RU2576551C1 - Датчик ультразвукового расходомера - Google Patents

Датчик ультразвукового расходомера Download PDF

Info

Publication number
RU2576551C1
RU2576551C1 RU2014151073/28A RU2014151073A RU2576551C1 RU 2576551 C1 RU2576551 C1 RU 2576551C1 RU 2014151073/28 A RU2014151073/28 A RU 2014151073/28A RU 2014151073 A RU2014151073 A RU 2014151073A RU 2576551 C1 RU2576551 C1 RU 2576551C1
Authority
RU
Russia
Prior art keywords
flow
section
sensor
cross
measuring
Prior art date
Application number
RU2014151073/28A
Other languages
English (en)
Inventor
Вакиф Карамович Хамидуллин
Original Assignee
Вакиф Карамович Хамидуллин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вакиф Карамович Хамидуллин filed Critical Вакиф Карамович Хамидуллин
Priority to RU2014151073/28A priority Critical patent/RU2576551C1/ru
Application granted granted Critical
Publication of RU2576551C1 publication Critical patent/RU2576551C1/ru

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к измерительной технике и может найти применение для измерения расхода сред в различных отраслях промышленности, связанных с транспортировкой жидких и газообразных сред по трубопроводам, например в нефтеперерабатывающей, нефтегазодобывающей отраслях, в системах ЖКХ, энергетике. Датчик ультразвукового расходомера содержит измерительный участок трубопровода с проточной частью, имеющей поперечное сечение в форме многоугольника и электроакустические преобразователи (ЭАП), расположенные отдельно друг от друга во входной и выходной частях измерительного участка. Датчик характеризуется тем, что измерительный участок выполнен цельнометаллическим или пластмассовым таким образом, что поперечное сечение проточной части указанного многоугольника выполнено с четным числом граней, на противоположных концах каждой пары параллельных граней в поперечном углублении в материале стенки проточной части установлены не менее двух прямоугольных электроакустических преобразователей поперечных волн с одинаковыми углами наклона к продольной оси на расстоянии трех или четырех диаметров трубопровода, каждый из которых отделен от проточной части резонансной перемычкой, при этом на поверхности измерительного участка трубопровода выполнен поглотитель акустических помех в виде гребенчатой структуры с шагом, большим половины длины волны. Технический результат - повышение точности измерения расхода жидких и газообразных сред в трубопроводах в условиях изменения температуры и давления контролируемой среды. 10 ил.

