RU2583009C1 - Многослойное полимерное пленочное покрытие - Google Patents

Многослойное полимерное пленочное покрытие Download PDF

Info

Publication number
RU2583009C1
RU2583009C1 RU2014151402/05A RU2014151402A RU2583009C1 RU 2583009 C1 RU2583009 C1 RU 2583009C1 RU 2014151402/05 A RU2014151402/05 A RU 2014151402/05A RU 2014151402 A RU2014151402 A RU 2014151402A RU 2583009 C1 RU2583009 C1 RU 2583009C1
Authority
RU
Russia
Prior art keywords
epoxy
polymer film
binder
film coating
coating
Prior art date
Application number
RU2014151402/05A
Other languages
English (en)
Inventor
Евгений Николаевич Каблов
Лариса Владимировна Чурсова
Анатолий Николаевич Бабин
Дмитрий Ильич Коган
Александр Владимирович Хрульков
Наталия Николаевна Панина
Яков Михайлович Гуревич
Татьяна Анатольевна Гребенева
Матвей Михайлович Григорьев
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority to RU2014151402/05A priority Critical patent/RU2583009C1/ru
Application granted granted Critical
Publication of RU2583009C1 publication Critical patent/RU2583009C1/ru

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

Изобретение относится к области создания многослойных полимерных пленочных покрытий для применения в составе изделий из полимерных композиционных материалов (ПКМ), в том числе, когда формирование полимерного покрытия и изделия из ПКМ происходит за один технологический цикл, а также для нанесения полимерных покрытий на металлические материалы, которые могут быть использованы в авиационной, машино-, авто-, судостроительной промышленности. Многослойное полимерное пленочное покрытие содержит пленку эпоксидного связующего, нанесенного на подложку в виде нетканой вуали и покрытое с наружной стороны технологической подложкой - слоем силиконизированной бумаги, скрученное в рулон. Дополнительно заявленное многослойное полимерное пленочное покрытие может содержать медную сетку. Для изготовления предлагаемого покрытия используется эпоксидное связующее, состоящее из эпоксидной смолы на основе бисфенола А, упрочняющих компонентов, латентного отверждающего агента дициандиамида (ДЦДА), модификатора теплостойкости. В качестве упрочняющего агента связующее на основе эпоксидной смолы содержит полиарилсульфон. В качестве модификатора теплостойкости связующее содержит эпоксиноволачную смолу. Связующее включает наполнители - титановые белила и стеклянные сферы. Компоненты связующего (связующей композиции) содержатся в следующем соотношении, мас.%): эпоксидная смола на основе бисфенола A (10-40), полиарилсульфон (4-14), латентный отверждающий агент (1,4-4,6), эпоксиноволачная смола (20-60), титановые белила(1,0-7,0), стеклянные сферы (10-23). Изобретение позволяет создавать теплостойкие полимерные покрытия с температурой эксплуатации до 150°C и повышенной трещинностойкостью. 4 з.п. ф-лы, 1 ил, 4 табл, 12 пр.

