MRAM), содержащая магнитный туннельный переход;
На Фиг. 2 проиллюстрирован магнитный туннельный переход, содержащий туннельный барьерный слой в соответствии с вариантом осуществления; и
На Фиг. 3 представлен туннельный барьерный слой, содержащий два последовательно осажденных слоя металлического Mg в соответствии с вариантом осуществления.
Подробное описание возможных вариантов осуществления
На Фиг. 2 показан магнитный туннельный переход 2 ячейки магнитной оперативной памяти (MRAM) в соответствии с вариантом осуществления. Магнитный туннельный переход 2 содержит первый ферромагнитный слой 21, туннельный барьерный слой 22 и второй ферромагнитный слой 23. В случае когда ячейка MRAM должна быть записана посредством операции записи с термическим переключением (TAS), магнитный туннельный переход 2 может содержать первый антиферромагнитный слой (не представлен), обменно-связанный с первым ферромагнитным слоем 21 таким образом, что намагничивание первого слоя 21 для хранения может быть легко ориентировано при первой высокотемпературной пороговой величине и закреплено ниже этой температуры. Магнитный туннельный переход 2 может дополнительно содержать второй антиферромагнитный слой (также не представлен), обменно-связанный со вторым ферромагнитным слоем 23 таким образом, чтобы закреплять его намагничивание при второй низкотемпературной пороговой величине и освобождать его при второй высокотемпературной пороговой величине. Первый и второй антиферромагнитный слой могут быть выполнены из сплава на основе марганца, такого как IrMn, NiMn, PtMn или FeMn, или любых других подходящих материалов.
Ферромагнитный материал первого и второго ферромагнитных слоев 21, 23 может содержать элементы из группы, состоящей из кобальта Со, железа Fe, бора В, никеля Ni, например никель-железо-бор NiFeB и, предпочтительно, кобальт-железо-бор CoFeB, который обеспечивает превосходную магниторезистивную (TMR) характеристику. Предпочтительно, первый и второй ферромагнитные слои 21, 23 выполнены из сплава на основе CoFeB. Туннельный барьерный слой 22 может представлять собой изолирующий слой, например, выполненный из оксида, выбранного из группы, включающей в себя, среди прочих, оксиды алюминия Al2O3. Предпочтительно, туннельный барьерный слой 22 выполнен из оксида на основе MgO. Использование оксида на основе MgO в магнитном туннельном переходе делает возможным достижение увеличения доступного магниторезистивного сигнала вплоть до около 200% изменения сопротивления при комнатной температуре (Parkin и другие, 2004, Nat.Mater.3, 862).
В соответствии с вариантом осуществления, способ изготовления магнитного туннельного перехода 2 содержит:
образование первого ферромагнитного слоя 21;
образование туннельного барьерного слоя 22; и
образование второго ферромагнитного слоя 23;
в котором упомянутое образование туннельного барьерного слоя 22 содержит осаждение слоя металлического Mg; и окисление осажденного слоя металлического Mg для того, чтобы преобразовать металлический Mg в MgO и получить слой 22а MgO. Этап образования туннельного барьерного слоя 22 выполняется, по меньшей мере, дважды, таким образом туннельный барьерный слой 22 содержит, по меньшей мере, два слоя 22а MgO.
В варианте осуществления, образование первого и второго ферромагнитных слоев 21, 23 и осаждение слоя металлического Mg выполняются посредством использования метода осаждения напылением. Некоторые этапы осаждения могут выполняться в той же самой камере для напыления или в других камерах для напыления. В качестве альтернативы, некоторые этапы осаждения выполняются посредством использования любого другого способа вакуумного осаждения пленок, например ионно-пучкового осаждения или импульсного лазерного осаждения. Слой металлического Mg, предпочтительно, осаждается с толщиной, составляющей от 0 до 1,5 нм и, предпочтительно, от 0,3 нм до 1,2 нм.