Description

Изобретение относится к измерительной технике и может найти применение для измерения расхода сред в различных отраслях промышленности, связанных с транспортировкой жидких и газообразных сред по трубопроводам, например, в нефтеперерабатывающей, нефтегазодобывающей отраслях, в системах ЖКХ, энергетике.
Известен датчик ультразвукового расходомера (см. патент США №7360448, заявл. 10.08.2006, опубл. 22.04.2008), содержащий измерительный участок трубопровода и два кольцеобразных электроакустических преобразователя (далее - ЭАП), установленных соосно на концах измерительного участка для зондирования потока по и против течения путем обеспечения многократного пересечения потока по всему поперечному сечению траекторией движения ультразвуковых волн, сопровождающееся при этом многократными отражениями и преломлениями этих волн в стенке проточной части измерительного участка.
Недостатком этого устройства является пониженная точность измерения, обусловленная значительными паразитными помехами, возникающими в стенке проточной части при каждом отражении и преломлении зондирующего сигнала, который при этом расщепляется на продольную и поперечную волны и циркулирует в стенке до полного затухания.
Наиболее близким по технической сущности относительно заявляемого решения является датчик ультразвукового расходомера (см. авторское свидетельство СССР №1185091, заявл. 13.07.1983, опубл. 15.06.1985), содержащий измерительный участок трубопровода с проточной частью, имеющей квадратное поперечное сечение и два электроакустических преобразователя ЭАП, расположенных отдельно и симметрично в окнах наклонных стенок входной части и выходной частях. Входная часть измерительного участка выполнена в виде диффузора с расширением только по двум противолежащим сторонам, а выходная часть - в виде конфузора с сужением по тем же сторонам, причем ЭАП расположены на наклонных сторонах диффузора и конфузора заподлицо с ними.
Недостатком этого устройства является значительная погрешность измерения расхода, обусловленная искажением профиля скорости потока диффузором и конфузором. Другим недостатком известного устройства являются ограничения по давлению и температуре контролируемых сред из-за установки указанных ЭАП в двух сквозных отверстиях в диффузоре и конфузоре.
Техническим результатом заявляемого решения является повышение точности измерения расхода жидких и газообразных сред в трубопроводах в условиях изменения температуры и давления контролируемой среды за счет зондирования потока по всему поперечному сечению проточной части датчика и эффективного осреднения профиля скорости потока по всему поперечному сечения проточной части. Высокая точность осреднения профиля скорости потока обеспечивается при многократном пересечении по всему поперечному сечению проточной части за счет интегрирования профиля скорости V(x,y) не только вдоль траектории распространения акустической волны, но и по длине электроакустического преобразователя, т.е. коэффициент пропорциональности K между измеренной величиной расхода и истинным значением близок к единице с точностью до десятых долей процента:
Figure 00000001
Figure 00000002
где Vср.кв.(Re) - средняя скорость контролируемого потока, измеренная с использованием датчика с квадратным поперечным сечением, в зависимости от числа Рейнольдса Re, V(x,y) - функция распределения скоростей потока в поперечном сечении проточной части, S - площадь поперечного сечения проточной части, Vcp.(Re) - средняя скорость контролируемого потока в зависимости от числа Re, измеренная эталонным расходомером.
Предлагается датчик ультразвукового расходомера, содержащий измерительный участок трубопровода с проточной частью, имеющей поперечное сечение (в том числе квадратное) в виде многоугольника с четным числом граней, на противоположных концах каждой пары параллельных граней в поперечном углублении в материале стенки проточной части установлены не менее двух прямоугольных электроакустических преобразователей поперечных волн с одинаковыми углами наклона преимущественно о 45 до 65° к продольной оси на расстоянии 3-х или 4-х диаметров трубопровода и длиной, равной ширине грани.
При этом каждый из электроакустических преобразователей отделен от проточной части резонансной перемычкой, равной половине длины волны несущей частоты зондирующего сигнала.
Для ослабления акустических помех, возникающих внутри стенок проточной части при каждом отражении и преломлении зондирующего сигнала, который при этом расщепляется на продольную и поперечную волны и циркулирует в стенке до полного затухания, на поверхности измерительного участка трубопровода выполнен поглотитель акустических помех в виде периодической гребенчатой структуры с шагом, равным или большим половине длины волны в материале стенки.
На чертежах изображено: фиг. 1 - конструкция предлагаемого датчика ультразвукового расходомера с 4-гранной проточной частью и одним акустическим каналом, фиг. 1а - траектория распространения акустической волны в проточной части датчика, фиг. 2 - конструкция одноканального датчика в поперечном сечении А-А, фиг. 3 - конструкция датчика с 4-гранной проточной частью и четырьмя акустическими каналами в разрезе в вертикальной плоскости, фиг. 4 - конструкция датчика с 4-гранной проточной частью и четырьмя акустическими каналами с частичным разрезом, фиг. 5 - конструкция 4-канального датчика в поперечном сечении А-А, фиг. 6 - конструкция 4-канального датчика в поперечном сечении Б-Б, фиг. 7 - конструкция датчика с проточной частью, имеющей поперечное сечение в виде 8-угольника, фиг. 8 - конструкция датчика с 8-гранной проточной частью в поперечном сечении А-А, фиг. 9 - конструкция датчика с 8-гранной проточной частью в поперечном сечении Б-Б.
На фиг. 1 представлена конструкция предлагаемого датчика ультразвукового расходомера с одним акустическим каналом. Датчик состоит из цельнометаллического измерительного участка трубопровода 1 (из титана, нержавеющей стали, пластика или другого материала) в виде отрезка трубопровода с проточной частью 2, имеющей квадратное поперечное сечение. На поверхности двух противоположных сторон измерительного участка трубопровода 1, образованных двумя параллельными гранями проточной части 2, выполнен поглотитель акустических помех в виде гребенчатой структуры 3 для исключения помех, обусловленных отраженными внутри металла ультразвуковыми волнами 11. На противоположных концах измерительного участка трубопровода 1 в одной диаметральной плоскости в стенках проточной части 4 и 9 в углублении выполнены две идентичные площадки, строго параллельные друг другу, с равными углами наклона от 45 до 65° к поверхностям продольной оси проточной части 2. Каждая площадка отделена от проточной части 2 резонансными перемычками 6 и 7, имеющими минимальную толщину, кратную половине длины волны несущей зондирующего сигнала. На каждой из этих площадок симметрично относительно указанной диаметральной плоскости измерительного участка трубопровода 1 установлены электроакустические преобразователи поперечных (сдвиговых) волн 5 и 8. Траектория распространения зондирующего сигнала обозначена цифрой 10. Распространение зондирующего сигнала может происходить:
1) без отражения сигнала от стенок проточной части, т.е. с одним лучом,
2) с двумя отражениями сигнала от стенок проточной части, т.е. с тремя лучами, как изображено на фиг. 6; 3) с четырьмя отражениями сигнала от стенок проточной части, т.е. с пятью лучами. Условно под числом лучей имеется в виду число отрезков, из которых состоит указанная траектория.