Description

Изобретение относится к области создания многослойных полимерных пленочных покрытий для применения в составе изделий из полимерных композиционных материалов (ПКМ), в том числе, когда формирование полимерного покрытия и изделия из ПКМ происходит за один технологический цикл, а также для нанесения полимерных покрытий на металлические материалы, которые могут быть использованы в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники.
Известно многослойное полимерное пленочное покрытие, состоящее из металлической сетки, технологических подложек, армирующей вуали и эпоксиаминного связующего с дисперсным наполнителем, содержащим в своем составе органический растворитель (эфир, или кетон, или ацетат). Одним из основных недостатков этого полимерного пленочного покрытия является наличие в его составе органического растворителя (до 2%), который, улетучиваясь в процессе отверждения, приводит к формированию пористой структуры с раковинами на поверхности. Наличие раковин на покрытии требует дополнительной операции шпаклевания (патент республики Тайвань, TW 227538, опубл. 01.08.1994 г.).
Известно другое многослойное полимерное пленочное покрытие на основе эпоксидного связующего, состоящего из полифункциональной эпоксиноволачной смолы, упрочняющего агента в виде суспензии частиц каучука, с аппретирующей оболочкой, в эпоксидной смоле на основе бисфенола А, отверждающих агентов - отвердителя 4,4′-диаминодифенилсульфона и катализатора отверждения фторида бора, регуляторов вязкости - коллоидного кремния и керамических микросфер, УФ-стабилизаторов (фенольные антиоксиданты, триазины и стерически затрудненные жидкие амины), углеродных наночастиц. Для создания многослойного полимерного пленочного покрытия данное эпоксидное связующее наносится на технологическую подложку, после чего совмещается с неткаными листами на основе стекловолокна, волокон полиамида, полиэфира и металлической фольгой по отдельности или одновременно. Использование в связующем для этого многослойного полимерного пленочного покрытия нелатентного отвердителя 4,4′-диаминодифенилсульфона значительно снижает его жизнеспособность при хранении при комнатной температуре (не более 15 суток), что усложняет его применение в производстве и требует использование холодильной техники для повышения сроков его хранения (заявка на патент США № US 20130149934, опубл. 13.06.2013 г.).
Наиболее близким из аналогов, принятым за прототип, является многослойное полимерное пленочное покрытие толщиной примерно 0,114 мм, представляющее собой пленку эпоксидного связующего, покрытого сверху и снизу технологической подложкой - силиконизированной крафт-бумагой марки BL KFT Н/НР 4D/6 МН (производитель Loparexas), скрученное в рулон. Дополнительно в состав покрытия может быть включена растянутая перфорированная медная фольга марки DEXMET® 3CU7-100A (производитель Dexmet Corporation). В качестве основы пленки-прототипа используется эпоксидное связующее, состоящее из эпоксидной смолы на основе бисфенола А -25,3 мас.% и химически модифицированной диглицидиловым эфиром бутандиола смолы на основе бисфенола А - 33,8 мас.%, упрочняющих компонентов в виде суспензии частиц каучука, покрытых аппретирующей оболочкой, в эпоксидной смоле на основе бисфенола А - 25,3 мас.%, модификатора теплостойкости - фенольной смолы на основе полигидроксиэфиров - 8,4 мас.%, отверждающей системы на основе латентного отвердителя дициндиамида (ДЦДА) - 4,7 мас.% и латентного катализатора отверждения 4,4′-метиленбисфенилдиметилмочевины - 2,5 мас.% (патент Японии № JP 5508434, опубл. 28.05.2014).
Недостатками прототипа являются: низкий уровень технологических характеристик эпоксидного связующего, используемого в составе многослойного полимерного пленочного покрытия (повышенная растекаемость, низкая степень сохранения реологических характеристик связующего в процессе его переработки в пленку, низкая жизнеспособность при хранении при температуре 25°C), которые затрудняют и удорожают процесс получения покрытия, а также недостаточно высокая температура эксплуатации (не выше 120°C), которую оно может обеспечить. Кроме того, выбранный прототип полимерного пленочного покрытия обладает низкой трещиностойкостью.
Технической задачей изобретения является разработка термостойкого полимерного пленочного покрытия с повышенной трещиностойкостью, с упрощенной технологией изготовления, благодаря использованию эпоксидного связующего, с улучшенными технологическими характеристиками (улучшенная тиксотропность, высокий уровень сохранения реологических характеристик связующего в момент его переработки в пленку и повышенная жизнеспособностью при хранении при температуре 25°C).