Окисление осажденного слоя металлического Mg для того, чтобы преобразовать металлический Mg в оксид MgO, может содержать окисление посредством воздействия плазмы или потока кислорода (естественное окисление). Существует оптимальная толщина, которая может окисляться при заданных условиях окисления. Например, если слой Mg толще, чем это оптимальное значение, он будет недостаточно окисляться для этих конкретных условий окисления (меньшее RA и меньшее TMR). Если он тоньше, он будет чрезмерно окисляться (большее RA и меньшее TMR). Здесь плазма, которая содержит ионы кислорода, применяется к слою металлического Mg. Плазменное окисление может выполняться с или без ускорения ионов кислорода в направлении, нормальном относительно поверхности подвергающегося воздействию слоя металлического Mg, для имплантации ионов кислорода в него. Плазменное окисление также может выполняться как с, так и без направленного ускорения для имплантации. Плазменное окисление может выполняться при или ниже комнатной температуры. Для более быстрого и более основательного преобразования металлического Mg в оксид MgO, плазменное окисление также может выполняться при повышенных температурах, вплоть до таких, которые позволят сохранить целостность туннельного перехода (приблизительно, 300-400°С). В процессе плазменного окисления, параметры, которые регулируют окисление, представляют собой энергию ионов (мощность, прикладываемая источником плазмы), время процесса и количество кислорода, вводимого в камеру, обычно, 500 см3/мин. Этот способ быстрее, чем процесс естественного окисления, описанный ниже, но может приводить к включению некоторых дефектов в слой MgO. Возможный способ ограничить образование дефектов в слое MgO может содержать использование процесса естественного окисления. В процессе естественного окисления, некоторое количество газообразного кислорода вводится в присутствии металлического слоя Mg, и в этом случае, только "время" и "давление" являются параметрами процесса окисления. Типичное время процесса варьируется от 100 до 500 сек и типичное давление процесса варьируется от 0,1 до 50 Торр. Атомы кислорода переходят в слой Mg, и MgO образуется до тех пор, пока не будет достигнута толщина пассивирующего слоя. Процесс отжига будет реорганизовывать или кристаллизировать этот слой MgO. В качестве альтернативы, окисление осажденного слоя металлического Mg может выполняться посредством окисления металла с помощью радикального окисления (ROX). Этап окисления осажденного слоя металлического Mg типично выполняется в другой камере, нежели чем в камерах для напыления.
В варианте осуществления, осаждение слоя металлического Mg дополнительно содержит использование инертного газа, такого как N, во время операции осаждения. Инертный газ, предпочтительно, используется для выравнивания, или сглаживания, слоя металлического Mg, и для избежания сжатия молекул MgO во время этапа окисления.
В другом варианте осуществления, способ дополнительно содержит этап осаждения дополнительного слоя 27 металлического Mg до и после образования туннельного барьерного слоя 22. Дополнительные слои 27 металлического Mg не окисляются, таким образом, после изготовления магнитного туннельного перехода 2, последний содержит дополнительный слой 27 металлического Mg между туннельным барьерным слоем 22 и первым ферромагнитным слоем 21 и между туннельным барьерным слоем 22 и вторым ферромагнитным слоем 23, при этом дополнительные слои 27 металлического Mg располагаются рядом с туннельным барьерным слоем 22. Дополнительные слои 27 металлического Mg являются предпочтительными для предотвращения перехода кислорода из туннельного барьерного слоя 22 MgO в первый и/или второй ферромагнитный слой 21, 23. Дополнительные слои 27 металлического Mg, предпочтительно, наносятся с толщиной меньше чем около 0,5 нм.
В еще одном варианте осуществления, способ дополнительно содержит этап осаждения слоя 26 COxFe1-x после образования первого ферромагнитного слоя 21 и до образования второго ферромагнитного слоя 23. Магнитный туннельный переход 2, образованный таким образом, содержит слои 26 CoFe между первым ферромагнитным слоем 21 и туннельным барьерным слоем 22 и между многослойным барьерным слоем 22 и вторым ферромагнитным слоем 23. Слои 26 CoFe типично осаждают с толщиной вплоть до около 1 нм и, предпочтительно, вплоть до около 0,5 нм. Тонкие слои 26 CoFe являются применимыми для предотвращения перехода В из первого и второго ферромагнитного слоя 21, 23 в барьерный слой 22.
