RU2573000C2 - Катализатор для разложения закиси азота - Google Patents

Катализатор для разложения закиси азота Download PDF

Info

Publication number
RU2573000C2
RU2573000C2 RU2013116992/05A RU2013116992A RU2573000C2 RU 2573000 C2 RU2573000 C2 RU 2573000C2 RU 2013116992/05 A RU2013116992/05 A RU 2013116992/05A RU 2013116992 A RU2013116992 A RU 2013116992A RU 2573000 C2 RU2573000 C2 RU 2573000C2
Authority
RU
Russia
Prior art keywords
oxide
catalyst
rare earth
catalyst according
mno
Prior art date
Application number
RU2013116992/05A
Other languages
English (en)
Other versions
RU2013116992A (ru
Inventor
Альберто КРЕМОНА
Марфин ЭСТЕНФЕЛЬДЕР
Эдоардо ВОНЬЯ
Original Assignee
Зюд-Кеми Каталистс Италия С.Р.Л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зюд-Кеми Каталистс Италия С.Р.Л. filed Critical Зюд-Кеми Каталистс Италия С.Р.Л.
Publication of RU2013116992A publication Critical patent/RU2013116992A/ru
Application granted granted Critical
Publication of RU2573000C2 publication Critical patent/RU2573000C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/55Cylinders or rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/30Improvements relating to adipic acid or caprolactam production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Изобретение относится к катализатору для каталитического разложения закиси азота и к его применению для удаления закиси азота из газовых смесей, особенно для удаления выбросов заводов по производству азотной кислоты и адипиновой кислоты. Катализатор содержит смешанные оксиды кобальта, марганца и редкоземельных металлов и имеет состав, выраженный в процентах по массе CoO, MnO и оксида переходного металла в самом низком валентном состоянии: MnO 38-56%, CoO 22-30%, оксид редкоземельного металла 22-32%. Изобретение обеспечивает эффективное разложение закиси азота. 3 н. и 9 з.п. ф-лы, 1 табл.