Для решения поставленной задачи предлагается многослойное полимерное пленочное покрытие, включающее верхний слой силиконизированной бумаги, пленку эпоксидного связующего и внедренный в пленку связующего молниеотводный слой, отличающееся тем, что пленка эпоксидного связующего внедрена в слой нетканого материала, за которым находится молниеотводный слой, выполненный из латунной сетки, либо гибкого эластичного молниеотвода из полимерных композитов, причем используют эпоксидное связующее, состоящее из эпоксидной смолы на основе бисфенола А, дициандиамид, полиарилсульфон, эпоксиноволачную смолу, титановые белила и стеклянные сферы, при следующем соотношении компонентов, мас.%:
эпоксидная смола на основе бисфенола А 10-40
полиарилсульфон 4-14
дициандиамид 1,4-4,6
эпоксиноволачная смола 20-60
титановые белила 1,0-7,0
стеклянные сферы 10-33
Установлено, что содержащееся в прототипе многослойного полимерного пленочного покрытия эпоксидное связующее является вязкой, но относительно легко растекающейся композицией при повышении температуры в процессе отверждения композиции, что не дает возможность сформировать покрытие с постоянной толщиной на поверхности изделия, равной 0,12-0,13 мм
Введение в связующее разрабатываемого многослойного полимерного пленочного покрытия наполнителей - титановых белил и стеклянных сфер, снижает текучесть и повышает его тиксотропные характеристики, что дает возможность обеспечивать постоянную толщину формируемого покрытия, надежно защищая изделия от воздействия неблагоприятных факторов и разрушения.
Кроме того, в составе эпоксидного связующего для создаваемого многослойного полимерного пленочного покрытия используется латентный отверждающий агент дициандиамид, который благодаря свой физико-химической природе, активизируется лишь при температурах свыше 140°C, что позволяет создать полимерную композицию, с высокой степень сохранения реологических характеристик в процессе ее переработки. В прототипе для эпоксидного связующего используют комплексную отверждающую систему на основе латентного отвердителя дициандиамида и латентного катализатора отверждения 4,4′-метиленбисфенилдиметилмочевины, который способствует снижению температуры процесса отверждения, так как начинает его активизировать уже при температуре 70°C, но в то же время приводит к значительному нарастанию вязкости связующего в момент его переработки в пленку. Такая нестабильность технологических характеристик используемого в прототипе связующего замедляет и усложняет процесс изготовления многослойного укрупненных партий полимерного пленочного покрытия. Использование в качестве отвердителя в предложенном изобретении латентного отверждающего агента ДЦДА, который представляет собой многофункциональную сопряженную систему класса гуанидинов, способную к глубоким степеням отверждения эпоксидов по поликонденсационному и полимеризационному механизмам, приводит к формированию отвержденной полимерной структуры, обладающей высокими термомеханическими характеристиками и обеспечивающей высокую теплостойкость эпоксидного связующего и материалов на его основе.
Применяемая в предлагаемом изобретении в качестве модификатора теплостойкости эпоксиноволачная смола, благодаря своему молекулярному строению, значительно снижает реакционную способность эпоксидного связующего для многослойного полимерного пленочного покрытия, так как благодаря особенности своей молекулярной структуры образует объемные боковые цепочки в процессе взаимодействия смолы с отвердителем, что приводит к активной блокировке реакционных групп. Поэтому полимерные композиции на основе эпоксиноволачных смол в обычных условиях характеризуются высокой стабильностью при хранении и обладают повышенной жизнеспособностью при температуре 25°C. Используемая же в связующем прототипа многослойного полимерного пленочного покрытия в качестве модификатора теплостойкости фенольная смола на основе полигидроксиэфиров способна реагировать с эпоксидными смолами уже при комнатной температуре, что значительно снижает его жизнеспособность при температуре 25°C, и разработчики вынужденно используют холодильную технику.
Использование в покрытии-прототипе совместно с отвердителем дициандиамида для отверждения связующего латентного катализатора - 4,4′-метиленбисфенилдиметилмочевины приводит к тому, что при их совместном отверждении, в ходе роста полимерной цепи матрицы, увеличивается количество концевых структурных элементов, что негативно сказывается на термомеханических характеристиках сформированного многослойного полимерного пленочного покрытия и приводит к снижению его теплостойкости и ограничивает температурный интервал его эксплуатации.
Для разработанного многослойного полимерного пленочного покрытия в качестве упрочняющего агента в эпоксидном связующем используется полиарилсульфон, который в процессе отверждения, благодаря наличию реакционноспособных гидроксильных групп, частично встраивается в структуру полимера в процессе отверждения и, кроме того, дополнительно образует отдельную пластичную фазу, что увеличивает стойкость к образованию и распространению трещин создаваемого материала. Кроме того, для увеличения устойчивости к образованию трещин в предлагаемом многослойном покрытии введена упрочняющая подложка в виде слоя вуали, которая повышает трещиностойкость отвержденного покрытия за счет армирования и существенно увеличивает его надежность и сроки эксплуатации. Использование же в покрытии-прототипе упрочняющих компонентов в виде суспензии частиц каучука, покрытых аппретирующей оболочкой, в эпоксидной смоле на основе бисфенола А способствует образованию в структуре отвержденного полимера зон с низким модулем упругости, которые при квазистатических нагрузках работают как дефекты материала.