На фиг. 2 представлена конструкция датчика в поперечном сечении А-А, из которой следует, что перемычка 7 имеет равномерную толщину, равную половине длины волны, в поперечном направлении относительно продольной оси проточной части 2. Такая конструкция обеспечивает когерентность волн, преломляемых в стенке проточной части 9, и большую ширину диаграммы направленности зондирующего сигнала, излучаемого в поток.
При зондировании контролируемой среды по потоку, имеющей скорость V, в качестве излучателя используется ЭАП 8, а в качестве приемного элемента используется ЭАП 5. Импульсный ультразвуковой сигнал, излучаемый ЭАП 8 в виде волнового пакета поперечных волн, проходит через стенку 9, представляющую призму, затем в виде продольной волны многократно пересекает поток контролируемой среды по всему его поперечному сечению и далее, переходя в поперечную волну и преломляясь в стенке 4 измерительного участка трубопровода 1, достигает ЭАП 5. При этом с помощью электронного блока происходит измерение времени распространения ультразвукового сигнала по потоку. Аналогичным образом происходит зондирование контролируемой среды против потока и измерение времени распространения ультразвукового сигнала против потока с использованием ЭАП 5 в качестве излучателя и ЭАП 8 в качестве приемного элемента. По разности времени распространения ультразвукового сигнала по потоку и против потока определяется величина расхода контролируемой среды. Точность измерения расхода достигается за счет зондирования потока по всему поперечному сечению проточной части датчика и эффективного осреднения профиля скорости потока и оценивается в сравнении с показаниями эталонного расходомера
Figure 00000003
где V(x,l) - проекция профиля скорости потока вдоль акустического луча в продольном сечении х, Sl=L*a - наклонная площадь, через которую проходит озвучиваемый поток в проточной части датчика, L - длина акустического луча, а - ширина грани проточной части, Vэт - средняя скорость контролируемого потока, измеренная эталонным расходомером.
На фиг. 3, 4, 5, 6 представлена конструкция 4-канального датчика с 4-гранной проточной частью ультразвукового расходомера, симметричная по двум взаимно перпендикулярным плоскостям относительно продольной оси датчика, которые перпендикулярны также к соответствующим граням проточной части, обеспечивающая возможность осреднения профиля скорости потока и пульсаций по двум плоскостям и соответственно повышения точности измерения расхода. На фиг. 3 конструкция изображена в разрезе в вертикальной плоскости, а на фиг. 4 - с частичным разрезом. Датчик состоит из цельнометаллического измерительного участка трубопровода 1 в виде отрезка трубопровода с проточной частью 2, имеющей квадратное поперечное сечение. Цилиндрическая поверхность 3 измерительного участка трубопровода 1 имеет волнистую структуру, выполненную в виде спиралевидной резьбы. В первом акустическом канале в качестве приемоизлучающих элементов используются ЭАП 8 и 5; во втором - ЭАП 13 и 15; в третьем - ЭАП 12 и 17; в четвертом - ЭАП 14 и 16 в соответствии с фиг. 5. Датчик работает следующим образом. Цикл измерения расхода 4-канальным датчиком включает последовательное измерение разности времени распространения зондирующего ультразвукового сигнала по и против потока каждым акустическим каналом. В первом акустическом канале измерение указанного времени по потоку осуществляется с помощью ЭАП 8 в качестве излучателя и ЭАП 5 в качестве приемного элемента, а при измерении против потока - ЭАП 5 - излучатель и ЭАП 8 - приемный элемент, затем определяется разность этих измеренных интервалов времени. Во втором акустическом канале осуществляется аналогичный процесс с использованием ЭАП 13 и 15, в третьем канале - с использованием ЭАП 12 и 17, в четвертом - с использованием ЭАП 14 и 16. Осредненные данные, полученные четырьмя акустическими каналами, являются мерой расхода. В предлагаемом датчике в каждом канале зондирование происходит по трем плоским лучам, как изображено на фиг. 1а. Таким образом, в случае 4-канального датчика в одном цикле измерения расхода зондирование контролируемого потока и осреднение осуществляется 12 раз. При увеличении диаметра измерительного участка трубопровода соотношения между диаметром и размером ЭАП (длиной) определяются по формуле (3):
Figure 00000004
где Н - ширина грани многоугольника, D - условный диаметр проточной части, n - четное число граней многоугольника.
На фиг. 7, 8, 9 представлена конструкция 4-канального датчика ультразвукового расходомера с проточной частью, имеющей поперечное сечение в виде 8-угольника. Четыре акустических канала построены на четырех параллельных парах граней таким образом, чтобы осуществить “озвучивание” потока по всему поперечному сечению. Это обеспечивает возможность осреднения профиля скорости потока и пульсаций и, соответственно, повышения точности измерения расхода в трубопроводах большего диаметра.
На фиг. 7 конструкция изображена в разрезе в вертикальной плоскости. Датчик состоит из цельнометаллического измерительного участка трубопровода 1 в виде отрезка трубопровода с проточной частью 2, имеющей поперечное сечение в виде 8-угольника. Поверхность измерительного участка трубопровода 1 имеет поглотитель акустических помех в виде гребенчатой структуры 3, выполненной в виде спиралевидной резьбы. В первом акустическом канале в качестве приемоизлучающих элементов используются ЭАП 8 и 5; во втором - ЭАП 13 и 15; в третьем - ЭАП 12 и 17; в четвертом - ЭАП 14 и 16 в соответствии с фиг. 8 и 9.
Датчик работает следующим образом.
Цикл измерения расхода датчиком, представленным на фиг. 7, 8, 9, включает последовательное измерение разности времени распространения зондирующего ультразвукового сигнала по и против потока каждым акустическим каналом. В первом акустическом канале измерение указанного времени по потоку осуществляется с помощью ЭАП 8 в качестве излучателя и ЭАП 5 в качестве приемного элемента, а при измерении против потока - ЭАП 5 - излучатель и ЭАП 8 - приемный элемент, затем определяется разность этих измеренных интервалов времени. Во втором акустическом канале осуществляется аналогичный процесс с использованием ЭАП 13 и 15, в третьем канале - с использованием ЭАП 12 и 17, в четвертом - с использованием ЭАП 14 и 16. Осредненные данные, полученные четырьмя акустическими каналами, являются мерой расхода.
Повышение точности измерения расхода с использованием предлагаемого датчика ультразвукового расходомера происходит за счет:
1) установки ЭАП с заглублением в стенке проточной части и обеспечения при этом толщины резонансной перемычки, отделяющей ЭАП от проточной части, равной половине длины волны частоты несущей, которая позволяет получить широкую диаграмму направленности в продольной плоскости для зондирующего сигнала при входе в поток;
2) значительного ослабления акустических помех, возникающих внутри стенок проточной части при каждом отражении и преломлении зондирующего сигнала, который при этом расщепляется на продольную и поперечную волны и циркулирует в стенке до полного затухания за счет выполнения на поверхности измерительного участка трубопровода поглотителя акустических помех в виде гребенчатой структуры;
3) многократного (по числу лучей) зондирования потока по всему поперечному сечению потока за счет выполнения проточной части с многоугольным поперечным сечением.