Description

Область техники
Данное изобретение относится к катализатору для каталитического разложения закиси азота (N2O) на азот и кислород и к его применению для удаления закиси из газовых смесей, которые ее содержат, особенно для удаления выбросов заводов по производству азотной кислоты и адипиновой кислоты.
Предшествующий уровень техники
Закись азота представляет собой вредный парниковый газ, который является гораздо более сильнодействующим, чем диоксид углерода; кроме того, в стратосфере она принимает участие в реакциях, которые приводят к разрушению озонового слоя.
Основными промышленными источниками образования закиси азота являются заводы по производству азотной кислоты и адипиновой кислоты (мономера, используемого при получении нейлона 6,6 и нейлона 6,12).
Закись азота присутствует в выбросах заводов по производству адипиновой кислоты в значительных количествах: типичный состав включает в процентах по объему: 30% N2O, 2% CO2, 2,5% H2O, 8-12% O2, 50-150 млн-1 NOx, остальное - N2.
Выбросы заводов по производству азотной кислоты обычно содержат 300-1700 млн-1 N2O, 100-2000 млн-1 NOx, 1-4% O2 и остальное - азот.
Ожидается рост выбросов N2O от заводов по производству азотной кислоты и адипиновой кислоты примерно на 16% за период 2005-2020 гг.
Известно несколько катализаторов, применяемых для разложения N2O. Основные из них состоят из благородных металлов, нанесенных на оксиды металлов разных видов, цеолитов, замещенных ионами переходных металлов или на которых нанесены оксиды металлов, и анионоактивных глин, таких как, например, гидроталькиты, состоящих из смешанных гидроксидов со слоистой структурой, в которой анионы различных видов, способные к обмену или нет, и молекулы воды включены между двумя слоями.
Все эти катализаторы обладают тем недостатком, что они не являются термически стабильными: благородные металлы, нанесенные на оксиды металлов - поскольку при высоких температурах частицы металла имеют тенденцию к спеканию, с последующей деактивацией катализатора; глины и цеолиты - поскольку их структура имеет тенденцию к разрушению и соответственно потере первоначальных каталитических свойств.
Известны катализаторы (US 5705136), которые состоят из оксидов, таких как MnO, CuO, NiO и CoO, нанесенных на MgO, CaO, ZnO, TiO2, Al2O3-ZnO, Al2O3-TiO2 и т.п. Предпочтительно катализаторы содержат CoO, нанесенный на MgO.
Степени превращения N2O являются высокими.
В US 2004/0179986 A1 упоминается катализатор разложения N2O, который активен при температурах в интервале между 250 и 450°C, однако неактивен при более высоких температурах и состоит из смеси, в равных частях по массе, Co3O4 со структурой шпинели и перовскита с анионными дефектами формулы La1-xCuxCoO3-d (x≤0,5).
В данной заявке на патент США подчеркивается, что перовскитоподобные катализаторы подвергаются дезактивации, когда применяются при высоких температурах (700-1000°C), если они нанесены на глинозем, что обусловлено деактивирующими реакциями глинозема с активной фазой катализатора.
Структуры типа гидроталькита, такие как, например, Cu3Mg5Al2(OH)20CO3·3H2O, Mn3Mg5Al2(OH)20CO3·H2O, также применимы.
Описание изобретения
Теперь было неожиданно найдено, что катализаторы, описанные ниже в данном документе, обладают высокой каталитической активностью при разложении N2O на азот и кислород, удовлетворительной термической стабильностью вплоть до 900°C и способностью к поддержанию их активности постоянной в течение длительных периодов времени. Стабильность при высоких температурах обеспечивается, в частности, катализаторами, которые нанесены на глинозем, что является совершенно неожиданным результатом ввиду полного отличия от идеи изобретения в заявке на патент США. Кроме того, катализаторы, описанные ниже в данном документе, обладают той характерной особенностью, что они не содержат меди - элемента, который может создавать проблемы с летучестью в случае реакций, проводимых при высоких температурах, как, например, при рабочих условиях для устранения N2O в качестве побочного продукта непосредственно в реакторе для окисления аммиака до монооксида азота.
Катализаторы содержат смешанные оксиды кобальта, марганца и редкоземельных металлов, которые присутствуют в следующем составе, выраженном в процентах по массе CoO, MnO и оксида редкоземельного металла, где металл присутствует в самом низком валентном состоянии: MnO 38-56%, CoO 22-30%, 22-32% оксида редкоземельного металла.
Пути осуществления изобретения
Предпочтительными оксидами редкоземельных металлов являются оксиды лантана и церия и их смеси.
Предпочтительный состав содержит оксид лантана в количестве 25-30 мас.% в расчете на La2O3.