Во время этапа окисления слоя металлического Mg, маленькие отверстия 29 (см. Фиг. 3) могут создаваться при образовании слоя 22а MgO. Здесь, термин маленькие отверстия может включать любой тип дефектов, образованных в слое 22а MgO, включая непересекающие полости, щели, пересекающие поры или тому подобное. Маленькие отверстия 29 типично образуются во время этапа окисления вследствие того, что оксид MgO имеет больший объем, чем металлический Mg, вызывая некоторое расширение слоя 22а MgO. Конечная толщина слоя 22а MgO, таким образом, может быть локально меньше в местах маленьких отверстий. В действительности, эффективная толщина е слоя 22а MgO соответствует толщине слоя 22а MgO без маленького отверстия минус глубина d маленького отверстия 29, как показано в примере Фиг. 3.
Вследствие механизмов роста MgO во время процесса окисления, вероятно, что распределение маленьких отверстий изменяется от одного слоя 22а MgO к другому. Следовательно, при образовании многослойного барьерного слоя 22, очень немногие или ни одно из маленьких отверстий 29, образованных в ранее осажденном слое 22а' MgO, не выравниваются с маленькими отверстиями, образованными в следующем осажденном слое 22а'' Mg. Это схематично проиллюстрировано на Фиг. 3, показывающей два последовательно осажденных и окисленных слоя 22а', 22a'' MgO в соответствии со способом, описанным выше. В этом примере, маленькие отверстия 29, образованные на первично осажденном слое 22а' MgO, не выровнены с маленькими отверстиями 29, образованными на вторично осажденном слое 22а'' MgO.
Чем больше количество осажденного слоя 22а', 22а'' MgO, образующего многослойный барьерный слой 22, тем меньше вероятность того, что барьерный слой 22 содержит маленькие отверстия 29, выровненные по всем слоям 22а Mg и, таким образом, того, что барьерный слой 22 содержит пересекающие поры.
Это, в свою очередь, может привести к меньшему напряжению пробоя барьерного слоя 22. Уменьшение влияния маленьких отверстий требует наличия относительно толстого слоя Mg и/или выращивания относительно толстых оксидных слоев.
Другое преимущество барьерного слоя 22 и способа образования такого барьерного слоя 22 заключается в выравнивающем эффекте вследствие множества слоев 22а Mg. На Фиг. 3, этот выравнивающий эффект проиллюстрирован посредством эффективной толщины Е многослойного барьерного слоя 22, соответствующей суммарной толщине множества слоев 22а', 22а'' Mg минус глубина d маленького отверстия 29 в последнем осажденном слое 22а'' Mg. Из Фиг. 3 можно увидеть, что увеличение количества осажденных слоев 22а', 22a'' Mg уменьшает отношение d/Е глубины d маленького отверстия к эффективной толщине Е барьерного слоя (эффективная толщина Е барьерного слоя приближается к толщине Т барьерного слоя в отсутствие маленького отверстия). Следовательно, барьерный слой 22 образован способом, раскрытым здесь.
Увеличение количества осажденных слоев 22а', 22а'' Mg уменьшает влияние маленьких отверстий и обеспечивает сопротивление многослойного барьерного слоя 22 и TMR магнитного туннельного перехода 2, содержащего многослойный барьерный слой 22, по существу, аналогичное сопротивлениям, полученным для барьерного слоя 22 той же самой толщины без маленького отверстия.
В варианте осуществления, многослойный барьерный слой 22 может быть образован посредством использования способа, раскрытого здесь, с более высоким напряжением пробоя (больше чем 1 В), чем у традиционного барьерного слоя 22, имеющего один слой MgO, для того же значения RA.
Ссылочные позиции и обозначения
1 ячейка MRAM
2 магнитный туннельный переход
21 первый ферромагнитный слой
22 туннельный барьерный слой
22а слой Mg, слой MgO
23 второй ферромагнитный слой
26 слой CoFe
27 дополнительный слой Mg
29 маленькие отверстия
3 транзистор выбора
d глубина маленького отверстия
е эффективная толщина слоя Mg
Е эффективная толщина барьерного слоя
Т толщина барьерного слоя без маленького отверстия

