RU154441U1 - Датчик ультразвукового расходомера - Google Patents

Датчик ультразвукового расходомера Download PDF

Info

Publication number
RU154441U1
RU154441U1 RU2014151045/28U RU2014151045U RU154441U1 RU 154441 U1 RU154441 U1 RU 154441U1 RU 2014151045/28 U RU2014151045/28 U RU 2014151045/28U RU 2014151045 U RU2014151045 U RU 2014151045U RU 154441 U1 RU154441 U1 RU 154441U1
Authority
RU
Russia
Prior art keywords
flow
section
pipeline
sensor
measuring section
Prior art date
Application number
RU2014151045/28U
Other languages
English (en)
Inventor
Вакиф Карамович Хамидуллин
Original Assignee
Вакиф Карамович Хамидуллин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вакиф Карамович Хамидуллин filed Critical Вакиф Карамович Хамидуллин
Priority to RU2014151045/28U priority Critical patent/RU154441U1/ru
Application granted granted Critical
Publication of RU154441U1 publication Critical patent/RU154441U1/ru

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Датчик ультразвукового расходомера, содержащий измерительный участок трубопровода с проточной частью, имеющей поперечное сечение в форме многоугольника и электроакустические преобразователи (ЭАП), отличающийся тем, что измерительный участок выполнен цельнометаллическим или пластмассовым таким образом, что поперечное сечение проточной части указанного многоугольника выполнено с четным числом граней, на противоположных концах каждой пары параллельных граней в поперечном углублении в материале стенки проточной части установлены прямоугольные электроакустические преобразователи поперечных волн с одинаковыми углами наклона к продольной оси на расстоянии трех или четырех диаметров трубопровода, каждый из которых отделен от проточной части резонансной перемычкой, толщина которой выполнена равной половине длины волны частоты несущей, при этом на поверхности измерительного участка трубопровода выполнен поглотитель акустических помех в виде гребенчатой структуры с шагом, равным половине длины волны.