Смешанные оксиды, которые составляют активные компоненты катализаторов, обладают той особенностью, что являются полупроводниками p-типа, в которых проводимость увеличивается экспоненциально с ростом температуры, в соответствии с законом Аррениуса, и в которых носителями заряда являются электронные вакансии. В этих оксидах кислород кристаллической решетки принимает участие в реакциях окисления.
Смешанные оксиды используются на пористых неорганических носителях, предпочтительно пористых оксидах, таких как глинозем, алюмосиликат, диоксид титана, оксид магния. Глинозем, предпочтительно в гамма-форме, в виде сфероидальных микрочастиц диаметром 30-80 мкм, является предпочтительным носителем для реакций, выполняемых, в особенности, в псевдоожиженном слое. Площадь поверхности (по БЭТ) нанесенного катализатора в гамма-глиноземе обычно находится в интервале между 90 и 170 м2/г. Оксиды предпочтительно присутствуют в носителе в количестве 10-30 мас.%.
В реакциях в неподвижном слое, применяемых при удалении закиси азота из выбросов заводов по производству азотной кислоты и адипиновой кислоты, предпочтительно использование носителей, которые имеют определенную геометрическую форму, такие как цилиндрические гранулы, имеющие одно или несколько отверстий, предпочтительно с тремя выступами, со сквозными отверстиями, которые параллельны оси гранулы. Размер гранулы составляет 3-10 мм по высоте, и длина окружности находится в интервале между 3 и 10 мм.
Предпочтительный способ приготовления катализаторов на носителе состоит в импрегнировании носителя водным раствором соли лантана, или церия, или другого редкоземельного металла, или их смесей с последующей сушкой носителя и затем обжигом при температуре предпочтительно в интервале между 450 и 600°C. Носитель, обработанный таким образом, затем импрегнируют раствором соли марганца и кобальта, после чего сушат и обжигают при температурах в интервале между 500 и 750°C.
Может быть использована любая соль вышеуказанных металлов, которая растворима в воде; и предпочтительными являются нитраты, формиаты и ацетаты.
Предпочтительным способом импрегнирования является сухое импрегнирование, т.е. с применением объема раствора солей, который равен или меньше объема пор носителя.
Разложение N2O выполняется при температурах в интервале между 400 и 900°C. Когда содержание N2O увеличивается, используются более высокие температуры. В случае выбросов заводов по производству азотной кислоты предпочтительная температура находится в интервале между 700 и 900°C.
Объемные скорости находятся в интервале между 3000 и 100000 ч-1. Содержание N2O в смесях варьируется от млн-1 до процентного содержания по объему более чем 20%. При обработке в условиях, указанных выше, любые присутствующие оксиды NOx остаются неизменившимися.
Приведенные ниже примеры представлены с целью неограничивающего иллюстрирования данного изобретения.
ПРИМЕРЫ
Катализатор, использованный в примерах, имел следующий состав, выраженный в процентах по массе:
La2O3 = 27,4
MnO = 46,3
CoO = 26,3
Приготовление выполняли посредством импрегнирования гамма-глинозема водным раствором нитрата лантана La(NO3)3.
Носитель затем сушили при 110°C и после этого обжигали при 450°C. Обожженный носитель импрегнировали водным раствором нитрата марганца (Mn(NO3)2) и нитрата кобальта (Co(NO3)2) и затем сушили при 120-200°C и обжигали при 700°C.
Для импрегнирования был использован объем раствора, равный 100% объема пор глинозема.
Площадь поверхности катализатора (по БЭТ) составляла 160 м2/г, и пористость составляла 0,40 см3/г.
Перед испытанием катализатор измельчали и просеивали соответствующим образом.
Активность катализатора в режиме «light-off» (при рабочих температурах), т.е. температуру газового потока, при которой катализатор разлагает 50% присутствующей закиси азота, и температуру полного разложения закиси выбирали в качестве основных критериев для оценки эксплуатационных качеств рассматриваемого катализатора.
Результаты представлены в таблице и относятся к испытаниям, проведенным при разной концентрации N2O как для свежеприготовленного катализатора, так и для катализатора, состаренного в течение 3 дней при 900°C на воздухе, с тем чтобы моделировать ухудшение условий реакции.
Таблица
Рабочие условия Единица измерения Пример 1
Свежеприготовленный образец
Пример 2
Состаренный образец
Пример 3
Свежеприготовленный образец
Пример 4
Состаренный образец
N2O об.% 2100 млн-1 по объему 2100 млн-1 по объему 13 13
Кислород об.% 1,5 1,5 5 5
NO об.% 0,8 0,8 - -
Гелий об.% остаток остаток остаток остаток
Температуры
Начало реакции °C 411 428 410 430
Степень превращения 50% 509 551 505 550
Степень конверсии 100% 612 650 600 660
Часовая объемная скорость подачи газа ч-1 12500 12500 12500 12500
Суммарный расход норм. см3/мин 200 200 200 200
Сведения из заявки на патент Италии № MI2010A001659, на основании которой эта заявка притязает на приоритет, включены в данный документ посредством ссылки.