Использование для заявляемого покрытия в качестве технологической подложки силиконизированной бумаги только с одной наружной стороны уменьшает вес поставляемого рулона многослойного полимерного пленочного покрытия, не ухудшая при этом его технологических свойств.
Дополнительное введение в разработанное многослойное полимерное пленочное покрытие медной или латунной сетки, способной диссипировать электрическую энергию, обеспечивает молнезащиту изделий из композитных материалов путем быстрого рассеивания зарядов по всему объему поверхности изделия на сформированном покрытии.
В качестве нетканой вуали могут быть использованы нетканая стекловуаль из стекла типа E марки Viledon®T 1775, нетканая полиэфирная вуаль марки Viledon® Т 1773 (производитель Viledon), или вуаль полиамидная Optimat (производитель Technical Fibre Products), или вуаль полиамидная (экспериментальный образец, производитель Саратовский государственный технический университет).
В качестве силиконизированной бумаги может быть использована антиадгезионная бумага с двухсторонней силиконизацией (производитель ООО ТКП «МИСТРАЛЬ») и другие с аналогичными характеристиками.
В качестве эпоксидной смолы на основе бисфенола А могут быть использованы смолы эпоксидные марок ЭД-22, ЭД-20 (ГОСТ 10587-93) или D.E.R. 330 или D.E.R. 331 (производитель Dow Chemical Company) и др. или их смеси.
В качестве полиарилсульфона может использоваться одна из марок полиарилсульфона, например марка ПСФФ-30 (ТУ 2224-455-0020349-2006), ПСФФ-70, ПСФФ-90 (ТУ 2226-480-00209349-2010) и др. или их смеси. В качестве ДЦДА в изобретении могут использоваться: дициандиамид (ГОСТ 6988-73), DYHARD 100S, DYHARD 100SF (производитель AlzChem), DICY 7 (производитель Japan Ероху Resins) и др.
В качестве эпоксиноволачной смолы в изобретении могут использоваться: полифункциональные смолы на основе фенолов марок УП-643, ЭН-6 (производитель ООО «Предприятие ДОРОС») или марок DEN 438, DEN 425 (производитель DOW Chemical Company) и др. или их смеси. В качестве титановых белил могут быть использованы материалы на основе диоксида титана марок RGZW, RG-18 (производитель PRECHEZA), марки SumTitan R-206 (производитель ПАО “СУМЫХИМПРОМ”), марки Ti-Pure R-105 (производитель DuPont) и другие с аналогичными характеристиками. В качестве стеклянных сфер могут быть использованы стеклянные сферы марок 3М VS5500, 3М K20 (производитель 3М Company), микросферы марки МС-ВП (производитель НПО «Стеклопластик»), микросферы марки 46 (производитель ИНОТЭК) и другие с аналогичными характеристиками. В качестве медной сетки могут быть использованы молниеотводы эластичные для полимерных композитов (производитель НТЦ «Композиционные материалы, г. Донецк) или латунная сетка DEXMET® 3 Brass 10-125 (производитель Dexmet Corporation).
Краткое описание чертежа
Настоящее изобретение поясняется Фиг 1, на которой приведен горизонтальный разрез многослойного покрытия. Покрытие трехслойное. Наружный слой покрытия (1) выполнен из силиконизированной бумаги. Второй слой (2) - эпоксидное связующее. Третий слой (3) - нетканая вуаль. Покрытие также содержит молнеизащатный слой из медной или латунной сетки либо гибкий эластичный молниеотвод из полимерных композитов (4)
Примеры осуществления
Приготовление эпоксидного связующего для заявленного многослойного полимерного покрытия.
Пример 1
В чистый и сухой реактор загружают 40 мас.% смолы марки D.E.R.-330 и 20 мас.% эпоксиноволачной смолы марки DEN 425. Включают мешалку и, перемешивая со скоростью 30 об/мин, нагревают до температуры 115°C. Перемешивание проводят до полного совмещения компонентов.
Добавляют 4 мас.% полиарилсульфона ПСФФ-90 и перемешивают со скоростью 10 об/мин до полного смачивания полиарилсульфона расплавом смол. Температуру реакционной смеси повышают до 135°C и увеличивают скорость перемешивания до 40 об/мин. Перемешивание осуществляют до образования однородного расплава.
Температуру реакционной смеси снижают до 100°C и загружают 2 мас.% отвердителя ДЦДА и перемешивают со скоростью 10 об/мин до полного смачивания расплавом смол. Затем загружают 1 мас.% титановых белил на основе диоксида титана марки RGZW и 33 мас.% микросфер стеклянных марки 46 и перемешивают массу до образования однородного смеси.
Выключают мешалку и сливают готовое связующее через сливной штуцер.
Технологию изготовления эпоксидных связующих по примерам 2-12 использовали аналогично примеру 1.
Получение многослойного полимерного пленочного покрытия.