Description

Полезная модель относится к измерительной технике и может найти применение для измерения расхода сред в различных отраслях промышленности, связанных с транспортировкой жидких и газообразных сред по трубопроводам, например, в нефтеперерабатывающей, нефте-газодобывающей отраслях, в системах ЖКХ, энергетике.
Известен датчик ультразвукового расходомера (см. патент США №7360448, заявл. 10.08.2006, опубл. 22.04.2008), содержащий измерительный участок трубопровода и два кольцеобразных электроакустических преобразователя (далее - ЭАП), установленных соосно на концах измерительного участка для зондирования потока по и против течения путем обеспечения многократного пересечения потока по всему поперечному сечению траекторией движения ультразвуковых волн, сопровождающееся при этом многократными отражениями и преломлениями этих волн в стенке проточной части измерительного участка.
Недостатком этого устройства является пониженная точность измерения, обусловленная значительными паразитными помехами, возникающими в стенке проточной части при каждом отражении и преломлении зондирующего сигнала, который при этом расщепляется на продольную и поперечную волны и циркулирует в стенке до полного затухания.
Наиболее близким по технической сущности относительно заявляемого решения является датчик ультразвукового расходомера (см. авторское свидетельство СССР №1185091, заявл. 13.07.1983, опубл. 15.06.1985), содержащий измерительный участок трубопровода с проточной частью, имеющей квадратное поперечное сечение и два электроакустических преобразователя ЭАП, расположенных отдельно и симметрично в окнах наклонных стенок входной части и выходной частях. Входная часть измерительного участка выполнена в виде диффузора с расширением только по двум противолежащим сторонам, а выходная часть - в виде конфузора с сужением по тем же сторонам, причем ЭАП расположены на наклонных сторонах диффузора и конфузора заподлицо с ними.
Недостатком этого устройства является значительная погрешность измерения расхода, обусловленная искажением профиля скорости потока диффузором и конфузором. Другим недостатком известного устройства является ограничения по давлению и температуре контролируемых сред из-за установки указанных ЭАП в двух сквозных отверстиях в диффузоре и конфузоре.
Техническим результатом заявляемого решения является повышение точности измерения расхода жидких и газообразных сред в трубопроводах в условиях изменения температуры и давления контролируемой среды за счет зондирования потока по всему поперечному сечению проточной части датчика и эффективного осреднения профиля скорости потока по всему поперечному сечения проточной части. Высокая точность осреднения профиля скорости потока обеспечивается при многократном пересечении по всему поперечному сечению проточной части за счет интегрирования профиля скорости V(x,y) не только вдоль траектории распространения акустической волны, но и по длине электроакустического преобразователя, т.е. коэффициент пропорциональности К между измеренной величиной расхода и истинным значением близок к единице с точностью до десятых долей процента.
К=Vcp.кв.(Re)/Vcp(Re),
Figure 00000002
где Vср.кв.(Re) - средняя скорость контролируемого потока, измеренная с использованием датчика с квадратным поперечным сечением, в зависимости от числа Рейнольдса Re, V(x,y) - функция распределения скоростей потока в поперечном сечении проточной части, S-площадь поперечного сечения проточной части, Vcp.(Re) - средняя скорость контролируемогопотока в зависимости от числа Re, измеренная эталонным расходомером.
Предлагается датчик ультразвукового расходомера, содержащий измерительный участок трубопровода с проточной частью, имеющей поперечное сечение (в том числе квадратное) в виде многоугольника с четным числом граней, на противоположных концах каждой пары параллельных граней в поперечном углублении в материале стенки проточной части установлены не менее двух прямоугольных электроакустических преобразователей поперечных волн с одинаковыми углами наклона преимущественно от 45 до 65° к продольной оси на расстоянии 3-х или 4-х диаметров трубопровода и длиной, равной ширине грани.
При этом каждый из электроакустических преобразователей отделен от проточной части резонансной перемычкой, равной половине длины волны несущей частоты зондирующего сигнала.
Для ослабления акустических помех, возникающих внутри стенок проточной части при каждом отражении и преломлении зондирующего сигнала, который при этом расщепляется на продольную и поперечную волны и циркулирует в стенке до полного затухания, на поверхности измерительного участка трубопровода выполнен поглотитель акустических помех в виде периодической гребенчатой структуры с шагом, равным или большим половине длины волны в материале стенки.