Claims (12)

1. Катализатор для удаления закиси азота из газовых смесей, которые ее содержат, содержащий смешанные оксиды кобальта, марганца и редкоземельных металлов и имеющий следующий состав, выраженный в процентах по массе CoO, MnO и оксида переходного металла в самом низком валентном состоянии: MnO 38-56%, CoO 22-30%, оксид редкоземельного металла 22-32%.
2. Катализатор по п. 1, применяемый при удалении закиси азота, присутствующей в выбросах заводов по производству азотной кислоты и адипиновой кислоты.
3. Катализатор по п. 1, где газовые смеси, содержащие закись азота, приводят в соприкосновение с катализаторами при температурах в интервале между 400 и 900°C.
4. Катализатор по п. 2, где выбросы, высвобожденные заводами, пропускают над неподвижным слоем, поддерживаемым при температурах в интервале между 600 и 900°C.
5. Катализатор по п. 1, где катализатор содержит оксид лантана.
6. Катализатор по п. 1, где катализатор нанесен на неорганический пористый оксид.
7. Катализатор по п. 6, где катализатор нанесен на сфероидальные микрочастицы глинозема.
8. Катализатор по п. 7, где катализатор нанесен на гранулы, которые имеют форму перфорированных цилиндров или форму с одним или более выступами, имеющими сквозные отверстия, параллельные оси гранулы.
9. Способ получения катализатора по п. 6, где носитель вначале импрегнируют водным раствором соли лантана или другого редкоземельного металла, сушат и затем обжигают при температурах в интервале между 450 и 600°C и после этого импрегнируют раствором соли кобальта и марганца, а затем, после сушки, обжигают при температурах в интервале между 500 и 750°C.
10. Применение катализаторов, содержащих смешанные оксиды кобальта, марганца и редкоземельного металла, которые присутствуют в следующих долях, выраженных в процентах по массе CoO, MnO и оксида редкоземельного металла, где металл находится в самом низком валентном состоянии: CoO 22-30%, MnO 38-56% и оксид редкоземельного металла 22-32%, для удаления закиси азота из газообразных смесей, которые ее содержат.
11. Применение по п. 10, где оксидом редкоземельного металла является оксид лантана и/или оксид церия.
12. Применение по п. 10 для удаления закиси азота из выбросов заводов по производству азотной кислоты и адипиновой кислоты.
RU2013116992/05A 2010-09-13 2011-09-06 Катализатор для разложения закиси азота RU2573000C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2010A001659A IT1401698B1 (it) 2010-09-13 2010-09-13 Catalizzatore per la decomposizione di protossido d'azoto.
ITMI2010A001659 2010-09-13
PCT/EP2011/065393 WO2012034902A1 (en) 2010-09-13 2011-09-06 Catalyst for the decomposition of nitrogen protoxide

Publications (2)

Publication Number Publication Date
RU2013116992A RU2013116992A (ru) 2014-10-20
RU2573000C2 true RU2573000C2 (ru) 2016-01-20

Family

ID=43738888

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013116992/05A RU2573000C2 (ru) 2010-09-13 2011-09-06 Катализатор для разложения закиси азота

Country Status (13)

Country Link
US (1) US8809224B2 (ru)
EP (1) EP2616165B1 (ru)
KR (1) KR101882959B1 (ru)
CN (1) CN103249468B (ru)
CA (1) CA2812142C (ru)
ES (1) ES2666214T3 (ru)
HU (1) HUE036900T2 (ru)
IT (1) IT1401698B1 (ru)
NO (1) NO2616165T3 (ru)
PL (1) PL2616165T3 (ru)
PT (1) PT2616165T (ru)
RU (1) RU2573000C2 (ru)
WO (1) WO2012034902A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586040B (zh) * 2013-11-13 2017-02-08 刘崇莲 一种处理n2o的催化剂及其制备工艺
CN104437499A (zh) * 2014-10-31 2015-03-25 兰州天越环保科技有限公司 一种用于分解氧化亚氮的催化剂及其制备方法
CN106944048A (zh) * 2017-03-08 2017-07-14 昆明南铂环保科技有限公司 氧化亚氮转化催化剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1766497A1 (ru) * 1991-01-11 1992-10-07 Омский Научно-Технический Филиал Республиканского Инженерно-Технического Центра Со Ан Ссср Катализатор дл очистки отход щих газов от окиси углерода, углеводородов и окислов азота
DE19506659C1 (de) * 1995-02-25 1996-08-08 Leuna Katalysatoren Gmbh Kobalt-, Lanthan- und Lanthaniden-Oxide enthaltender Katalysator mit vorwiegend Perowskit-Struktur und Verfahren zu seiner Herstellung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2059934B (en) * 1978-10-17 1982-09-08 Kuraray Co System for treating waste anaesthetic gas
US5705136A (en) 1995-11-13 1998-01-06 University Of Florida Research Foundation, Inc. Catalyzed decomposition of nitrogen oxides on metal oxide supports
US20040179986A1 (en) * 1998-09-09 2004-09-16 Porzellanwerk Kloster Veilsdorf Gmbh Ceramic catalyst for the selective decomposition of N2O and method for making same
GB0315643D0 (en) * 2003-04-29 2003-08-13 Johnson Matthey Plc Improved catalyst charge design
JP4246584B2 (ja) * 2003-09-25 2009-04-02 株式会社日本触媒 アンモニア含有排ガスおよびアンモニア含有排水の浄化方法
ITMI20070096A1 (it) * 2007-01-23 2008-07-24 Sued Chemie Catalysts Italia Srl Processo per la decomposizione catalitica di protossido d'azoto.
PT2202201T (pt) * 2008-12-23 2016-07-20 Clariant Prod (Italia) Spa Catalisadores de oxidação de amoníaco