Пример 2
Многослойное полимерное пленочное покрытие получали на пропиточной установке с регулируемым обогревом и зазором наносящего устройства путем нанесения пленки связующего плотностью 125 г/м2 на слой антиадгезионной бумаги с двухсторонней силиконизацией при температуре 120°C.
Далее пленку связующего нанесенного на силиконизированную бумагу совмещали с нетканой вуалью марки Viledon®T 1775 при температуре около 50°C. Совмещение нетканой вуали с пленкой связующего осуществлялось на узле каландрования с использованием верхней технологической подложки (силиконизированной бумаги) для защиты валов каландра установки. После каландрования верхняя технологическая подложка отбиралась на приемочный вал, а готовое полимерное пленочное покрытие наматывалось в рулон на устройстве приема готовой продукции.
Многослойное полимерное пленочное покрытие по примерам 2, 5-10 изготавливали с использованием молниеотводов эластичных для полимерных композитов, а по примерам 3, 7, 11 с использованием латунной сетки марки DEXMET® 3 Brass 10-125.
Составы эпоксидного связующего по изобретению и прототипу приведены в таблице 1, многослойного полимерного пленочного покрытия по изобретению и прототипу приведены в таблице 2, свойства связующих по заявленному изобретению и прототипу в таблице 3, свойства многослойного полимерного пленочного покрытия, изготовленных на их основе, в таблице 4.
Сравнительные данные из таблицы 3, 4 показывают, что предлагаемое многослойное полимерное пленочное покрытие обеспечивает преимущества по сравнению с прототипом:
- для его изготовления используется более технологичное эпоксидное связующее, обладающее высокими тиксотропными характеристиками при повышенной температуре, что формирует равномерного покрытие со сниженным коэффициентов вариации толщины покрытия ~ в 2 раза по сравнению со значением у композиции - прототипа (Ккоэффициент вариации толщины покрытия прототипа = 16,0; Ккоэффициент вариации толщины покрытия разработанной композиции = 7,4÷8,4). Такое равномерное покрытие обеспечивает надежную защиту изделий, в отличие от покрытия-прототипа. В процессе переработки в пленку эпоксидное связующее характеризуется стабильными показателями сохранения вязкости, так как после его изотермической выдержки при температуре 90°C течение 1 часа не наблюдается роста вязкости (коэффициент повышения вязкости связующего соответствует 1,0) в сравнении с прототипом, у которого наблюдается значительное увеличение показателя вязкости до 60% (коэффициент повышения вязкости связующего 1,6). Такая стабильность реологических характеристик разработанного эпоксидного связующего, в отличие от прототипа, упрощает технологический процесс получения из него пленки, а также дает возможность осуществлять загрузку оборудования большим количеством перерабатываемого материала, что повышает производительность до 25%. Заявленное связующее характеризуется длительной жизнеспособностью не менее 84÷90 суток при комнатной температуре, в отличие от прототипа, у которого жизнеспособностью при комнатной температуре составляет всего лишь не менее 30 суток. Подобные технологические характеристики разработанного связующего дают возможность создавать долгоживущие многослойные полимерные пленочные покрытия на его основе, которые могут обеспечить снижение энергозатрат на их транспортирование и хранение до момента переработки за счет исключения использования холодильной техники;
- используемое в его составе эпоксидное связующее является более термостойким, так как характеризуется более высокими термомеханическими характеристиками (температура стеклования) отвержденного связующего Tg=195÷203°C. Полученные показатели более чем на 9-14% превосходят термостойкость материала по прототипу, что способно обеспечить создание более термостойких покрытий, с рабочей температурой до 150°C, в отличии от прототипа, характеризующегося температурой эксплуатации до 120°C.
- образует покрытие с высокой трещиностойкостью при повышенных деформирующих знакопеременных нагрузках материала и это подтверждается хорошим сохранением качества поверхности образцов заявленного многослойного полимерного пленочного покрытия при тестирование на реометрическом динамическом анализаторе с использованием метода кручения с частотой 10 Гц и деформацией 1% в изотермических условиях при повышенной температуре 100°C на протяжении 2 часов, в отличие от прототипа.
Подобные характеристики разработанного материала обеспечивают создание на его основе деформационноустойчивого многослойного полимерного пленочного покрытия с более высоким уровнем надежности. Разработанное многослойное полимерное пленочное покрытие, изготавливаемое с использованием технологичного эпоксидного связующего, упрощает и делает низкозатратным процесс его применения в изделии, а также обеспечивает создание теплостойких композиций с температурой эксплуатации до 150°C и повышенной трещиностойкостью.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004