Claims (1)

  1. Датчик ультразвукового расходомера, содержащий измерительный участок трубопровода с проточной частью, имеющей поперечное сечение в форме многоугольника и электроакустические преобразователи (ЭАП),
    отличающийся тем, что измерительный участок выполнен цельнометаллическим или пластмассовым таким образом,
    что поперечное сечение проточной части указанного многоугольника выполнено с четным числом граней,
    на противоположных концах каждой пары параллельных граней в поперечном углублении в материале стенки проточной части установлены не менее двух прямоугольных электроакустических преобразователей поперечных волн с одинаковыми углами наклона к продольной оси на расстоянии трех или четырех диаметров трубопровода,
    каждый из которых отделен от проточной части резонансной перемычкой, толщина которой выполнена равной половине длины волны частоты несущей, при этом на поверхности измерительного участка трубопровода выполнен поглотитель акустических помех в виде гребенчатой структуры с шагом, большим половины длины волны.
RU2014151073/28A 2014-12-16 2014-12-16 Датчик ультразвукового расходомера RU2576551C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014151073/28A RU2576551C1 (ru) 2014-12-16 2014-12-16 Датчик ультразвукового расходомера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014151073/28A RU2576551C1 (ru) 2014-12-16 2014-12-16 Датчик ультразвукового расходомера