На фигурах изображено: фиг. 1 - конструкция предлагаемого датчика ультразвукового расходомера с 4-хгранной проточной частью и одним акустическим каналом, фиг. 1а - траектория распространения акустической волны в проточной части датчика, фиг. 2 - конструкция одноканального датчика в поперечном сечении А-А, фиг. 3 - конструкция датчика с 4-хгранной проточной частью и четырьмя акустическими каналами в разрезе в вертикальной плоскости, фиг. 4 - конструкциядатчика с 4-хграннойпроточной частью и четырьмя акустическими каналами с частичным разрезом, фиг. 5 - конструкция 4 - хканального датчика в поперечном сечении А-А, фиг. 6 - конструкция 4 - хканального датчика в поперечном сечении Б-Б, фиг. 7 - конструкция датчика с проточной частью, имеющей поперечное сечение в виде 8 - угольника, фиг. 8 - конструкция датчика с 8-гранной проточной частью в поперечном сечении А-А, фиг. 9 - конструкция датчика с 8 - гранной проточной частью в поперечном сечении Б-Б.
На фиг. 1 представлена конструкция предлагаемого датчика ультразвукового расходомера с одним акустическим каналом. Датчик состоит из цельнометаллического измерительного участка трубопровода 1 (из титана, нержавеющей стали, пластика или другого материала) в виде отрезка трубопровода с проточной частью 2, имеющей квадратное поперечное сечение. На поверхности двух противоположных сторон измерительного участка трубопровода 1, образованных двумя параллельными гранями проточной части 2 выполнен поглотитель акустических помех в виде гребенчатой структуры 3 для исключения помех, обусловленных отраженными внутри металла ультразвуковыми волнами 11. На противоположных концах измерительного участка трубопровода 1 в одной диаметральной плоскости в стенках проточной части 4 и 9 в углублении выполнены две идентичные площадки, строго параллельные друг другу, с равными углами наклона от 45 до 65° к поверхностям продольной оси проточной части 2. Каждая площадка отделена от проточной части 2 резонансными перемычками 6 и 7, имеющими минимальную толщину, кратную половине длины волны несущей зондирующего сигнала. На каждой из этих площадок симметрично относительно указанной диаметральной плоскости измерительного участка трубопровода 1 установлены электроакустические преобразователи поперечных (сдвиговых) волн 5 и 8. Траектория распространения зондирующего сигнала обозначена цифрой 10. Распространение зондирующего сигнала может происходить:
1) без отражения сигнала от стенок проточной части, т.е. с одним лучом,
2) с двумя отражениями сигнала от стенок проточной части, т.е. с тремя лучами как изображено на фиг. 6; 3) с четырьмя отражениями сигнала от стенок проточной части, т.е.с пятью лучами. Условно под числом лучей имеется в виду число отрезков, из которых состоит указанная траектория.
На фиг. 2 представлена конструкция датчика в поперечном сечении А-А, из которой следует, что перемычка 7 имеет равномерную толщину, равной половине длины волны, в поперечном направлении относительно продольной оси проточной части 2. Такая конструкция обеспечивает когерентность волн, преломляемых в стенке проточной части 9 и большую ширину диаграммы направленности зондирующего сигнала, излучаемого в поток.
При зондировании контролируемой среды по потоку, имеющей скорость V, в качестве излучателя используется ЭАП 8, а в качестве приемного элемента используется ЭАП 5. Импульсный ультразвуковой сигнал, излучаемый ЭАП 8 в виде волнового пакета поперечных волн, проходит через стенку 9, представляющую призму, затем в виде продольной волны многократно пересекает поток контролируемой среды по всему его поперечному сечению и далее переходя в поперечную волну и преломляясь в стенке 4 измерительного участка трубопровода 1 достигает ЭАП 5. При этом с помощью электронного блока происходит измерение времени распространения ультразвукового сигнала по потоку. Аналогичным образом происходит зондирование контролируемой среды против потока и измерение времени распространения ультразвукового сигнала против потока с использованием ЭАП 5 в качестве излучателя и ЭАП 8 в качестве приемного элемента. По разности времени распространения ультразвукового сигнала по потоку и против потока определяется величина расхода контролируемой среды. Точность измерения расхода достигается за счет зондирования потока по всему поперечному сечению проточной части датчика и эффективного осреднения профиля скорости потока и оценивается в сравнении с показаниями эталонного расходомера.
Figure 00000003
где V(x,l) - проекция профиля скорости потока вдоль акустического луча в продольном сечении х, Sl=L*а - наклонная площадь, через которую проходит озвучиваемый поток в проточной части датчика, L - длина акустического луча, а - ширина грани проточной части, Vэт - средняя скорость контролируемого потока, измеренная эталонным расходомером.