Claims (5)

1. Многослойное полимерное пленочное покрытие, включающее верхний слой силиконизированной бумаги, пленку эпоксидного связующего и молниеотводный слой, отличающееся тем, что пленка эпоксидного связующего внедрена в слой нетканого материала, за которым находится молниеотводный слой, причем используют эпоксидное связующее, состоящее из эпоксидной смолы на основе бисфенола А, дициандиамид, полиарилсульфон, эпоксиноволачную смолу, титановые белила и стеклянные сферы, при следующем соотношении компонентов, мас.%:
эпоксидная смола на основе бисфенола А 10-40 полиарилсульфон 4-14 дициандиамид 1,4-4,6 эпоксиноволачная смола 20-60 титановые белила 1,0-7,0 стеклянные сферы 10-33
2. Многослойное полимерное пленочное покрытие п. 1, отличающееся тем, что молниеотводный слой выполнен из латунной сетки либо гибкого эластичного молниеотвода из полимерных композитов.
3. Многослойное полимерное пленочное покрытие п. 1, отличающееся тем, что в качестве нетканого материала используют стекловуаль из стекла типа Ε или нетканую полиэфирную вуаль либо вуаль полиамидную.
4. Многослойное полимерное пленочное покрытие по п. 1, отличающееся тем, что его толщина составляет 0,12-0,13 мм.
5. Многослойное полимерное пленочное покрытие п. 1, отличающееся тем, что оно скручено в рулон.
RU2014151402/05A 2014-12-18 2014-12-18 Многослойное полимерное пленочное покрытие RU2583009C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014151402/05A RU2583009C1 (ru) 2014-12-18 2014-12-18 Многослойное полимерное пленочное покрытие

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014151402/05A RU2583009C1 (ru) 2014-12-18 2014-12-18 Многослойное полимерное пленочное покрытие

Publications (1)

Publication Number Publication Date
RU2583009C1 true RU2583009C1 (ru) 2016-04-27

Family

ID=55794803

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014151402/05A RU2583009C1 (ru) 2014-12-18 2014-12-18 Многослойное полимерное пленочное покрытие

Country Status (1)