Publications (1)

Publication Number Publication Date
RU2576551C1 true RU2576551C1 (ru) 2016-03-10

Family

ID=55654015

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014151073/28A RU2576551C1 (ru) 2014-12-16 2014-12-16 Датчик ультразвукового расходомера

Country Status (1)

Country Link
RU (1) RU2576551C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU172103U1 (ru) * 2016-11-15 2017-06-28 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком
RU2649421C1 (ru) * 2016-11-15 2018-04-03 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026693A (en) * 1997-06-04 2000-02-22 Baumoel; Douglas S. Pipe spool section having square or rectangular cross-section for clamp on transducer and method for flow measurement
US6526838B1 (en) * 1996-10-28 2003-03-04 Schlumberger Industries, S.A. Ultrasonic fluid meter with improved resistance to parasitic ultrasound waves
JP2006292381A (ja) * 2005-04-05 2006-10-26 Tokyo Gas Co Ltd 超音波流量計
WO2010003063A2 (en) * 2008-07-03 2010-01-07 Expro Meters, Inc. Apparatus for attenuating ultrasonic waves propagating within a pipe wall
US8214168B2 (en) * 2004-09-07 2012-07-03 Transonic Systems, Inc. Noninvasive testing of a material intermediate spaced walls

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526838B1 (en) * 1996-10-28 2003-03-04 Schlumberger Industries, S.A. Ultrasonic fluid meter with improved resistance to parasitic ultrasound waves
US6026693A (en) * 1997-06-04 2000-02-22 Baumoel; Douglas S. Pipe spool section having square or rectangular cross-section for clamp on transducer and method for flow measurement
US8214168B2 (en) * 2004-09-07 2012-07-03 Transonic Systems, Inc. Noninvasive testing of a material intermediate spaced walls
JP2006292381A (ja) * 2005-04-05 2006-10-26 Tokyo Gas Co Ltd 超音波流量計
WO2010003063A2 (en) * 2008-07-03 2010-01-07 Expro Meters, Inc. Apparatus for attenuating ultrasonic waves propagating within a pipe wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU172103U1 (ru) * 2016-11-15 2017-06-28 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком
RU2649421C1 (ru) * 2016-11-15 2018-04-03 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком

Similar Documents

Publication Publication Date Title
RU2446393C2 (ru) Способ диагностики шероховатости трубопровода и ультразвуковой расходомер
US8181536B2 (en) Ultrasonic Flow Meter including a transducer having conical face
JP2014021116A (ja) 超音波ウェッジおよびその中の音速を決定する方法
EP1742024B1 (en) Ultrasonic flowmeter with triangular cross section
JP6673697B2 (ja) 温度を判定する装置及び方法
RU2612727C2 (ru) Устройство для согласования ультразвуковых сигналов
RU2637381C2 (ru) Ультразвуковой волновод
JP2004271496A (ja) 超音波流量測定方法
RU154441U1 (ru) Датчик ультразвукового расходомера
US8155895B2 (en) Method and system of detecting liquid in an acoustic flow meter
WO2013006090A1 (en) The calibration method, applied in operating conditions, for ultrasonic flow meters used for measuring volume and flow rate of single-phase liquid media
RU2576551C1 (ru) Датчик ультразвукового расходомера
EP3063508B1 (en) A flow meter for ultrasonically measuring the flow velocity of fluids
RU2649421C1 (ru) Ультразвуковой расходомер с металлическим датчиком
EP2657658B1 (en) Ultrasonic flow measurement system
WO2017078559A1 (ru) Датчик ультразвукового расходомера
RU172103U1 (ru) Ультразвуковой расходомер с металлическим датчиком
JP7151344B2 (ja) 圧力計測装置
RU2715086C1 (ru) Ультразвуковой расходомер
CN205861137U (zh) 变径两探头时差超声流量测量装置
JP2007033115A (ja) 超音波流量計の検出部
JP2008107288A (ja) 超音波流量計
RU2763274C2 (ru) Способ применения накладных ультразвуковых расходомеров на трубопроводах криогенных температур и ультразвуковой расходомер для его реализации
KR101119998B1 (ko) 다회선 외벽부착식 초음파 트랜스듀서
Mansfeld et al. Improving interference immunity of ultrasonic gas flowmeters with clamp-on probes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191217