Claims (10)

1. Способ изготовления магнитного туннельного перехода, подходящего для ячейки магнитной оперативной памяти (MRAM) и содержащего первый ферромагнитный слой, туннельный барьерный слой и второй ферромагнитный слой, при этом способ содержит:
образование первого ферромагнитного слоя;
образование туннельного барьерного слоя; и
образование второго ферромагнитного слоя;
причем упомянутое образование туннельного барьерного слоя содержит осаждение слоя металлического Mg; и окисление осажденного слоя металлического Mg для того, чтобы преобразовать металлический Mg в MgO; при этом этап образования туннельного барьерного слоя выполняют более чем дважды, таким образом туннельный барьерный слой содержит более чем два слоя MgO для уменьшения вероятности содержания в барьерном слое маленьких отверстий, которые выровнены по всем слоям MgO,
при этом упомянутый способ дополнительно содержит осаждение дополнительного слоя металлического Mg до и после образования туннельного барьерного слоя.
2. Способ по п. 1, в котором осаждение слоя металлического Mg дополнительно содержит использование инертного газа для выравнивания осажденного слоя металлического Mg.
3. Способ по п. 1, в котором толщина осажденного слоя металлического Mg составляет от 0 нм до 1,5 нм, предпочтительно от 0,3 нм до 1,2 нм.
4. Способ по п. 1, дополнительно содержащий осаждение слоя CoFe после упомянутого образования первого ферромагнитного слоя и до упомянутого образования второго ферромагнитного слоя.
5. Ячейка MRAM (магнитной оперативной памяти), содержащая магнитный туннельный переход, содержащий первый ферромагнитный слой, туннельный барьерный слой и второй ферромагнитный слой, причем магнитный туннельный переход изготавливается посредством способа, содержащего:
образование первого ферромагнитного слоя;
образование туннельного барьерного слоя; и
образование второго ферромагнитного слоя;
при этом упомянутое образование туннельного барьерного слоя содержит осаждение слоя металлического Mg; и окисление осажденного слоя металлического Mg для того, чтобы преобразовать металлический Mg в MgO; при этом этап образования туннельного барьерного слоя выполнен более чем дважды, таким образом туннельный барьерный слой содержит больше чем два слоя MgO для уменьшения вероятности содержания в барьерном слое маленьких отверстий, которые выровнены по всем слоям MgO,
при этом упомянутый способ дополнительно содержит осаждение дополнительного слоя металлического Mg до и после образования туннельного барьерного слоя.
6. Ячейка MRAM, содержащая магнитный туннельный переход, содержащий первый ферромагнитный слой, туннельный барьерный слой и второй ферромагнитный слой; при этом туннельный барьерный слой содержит более чем два слоя MgO, при этом упомянутый магнитный туннельный переход дополнительно содержит слой металлического Mg между туннельным барьерным слоем и первым ферромагнитным слоем; и слой металлического Mg между туннельным барьерным слоем и вторым ферромагнитным слоем.
7. Ячейка MRAM по п. 6, в которой упомянутый слой металлического Mg имеет толщину меньше чем около 0,5 нм.
8. Ячейка MRAM по п. 6, в которой упомянутый магнитный туннельный переход дополнительно содержит слой CoxFe1-x между первым ферромагнитным слоем и туннельным барьерным слоем; и слой CoxFe1-x между многослойным барьерным слоем и вторым ферромагнитным слоем.
9. Ячейка MRAM по п. 8, в которой упомянутые слои CoxFe1-x имеют толщину вплоть до около 1 нм.
10. Ячейка MRAM по п. 8, в которой упомянутые слои CoxFe1-x имеют толщину вплоть до около 0,5 нм.
RU2012138544/07A 2011-09-09 2012-09-07 Магнитный туннельный переход с усовершенствованным туннельным барьером RU2598863C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11290402.4 2011-09-09
EP11290402.4A EP2568305B1 (en) 2011-09-09 2011-09-09 Magnetic tunnel junction with an improved tunnel barrier