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1766497A1 (ru) * 1991-01-11 1992-10-07 Омский Научно-Технический Филиал Республиканского Инженерно-Технического Центра Со Ан Ссср Катализатор дл очистки отход щих газов от окиси углерода, углеводородов и окислов азота
DE19506659C1 (de) * 1995-02-25 1996-08-08 Leuna Katalysatoren Gmbh Kobalt-, Lanthan- und Lanthaniden-Oxide enthaltender Katalysator mit vorwiegend Perowskit-Struktur und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
CA2812142C (en) 2018-08-21
CN103249468B (zh) 2015-06-03
US8809224B2 (en) 2014-08-19
CN103249468A (zh) 2013-08-14
EP2616165B1 (en) 2018-01-17
EP2616165A1 (en) 2013-07-24
RU2013116992A (ru) 2014-10-20
WO2012034902A1 (en) 2012-03-22
PL2616165T3 (pl) 2018-07-31
HUE036900T2 (hu) 2018-08-28
US20130172178A1 (en) 2013-07-04
PT2616165T (pt) 2018-04-20
ES2666214T3 (es) 2018-05-03
IT1401698B1 (it) 2013-08-02
KR20130114657A (ko) 2013-10-17
ITMI20101659A1 (it) 2012-03-14
NO2616165T3 (ru) 2018-06-16
CA2812142A1 (en) 2012-03-22
KR101882959B1 (ko) 2018-07-26

Similar Documents

Publication Publication Date Title
RU2279314C2 (ru) Катализатор для полного окисления летучих органических соединений
Tang et al. Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs
US8871673B2 (en) Catalyst production method therefor and use thereof for decomposing N2O
JP6381131B2 (ja) アンモニア分解触媒及び該触媒の製造方法並びに該触媒を用いたアンモニアの分解方法
JP6070230B2 (ja) Afx型シリコアルミノリン酸塩及びその製造方法、並びにこれを用いた窒素酸化物還元方法
KR20160045689A (ko) 일산화탄소 및/또는 휘발성 유기 화합물의 산화를 위한 촉매
CA2684262A1 (en) Mixed oxides catalysts
US6723295B1 (en) High-temperature stabile catalysts for decomposing N2O
KR101671822B1 (ko) 암모니아 산화용 촉매
RU2573000C2 (ru) Катализатор для разложения закиси азота
US20100074819A1 (en) Process for catalytic decomposition of nitrogen protoxide
CN107486206B (zh) 一种锰基材料及其制备方法和用途
RU2411992C2 (ru) Материал с каталитической активностью для разложения озона и способ его получения
US10092895B2 (en) Process for catalytic decomposition of nitrogen protoxide
CN117899860A (zh) 一种贵金属涂层-载体催化剂、制备方法及其应用
JP4664608B2 (ja) アンモニア分解用触媒およびアンモニアの分解方法
CN115814788A (zh) 贵金属系吸附催化剂、其制备方法和用途
Tang et al. Controlled synthesis of manganese oxides with different morphologies and their performance for catalytic removal of gaseous benzene
CZ305451B6 (cs) Katalyzátor pro odstraňování N2O z odpadních plynů a způsob jeho výroby
BRPI0816155B1 (pt) Catalyst for the decomposition of N2O in nitrogen and oxygen in the gas phase, process for the production of this and use of the same