Country Link
RU (1) RU2583009C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117445507A (zh) * 2023-10-25 2024-01-26 佛山市达孚新材料有限公司 一种耐热增韧pmma膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290883A (en) * 1992-03-05 1994-03-01 Nitto Denko Corporation Epoxy resin composition, cured product obtained therefrom, curing method therefor, and bonding method using the composition
TW227538B (ru) * 1991-07-11 1994-08-01 Dexter Corp
RU2230764C1 (ru) * 2003-03-12 2004-06-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Эпоксидная клеевая композиция, препрег на ее основе и изделие, выполненное из него
RU2427594C1 (ru) * 2009-12-21 2011-08-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Препрег и изделие, выполненное из него

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW227538B (ru) * 1991-07-11 1994-08-01 Dexter Corp
US5290883A (en) * 1992-03-05 1994-03-01 Nitto Denko Corporation Epoxy resin composition, cured product obtained therefrom, curing method therefor, and bonding method using the composition
RU2230764C1 (ru) * 2003-03-12 2004-06-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Эпоксидная клеевая композиция, препрег на ее основе и изделие, выполненное из него
RU2427594C1 (ru) * 2009-12-21 2011-08-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Препрег и изделие, выполненное из него

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117445507A (zh) * 2023-10-25 2024-01-26 佛山市达孚新材料有限公司 一种耐热增韧pmma膜及其制备方法
CN117445507B (zh) * 2023-10-25 2024-05-24 佛山市达孚新材料有限公司 一种耐热增韧pmma膜及其制备方法

Similar Documents

Publication Publication Date Title
Roy et al. Polysiloxane-based core-shell microspheres for toughening of epoxy resins
Yoon et al. Properties of poly (ethylene terephthalate) containing epoxy‐functionalized polyhedral oligomeric silsesquioxane
Akram et al. Silica reinforced organic–inorganic hybrid polyurethane nanocomposites from sustainable resource
CA2650563C (en) Epoxy resin composition for fiber-reinforced composite material
KR102075195B1 (ko) 프린트 배선판용 절연층 및 프린트 배선판
CN102471561A (zh) 用于电工用层压板组合物的核/壳橡胶
TW201736494A (zh) 用於半導體封裝的熱固性樹脂組成物和使用其的預浸體
JP6764582B2 (ja) 樹脂組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
KR20140027303A (ko) 수지 조성물, 프리프레그 및 적층판
Arulmurugan et al. Impact of BaSO4 filler on woven Aloevera/Hemp hybrid composite: Dynamic mechanical analysis
KR100848434B1 (ko) 저열팽창성의 열경화성 수지 조성물 및 수지 필름
JP6999487B2 (ja) 石英ガラス繊維含有基板
JP6441632B2 (ja) エポキシ樹脂の製造方法
JP2017095831A (ja) セルロース繊維層を含むシート
TW202033659A (zh) 樹脂組成物、纖維強化塑膠成形用材料及成形物
RU2583009C1 (ru) Многослойное полимерное пленочное покрытие
KR20180088718A (ko) 에폭시 수지 조성물 및 이를 함유한 프리프레그, 적층판 및 인쇄회로기판
Biswas et al. Influence of ZrO2 incorporation on sisal fiber reinforced unsaturated polyester composites
Guo et al. Aramid nanofiber reinforced nitrile rubber assisted by cellulose nanocrystals
CN109749440A (zh) 氰酸酯树脂组合物及其用途
Reddy Paluvai et al. Effect of cloisite 30B clay and sisal fiber on dynamic mechanical and fracture behavior of unsaturated polyester toughened epoxy network
Wang et al. Enhanced mechanical and adhesive properties of PDMS based on novel PDMS-epoxy IPN structure
US20150183984A1 (en) Material for Molding, Shaped Product Therefrom, and Method for Manufacturing Shaped Product
KR101513005B1 (ko) 실리콘 폴리에테르를 포함하는 열경화성 조성물, 이들의 제조 방법 및 용도
Lin et al. High performance self‐healing bismaleimide/diallylbisphenol a/poly (phenylene oxide) microcapsules composites with low temperature processability