На фиг. 3, 4, 5, 6 представлена конструкция 4 - хканального датчика с 4 - гранной проточной частью ультразвукового расходомера, симметричная по двум взаимно перпендикулярным плоскостям относительно продольной оси датчика, которые перпендикулярны также к соответствующим граням проточной части, обеспечивающая возможность осреднения профиля скорости потока и пульсаций по двум плоскостям и соответственно повышении точности измерения расхода. На фиг. 3 конструкция изображена в разрезе в вертикальной плоскости, а на фиг. 4 с частичным разрезом. Датчик состоит из цельнометаллического измерительного участка трубопровода 1 в виде отрезка трубопровода с проточной частью 2, имеющей квадратное поперечное сечение. Цилиндрическая поверхность 3 измерительного участка трубопровода 1 имеет волнистую структуру, выполненную в виде спиралевидной резьбы. В первом акустическом канале в качестве приемоизлучающих элементов используются ЭАП 8 и 5; во втором - ЭАП 13 и 15; в третьем - ЭАП 12 и 17; в четвертом - ЭАП 14 и 16 в соответствии с фиг. 5. Датчик работает следующим образом. Цикл измерения расхода 4-хканальным датчиком включает последовательное измерение разности времени распространения зондирующего ультразвукового сигнала по и против потока каждым акустическим каналом. В первом акустическом канале измерение указанного времени по потоку осуществляется с помощью ЭАП 8 в качестве излучателя и ЭАП 5 в качестве приемного элемента, а при измерении против потока - ЭАП 5 - излучатель и ЭАП 8 - приемный элемент, затем определяется разность этих измеренных интервалов времени. Во втором акустическом канале осуществляется аналогичный процесс с использованием ЭАП 13 и 15, в третьем канале - с использованием ЭАП 12 и 17, в четвертом - с использованием ЭАП 14 и 16. Осредненные данные, полученные четырьмя акустическими каналами является мерой расхода. В предлагаемом датчике в каждом канале зондирование происходит по трем плоским лучам, как изображено на фиг. 1а. Таким образом, в случае 4-хканального датчика в одном цикле измерения расхода зондирование контролируемого потока и осреднение осуществляется 12 раз. При увеличении диаметра измерительного участка трубопровода соотношения между диаметром и размером ЭАП (длиной) определяются по формуле (3):
Figure 00000004
где Н - ширина грани многоугольника, D - условный диаметр проточной части, n - четное число граней многоугольника.
На фиг. 7, 8, 9 представлена конструкция 4-хканального датчика ультразвукового расходомера с проточной частью, имеющей поперечное сечение в виде 8 - угольника. Четыре акустических канала построены на четырех параллельных парах граней таким образом, чтобы осуществить "озвучивание" потока по всему поперечному сечению. Этообеспечивает возможность осреднения профиля скорости потока и пульсаций и, соответственно, повышению точности измерения расхода в трубопроводах большего диаметра. На фиг. 7 конструкция изображена в разрезе в вертикальной плоскости. Датчик состоит из цельнометаллического измерительного участка трубопровода 1 в виде отрезка трубопровода с проточной частью 2, имеющей поперечное сечениев виде 8 - угольника. Поверхность измерительного участка трубопровода 1 имеет поглотитель акустических помех в виде гребенчатой структуры 3, выполненной в виде спиралевидной резьбы. В первом акустическом канале в качестве приемо-излучающих элементов используются ЭАП 8 и 5; во втором - ЭАП 13 и 15; в третьем - ЭАП 12 и 17; в четвертом - ЭАП 14 и 16 в соответствии с фиг. 8 и 9.
Датчик работает следующим образом.
Цикл измерения расхода датчиком, представленным на фиг. 7, 8, 9, включает последовательное измерение разности времени распространения зондирующего ультразвукового сигнала по и против потока каждым акустическим каналом. В первом акустическом канале измерение указанного времени по потоку осуществляется с помощью ЭАП 8 в качестве излучателя и ЭАП 5 в качестве приемного элемента, а при измерении против потока - ЭАП 5 - излучатель и ЭАП 8 - приемный элемент, затем определяется разность этих измеренных интервалов времени. Во втором акустическом канале осуществляется аналогичный процесс с использованием ЭАП 13 и 15, в третьем канале - с использованием ЭАП 12 и 17, в четвертом - с использованием ЭАП 14 и 16. Осредненные данные, полученные четырьмя акустическими каналами, являются мерой расхода.
Повышение точности измерения расхода с использованием предлагаемого датчика ультразвукового расходомера происходит за счет:
1) установки ЭАП с заглублением в стенке проточной части и обеспечения при этом толщины резонансной перемычки, отделяющей ЭАП от проточной части, равной половине длины волны частоты несущей, которая позволяет получить широкую диаграмму направленности в продольной плоскости для зондирующего сигнала при входе в поток;
2) значительного ослабления акустических помех, возникающих внутри стенок проточной части при каждом отражении и преломлении зондирующего сигнала, который при этом расщепляется на продольную и поперечную волны и циркулирует в стенке до полного затухания за счет выполнения на поверхности измерительного участка трубопровода поглотителя акустических помех в виде гребенчатой структуры;
3) многократного (по числу лучей) зондирования потока по всему поперечному сечению потока за счет выполнения проточной части с многоугольным поперечным сечением.