Publications (2)

Publication Number Publication Date
RU2012138544A RU2012138544A (ru) 2014-03-20
RU2598863C2 true RU2598863C2 (ru) 2016-09-27

Family

ID=45063059

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012138544/07A RU2598863C2 (ru) 2011-09-09 2012-09-07 Магнитный туннельный переход с усовершенствованным туннельным барьером

Country Status (6)

Country Link
US (1) US10002973B2 (ru)
EP (1) EP2568305B1 (ru)
JP (1) JP2013062501A (ru)
KR (1) KR20130028684A (ru)
CN (1) CN103000805B (ru)
RU (1) RU2598863C2 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136464B1 (en) 2012-09-25 2015-09-15 Everspin Technologies, Inc. Apparatus and process for manufacturing ST-MRAM having a metal oxide tunnel barrier
US20140295579A1 (en) * 2013-03-29 2014-10-02 T3Memory, Inc. Method of patterning mtj stack
US10190671B2 (en) * 2013-09-30 2019-01-29 Aisin Aw Co., Ltd. Vehicle drive device
TWI569484B (zh) * 2014-01-24 2017-02-01 國立臺灣大學 具超晶格勢壘之磁穿隧接面及包含具超晶格勢壘磁穿隧接面之裝置
US9305572B2 (en) 2014-05-01 2016-04-05 Seagate Technology Llc Methods of forming portions of near field transducers (NFTS) and articles formed thereby
KR102268187B1 (ko) 2014-11-10 2021-06-24 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
US9890449B2 (en) * 2015-04-29 2018-02-13 Seagate Technology Llc Methods of forming MgO barrier layer
US10109676B2 (en) 2015-10-15 2018-10-23 Samsung Electronics Co., Ltd. MTJ structures including magnetism induction pattern and magnetoresistive random access memory devices including the same
KR102182095B1 (ko) * 2016-07-12 2020-11-24 한양대학교 산학협력단 3축 자기 센서
KR102406277B1 (ko) 2017-10-25 2022-06-08 삼성전자주식회사 자기 저항 메모리 소자 및 이의 제조 방법
KR102470367B1 (ko) * 2017-11-24 2022-11-24 삼성전자주식회사 자기 저항 메모리 소자의 제조 방법
US10381550B1 (en) 2018-03-01 2019-08-13 Samsung Electronics Co., Ltd. Method and system for engineering the secondary barrier layer in dual magnetic junctions
US10837105B1 (en) 2019-01-03 2020-11-17 Seagate Technology Llc Multilayer barrier and method of formation
CN112310277A (zh) * 2019-07-31 2021-02-02 中电海康集团有限公司 磁隧道结的制备方法
DE102020119273A1 (de) * 2019-08-30 2021-03-04 Taiwan Semiconductor Manufacturing Co. Ltd. Speichervorrichtung mit abstimmbarem probabilistischem Zustand
US11521664B2 (en) 2019-08-30 2022-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with tunable probabilistic state
CN112802960A (zh) * 2019-11-13 2021-05-14 上海磁宇信息科技有限公司 磁性隧道结结构及其磁性随机存储器
CN112864315B (zh) * 2019-11-27 2022-09-20 浙江驰拓科技有限公司 Mtj器件的制作方法
CN113013323A (zh) * 2019-12-19 2021-06-22 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法、半导体器件
US11532339B2 (en) * 2020-06-15 2022-12-20 Taiwan Semiconductor Manufacturing Company Ltd. Method for forming semiconductor memory structure
CN112928206B (zh) * 2021-01-28 2022-08-19 广东省大湾区集成电路与系统应用研究院 一种mtj及其驱动方法和制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097534A1 (en) * 2000-11-17 2002-07-25 Tdk Corporation Magnetic tunnel junction read head devices having a tunneling barrier formed by multi-layer, multi-oxidation processes
US20040101978A1 (en) * 2002-11-25 2004-05-27 Tsann Linn Method of forming a barrier layer of a tunneling magnetoresistive sensor
DE10309243A1 (de) * 2003-03-03 2004-09-23 Siemens Ag TMR-Dünnschichtenelement
US20060003185A1 (en) * 2004-07-02 2006-01-05 Parkin Stuart S P High performance magnetic tunnel barriers with amorphous materials
US20060227465A1 (en) * 2005-03-22 2006-10-12 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic memory
EP1801895A2 (en) * 2005-12-22 2007-06-27 MagIC Technologies Inc. MgO/Nife MTJ for high performance MRAM application
RU2367057C2 (ru) * 2007-10-31 2009-09-10 Государственное образовательное учреждение высшего профессионального образования "Московский Инженерно-Физический Институт (государственный университет)" Способ формирования структур магнитных туннельных переходов для магниторезистивной магнитной памяти произвольного доступа и структура магнитного туннельного перехода для магниторезистивной магнитной памяти произвольного доступа (варианты)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576111B2 (ja) * 2001-03-12 2004-10-13 株式会社東芝 磁気抵抗効果素子
US6870714B2 (en) * 2003-03-12 2005-03-22 Micron Technology, Inc. Oxide buffer layer for improved magnetic tunnel junctions
JP2007305768A (ja) * 2006-05-11 2007-11-22 Tdk Corp トンネル磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法及び磁気メモリの製造方法
JP4496189B2 (ja) * 2006-09-28 2010-07-07 株式会社東芝 磁気抵抗効果型素子および磁気抵抗効果型ランダムアクセスメモリ
JP2008263031A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法
US7602033B2 (en) * 2007-05-29 2009-10-13 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
JP5351140B2 (ja) * 2008-03-03 2013-11-27 キヤノンアネルバ株式会社 磁気トンネル接合デバイスの製造方法
US8373948B2 (en) * 2008-04-28 2013-02-12 Hitachi Global Storage Technologies Netherlands B.V. Tunnel magnetoresistance (TMR) structures with MGO barrier and methods of making same
US8059374B2 (en) * 2009-01-14 2011-11-15 Headway Technologies, Inc. TMR device with novel free layer structure
US8609262B2 (en) * 2009-07-17 2013-12-17 Magic Technologies, Inc. Structure and method to fabricate high performance MTJ devices for spin-transfer torque (STT)-RAM application
TWI440236B (zh) * 2009-12-28 2014-06-01 Canon Anelva Corp Method for manufacturing magnetoresistive elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097534A1 (en) * 2000-11-17 2002-07-25 Tdk Corporation Magnetic tunnel junction read head devices having a tunneling barrier formed by multi-layer, multi-oxidation processes
US20040101978A1 (en) * 2002-11-25 2004-05-27 Tsann Linn Method of forming a barrier layer of a tunneling magnetoresistive sensor
DE10309243A1 (de) * 2003-03-03 2004-09-23 Siemens Ag TMR-Dünnschichtenelement
US20060003185A1 (en) * 2004-07-02 2006-01-05 Parkin Stuart S P High performance magnetic tunnel barriers with amorphous materials
US20060227465A1 (en) * 2005-03-22 2006-10-12 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic memory
EP1801895A2 (en) * 2005-12-22 2007-06-27 MagIC Technologies Inc. MgO/Nife MTJ for high performance MRAM application
RU2367057C2 (ru) * 2007-10-31 2009-09-10 Государственное образовательное учреждение высшего профессионального образования "Московский Инженерно-Физический Институт (государственный университет)" Способ формирования структур магнитных туннельных переходов для магниторезистивной магнитной памяти произвольного доступа и структура магнитного туннельного перехода для магниторезистивной магнитной памяти произвольного доступа (варианты)

Also Published As

Publication number Publication date
EP2568305A1 (en) 2013-03-13
CN103000805B (zh) 2016-03-16
JP2013062501A (ja) 2013-04-04
EP2568305B1 (en) 2016-03-02
US20130234266A1 (en) 2013-09-12
CN103000805A (zh) 2013-03-27
US10002973B2 (en) 2018-06-19
KR20130028684A (ko) 2013-03-19
RU2012138544A (ru) 2014-03-20

Similar Documents

Publication Publication Date Title
RU2598863C2 (ru) Магнитный туннельный переход с усовершенствованным туннельным барьером
US8492169B2 (en) Magnetic tunnel junction for MRAM applications
US7780820B2 (en) Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
KR101196511B1 (ko) 자기저항 효과 소자 및 mram
US9021685B2 (en) Two step annealing process for TMR device with amorphous free layer
US8202572B2 (en) TMR device with improved MgO barrier
US9159908B2 (en) Composite free layer within magnetic tunnel junction for MRAM applications
WO2019074945A1 (en) HIGH THERMAL STABILITY THROUGH DOPING OF AN OXIDE RECOVERY LAYER FOR SPIN TRANSFER TORQUE (STT) MAGNETIC RANDOM ACCESS MEMORY (MRAM) APPLICATIONS
WO2015002727A1 (en) Hybridized oxide capping layer for perpendicular magnetic anisotropy
KR102381009B1 (ko) 고성능 자기저항 랜덤 액세스 메모리(mram) 디바이스를 위한 자유층 측벽 산화 및 스페이서 보조 자기 터널 접합부(mtj) 에칭
JP2004119903A (ja) 磁気抵抗素子及びその製造方法
JP4774082B2 (ja) 磁気抵抗効果素子の製造方法
JP4541861B2 (ja) ホイスラー合金膜の成膜方法
JP3496215B2 (ja) 強磁性トンネル接合素子の製造方法
JP4774092B2 (ja) 磁気抵抗効果素子およびそれを用いたmram
TW201329972A (zh) 具有改良式穿隧障壁之磁性穿隧接面
KR20010100084A (ko) 열적특성이 향상된 mram용 tmr소자 및 제조방법
JP2009044173A (ja) 磁性多層膜形成装置
JP2006059963A (ja) トンネル型磁気抵抗素子、その製造方法およびその製造装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170908