Claims (1)

  1. Датчик ультразвукового расходомера, содержащий измерительный участок трубопровода с проточной частью, имеющей поперечное сечение в форме многоугольника и электроакустические преобразователи (ЭАП), отличающийся тем, что измерительный участок выполнен цельнометаллическим или пластмассовым таким образом, что поперечное сечение проточной части указанного многоугольника выполнено с четным числом граней, на противоположных концах каждой пары параллельных граней в поперечном углублении в материале стенки проточной части установлены прямоугольные электроакустические преобразователи поперечных волн с одинаковыми углами наклона к продольной оси на расстоянии трех или четырех диаметров трубопровода, каждый из которых отделен от проточной части резонансной перемычкой, толщина которой выполнена равной половине длины волны частоты несущей, при этом на поверхности измерительного участка трубопровода выполнен поглотитель акустических помех в виде гребенчатой структуры с шагом, равным половине длины волны.
    Figure 00000001
RU2014151045/28U 2014-12-16 2014-12-16 Датчик ультразвукового расходомера RU154441U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014151045/28U RU154441U1 (ru) 2014-12-16 2014-12-16 Датчик ультразвукового расходомера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014151045/28U RU154441U1 (ru) 2014-12-16 2014-12-16 Датчик ультразвукового расходомера

Publications (1)

Publication Number Publication Date
RU154441U1 true RU154441U1 (ru) 2015-08-27

Family

ID=54015821

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014151045/28U RU154441U1 (ru) 2014-12-16 2014-12-16 Датчик ультразвукового расходомера

Country Status (1)

Country Link
RU (1) RU154441U1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078559A1 (ru) * 2015-11-02 2017-05-11 Вакиф Карамович ХАМИДУЛЛИН Датчик ультразвукового расходомера
RU172103U1 (ru) * 2016-11-15 2017-06-28 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком
RU2623833C1 (ru) * 2016-06-22 2017-06-29 Общество С Ограниченной Ответственностью Нпо "Турбулентность-Дон" Измерительная система для учета газа, поставляемого на агнкс
RU2649421C1 (ru) * 2016-11-15 2018-04-03 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078559A1 (ru) * 2015-11-02 2017-05-11 Вакиф Карамович ХАМИДУЛЛИН Датчик ультразвукового расходомера
RU2623833C1 (ru) * 2016-06-22 2017-06-29 Общество С Ограниченной Ответственностью Нпо "Турбулентность-Дон" Измерительная система для учета газа, поставляемого на агнкс
RU172103U1 (ru) * 2016-11-15 2017-06-28 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком
RU2649421C1 (ru) * 2016-11-15 2018-04-03 Вакиф Карамович Хамидуллин Ультразвуковой расходомер с металлическим датчиком

Similar Documents

Publication Publication Date Title
US8181536B2 (en) Ultrasonic Flow Meter including a transducer having conical face
JP2014021116A (ja) 超音波ウェッジおよびその中の音速を決定する方法
RU154441U1 (ru) Датчик ультразвукового расходомера
BR112016015136B1 (pt) aparelho sensor de medição de fluxo e método para usar o dito aparelho
RU2637381C2 (ru) Ультразвуковой волновод
US8155895B2 (en) Method and system of detecting liquid in an acoustic flow meter
RU2612727C2 (ru) Устройство для согласования ультразвуковых сигналов
EP1742024B1 (en) Ultrasonic flowmeter with triangular cross section
WO2013006090A1 (en) The calibration method, applied in operating conditions, for ultrasonic flow meters used for measuring volume and flow rate of single-phase liquid media
RU2576551C1 (ru) Датчик ультразвукового расходомера
RU2649421C1 (ru) Ультразвуковой расходомер с металлическим датчиком
EP3063508B1 (en) A flow meter for ultrasonically measuring the flow velocity of fluids
Treenuson et al. Accurate flowrate measurement on the double bent pipe using ultrasonic velocity profile method
WO2017078559A1 (ru) Датчик ультразвукового расходомера
EP2657658B1 (en) Ultrasonic flow measurement system
RU172103U1 (ru) Ультразвуковой расходомер с металлическим датчиком
RU2331851C2 (ru) Ультразвуковой расходомер
RU2715086C1 (ru) Ультразвуковой расходомер
JP7151344B2 (ja) 圧力計測装置
JP4496258B2 (ja) 超音波流量計
CN205861137U (zh) 变径两探头时差超声流量测量装置
JP2008107288A (ja) 超音波流量計
JP2007033115A (ja) 超音波流量計の検出部
KR101119998B1 (ko) 다회선 외벽부착식 초음파 트랜스듀서
RU2763274C2 (ru) Способ применения накладных ультразвуковых расходомеров на трубопроводах криогенных температур и ультразвуковой расходомер для его реализации

Legal Events

Date Code Title Description
MM9K Utility model has become invalid (non-payment of fees)

Effective date: 20191217