RU2566295C2 - Способ получения простых полиэфирполиолов - Google Patents

Способ получения простых полиэфирполиолов Download PDF

Info

Publication number
RU2566295C2
RU2566295C2 RU2012142695/04A RU2012142695A RU2566295C2 RU 2566295 C2 RU2566295 C2 RU 2566295C2 RU 2012142695/04 A RU2012142695/04 A RU 2012142695/04A RU 2012142695 A RU2012142695 A RU 2012142695A RU 2566295 C2 RU2566295 C2 RU 2566295C2
Authority
RU
Russia
Prior art keywords
mixer
pump
oxide
reactor
volume
Prior art date
Application number
RU2012142695/04A
Other languages
English (en)
Other versions
RU2012142695A (ru
Inventor
Фатемэ АХМАДНИАН
Винит ЧИЛЕКАР
Андреас Бродхаген
Ахим ЛЕФФЛЕР
Херманн ГРАФ
Original Assignee
Басф Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43795183&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2566295(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Басф Се filed Critical Басф Се
Publication of RU2012142695A publication Critical patent/RU2012142695A/ru
Application granted granted Critical
Publication of RU2566295C2 publication Critical patent/RU2566295C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к способу каталитического получения простых полиэфиролов, причем в качестве стартовых реагентов используют глицерин и/или сахарозу, в качестве алкиленоксида пропиленоксид, этиленоксид, бутиленоксид, изобутиленоксид, оксид стирола или их смеси, в качестве катализаторов третичные амины и/или гидроксиды щелочных или щелочно-земельных металлов и/или катализатор, выбранный из группы, включающей мультиметаллоцианидные катализаторы, превращение стартового вещества с алкиленоксидами осуществляют при давлениях в интервале от 0,1 до 1,0 МПа и температурах в интервале от 80 до 140°C. Потребляемая по меньшей мере одной мешалкой или по меньшей мере одной мешалкой и насосом мощность, отнесенная к объему реактора, составляет от 1 до 4 кВт/мили от 1,002 до 4,5 кВт/м, причем используют по меньшей мере один турбулизующий элемент, и причем (i) не используют насос, и потребляемая при этом по меньшей мере одной мешалкой мощность, отнесенная к объему реактора, составляет от 1 до 4 кВт/м, предпочтительно от 1,2 до 3,5 кВт/м, или (ii) совокупная мощность, потребляемая по меньшей мере одной мешалкой и по меньшей мере одним насосом, отнесенная к объему реактора, составляет от 1,002 до 4,5 кВт/м, предпочтительно от 1,203 до 3,75 кВт/м, причем в случае использования мешалки удельную потребляемую мощность Р, отнесенную к объему реактора, рассчитывают по формуле Р=Ne*n*d*ρ, в которой Ne означает коэффициент Ньютона, n означает частоту вращения мешалки в об/мин, d означает диаметр мешалки и ρ означает плотность содержимого реактора, и причем в случае использования насоса удельную потребляемую мощность Р, отнесенную к объему реактора, рассчитывают по �

Description

Изобретение относится к способу получения простых полиэфирполиолов, согласно которому с целью повышения соответствия показателей получаемых простых полиэфирполиолов при переходе от одной партии продукции к другой предусматривают потребление определенной мощности перемешивания.
Получение простых полиэфирспиртов описано в М. lonescu, „Chemistry and technology of polyols for polyurethanes“, издательство Rapra Technology, 2005.
В качестве исходных алкиленоксидов для получения простых полиэфирспиртов часто используют пропиленоксид и/или этиленоксид.
При получении простых полиэфирполиолов, в особенности при их получении в периодическом режиме, показатели продукции при переходе от одной партии к другой всегда отличаются друг от друга. В случае получения полиолов, предназначенных для синтеза мягких пенопластов, подобные отличия касаются прежде всего концентрации ненасыщенных монолов и молекулярно-массового распределения и отражаются на технологических и механических свойствах синтезируемых из подобных полиолов полиуретанов. В случае получения полиолов, предназначенных для синтеза жестких пенопластов, часто наблюдаются слишком высокие концентрации сахара, что обусловливает образование отложений при переработке подобных полиолов в полиуретаны на оборудовании для получения пенопластов. При контроле технологического процесса, выполняемом в рамках контроля качества продукции с использованием так называемых карт контроля качества, обнаруживают нарушение правила шести сигм, а также трендовых правил, например, так называемого правила Western Electric. Методика подобного контроля описана, например, в Douglas С. Montgome-ry, Introduction to Statistical Quality Control, 6-е издание, 2008, издательство Wiley & Sons, Нью-Йорк, ISBN 0470169923, Нарушение указанных выше правил свидетельствует о наличии не случайных, а регулярных отклонений, что означает недостаточный контроль технологического процесса.
Указанные выше проблемы в некоторых случаях могут быть обусловлены неудовлетворительным перемешиванием содержимого реактора.
Следствием неудовлетворительного перемешивания реагентов является также возникновение следующих проблем:
a) отсутствие равномерного контакта алкиленоксида, который в обычных условиях превращения находится в газообразном состоянии, со всеми реагентами, то есть главным образом со стартовыми реагентами, результатом которого является дискриминация алкиленоксида при формировании полимерных цепей, а, следовательно, отличие свойств целевого продукта при переходе от одной его партии к другой;
b) затрудненный массообмен между газом и жидкостью, следствием которого является увеличение длительности реакции и времени занятости реакционного сосуда;
c) ограниченный теплообмен, без учета которого при осуществлении технологического процесса происходит нежелательный перегрев реакционной смеси, прежде всего ее локальный перегрев; в случае учета ограниченного теплообмена следует снижать скорость дозирования алкиленоксида, что обеспечивает увеличение длительности реакции, а, следовательно, времени занятости реакционного сосуда;
d) в случае перегрева, обусловленного ограниченным теплообменом согласно пункту с), и использования в качестве катализатора двойного металлоцианида может происходить частичное или полное деактивирование последнего; кроме того, может возрастать содержание ненасыщенных компонентов, так называемых монолов, что в особенности относится к катализу посредством гидроксида калия;
e) в случае полиолов на основе сахаров готовый полиол может обладать повышенным остаточным содержанием сахара, что обусловливает его мутность;
f) кроме того, при перегреве может возникать нестабильное рабочее состояние, следствием которого в предельном случае может быть протекание технологического процесса в режиме разноса.
Анализ соответствующей литературы, например, М. lonescu, Chemistry and Technology of Polyols for Polyurethanes, издательство Rapra Technology Limited, Шобери / Великобритания, 2005, с.336 и следующие, а также М. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, Ullmann's Encyclopedia of Industrial Chemistry, Нью-Йорк, 5-е издание, том А21, с.665, показывает, что указанные выше проблемы пока не нашли удовлетворительного решения.
С учетом вышеизложенного в основу настоящего изобретения была положена задача предложить способ получения простых полиэфирполиолов, позволяющий в максимальной степени устранить указанные выше недостатки.
Указанная задача решается с помощью предлагаемого в изобретении способа получения простых полиэфирполиолов, предусматривающего потребление определенной мощности перемешивания, величина которой, в частности, приведена в формуле изобретения.
Указанные выше проблемы, присущие обычным способам, устраняют с помощью предлагаемого в изобретении способа получения простых полиэфирполиолов, предусматривающего потребление определенной мощности перемешивания. Благодаря этому можно обеспечить высокое соответствие показателей получаемых простых полиэфирполиолов при переходе от одной партии продукции к другой, то есть незначительное варьирование важных характеристик указанных полиэфирполиолов, таких как гидроксильное число и вязкость.
Таким образом, объектом настоящего изобретения является способ каталитического получения простых полиэфиролов, отличающийся тем, что потребляемая по меньшей мере одной мешалкой и/или по меньшей мере одним насосом мощность, отнесенная к объему реактора, составляет от 0,001 до 8,2 кВт/м3.
Согласно предлагаемому в изобретении способу в процессе синтеза полиэфирполиолов обеспечивают достаточно эффективное перемешивание реакционной смеси. Подобное перемешивание может быть достигнуто либо посредством мешалок или систем перекачки, либо посредством комбинации мешалок с системами перекачки. Критериями эффективности перемешивания являются потребляемая мощность, отнесенная к объему реактора, и скорость перекачки, причем последняя может быть выражена также в виде эквивалентной потребляемой мощности.
А) Исходные материалы
Для осуществления процесса пригодны, например, следующие стартовые реагенты:
a) одноатомные и многоатомные спирты с функциональностью в интервале от 1 до 8, например, моноэтиленгликоль, диэтиленгликоль, триэтиленгликоль, полиэтиленгликоль, монопропиленгликоль, дипропиленгликоль, трипропиленгликоль, полипропиленгликоль, политетрагидрофуран, глицерин, алкоксилат глицерина с молекулярной массой менее 10000, триметилолпропан, триметилолэтан, неопентилгликоль, алкоксилат аллилового спирта с молекулярной массой менее 1000, сахара и производные сахаров, такие как сахароза или сорбит, бисфенол А, бисфенол F, пентаэритрит, расщепленный крахмал, вода и соответствующие смеси,
b) амины с одной или несколькими аминогруппами, такие как этилендиамин, триэтаноламин или толуилендиамин,
c) гидроксикарбоновые кислоты, гидроксиальдегиды, гидроксикетоны; тридеканол N и его полимеры; сложные эфиры акриловой или метакриловой кислоты и двухатомных спиртов, такие как гидроксиэтилакрилат, гидроксипропилакрилат, гидроксиэтилметилакрилат и гидроксипропилметилакрилат; простые виниловые эфиры, такие как гидроксибутилвиниловый эфир; изопренол; сложные полиэфирполиолы; низшие алкоксилаты указанных выше стартовых реагентов, прежде всего сахарозы, сорбита и сложных полиэфирполиолов,
d) растительные масла с гидроксильными группами, такие как касторовое масло, или растительные масла с введенным путем химического модифицирования гидроксильными группами, такие как соевое масло.
Стартовые реагенты можно добавлять в начале реакции или при необходимости во время осуществления процесса, причем возможно как полное, так и частичное введение стартовых реагентов.
В качестве алкиленоксида предпочтительно используют пропиленоксид, этиленоксид, бутиленоксид, изобутиленоксид, оксид стирола или смеси по меньшей мере двух указанных алкиленоксидов. В качестве алкиленоксида предпочтительно используют пропиленоксид, этиленоксид или смеси пропиленоксида с этиленоксидом. В качестве алкиленоксида особенно предпочтительно используют пропиленоксид.
Процесс можно осуществлять в виде статистической или блочной сополимеризации, предусматривающей использование разных алкиленоксидов.
В качестве катализаторов используют обычные соединения с основным характером. Речь при этом обычно идет о третичных аминах и/или гидроксидах щелочных или щелочно-земельных металлов. Примерами аминных катализаторов являются триметиламин, трибутиламин, триэтиламин, диметилэтаноламин, диметилциклогексиламин, имидазол и замещенные производные имидазола, предпочтительно диметилэтаноламин. Примерами гидроксидов являются гидроксид калия, гидроксид натрия, гидроксид стронция, гидроксид цезия и гидроксид кальция. В одном варианте осуществления изобретения в качестве катализатора предпочтительно используют гидроксид калия.
Можно использовать также катализатор, выбранный из группы, включающей мультиметаллоцианидные катализаторы, при этом предпочтительными являются катализаторы, выбранные из группы, включающей двойные металлоцианиды.
Указанные катализаторы можно использовать по отдельности или в виде смеси друг с другом. Возможным является использование одинаковых или разных катализаторов в непрерывном реакторе с обратным перемешиванием и в другом реакторе.
Можно вводить все количество катализатора в начале реакции или вводить его порциями по мере протекания реакции.
В одном варианте осуществления предлагаемого в изобретении способа процесс можно осуществлять в периодическом, полунепрерывном или непрерывном режиме.
B) Аппаратура
Соответствующая информация приведена, например, в М. lonescu, Chemistry and Technology of Polyols for Polyurethanes, издательство Rapra Technology Limited, Шобери / Великобритания, 2005, с.336 и следующие, а также в М. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, Ullmann's Encyclopedia of Industrial Chemistry, Нью-Йорк, 5-е издание, том A21, c.665.
Предлагаемый в изобретении способ можно осуществлять, например, в реакторе с мешалкой, который может быть снабжен по меньшей мере одним внутренним и/или по меньшей мере одним внешним теплообменником.
C) Потребляемая мощность
Удельную потребляемую мощность в присутствии турбулизующих элементов, отнесенную к объему реактора (кВт/м3), в зависимости от типа и размеров мешалки, размеров реактора, вязкости реакционной смеси и частоты вращения мешалки вычисляют по формуле 1 (М. ZIokarnik, Ruhrtechnik, Theorie und Praxis, издательство Springer, Берлин):
P = N e * n 3 * d 5 * ρ                      ( ф о р м у л а  1 )
Figure 00000001
,
в которой Ne означает коэффициент Ньютона, n означает частоту вращения мешалки (в об/мин), d означает диаметр мешалки и ρ означает плотность содержимого реактора. Значения коэффициента Ньютона приведены на сс.75-78 указанного выше литературного источника.
В качестве альтернативы потребляемую мощность можно определять по скорости перекачки (в м3/ч), отнесенной к объему реактора (в м3), то есть в м3/ч/м3, по следующей формуле:
P = Δ p * m ˙                                 ( ф о р м у л а  2 )
Figure 00000002
,
в которой Δp означает падение давления (в Па) между выходом насоса и входом в реактор и m ˙
Figure 00000003
означает скорость потока (в м3/с).
Таким образом, скорость перекачки может быть выражена также в виде потребляемой мощности перекачки: так, например, если скорость перекачки, отнесенная к объему реактора, находится в пределах предлагаемого в изобретении диапазона, то есть от 3 до 150 м3/ч/м3, предпочтительно от 4 до 100 м3/ч/м3, еще более предпочтительно от 5 до 80 м3/ч/м3, то потребляемая при этом мощность, отнесенная к объему реактора, составляет от 0,001 до 1 кВт/м3, предпочтительно от 0,002 до 0,5 кВт/м3, еще более предпочтительно от 0,003 до 0,25 кВт/м3.
Необходимую для перемешивания мощность может потреблять либо мешалка или система перекачки, либо как мешалка, так и система перекачки, причем по мере протекания реакции в зависимости от условий ее осуществления потребление мощности может происходить согласно одному из двух этих вариантов или при необходимости попеременно согласно одному и другому варианту.
В частности, при небольшом уровне заполнения реактора, то есть в начале реакции алкоксилирования, может потребоваться перемешивание только согласно одному из указанных выше вариантов и регулирование частоты вращения мешалки или скорости перекачки на более позднем этапе.
Может потребоваться дополнительное использование турбулизующих элементов, что прежде всего относится к перемешиванию посредством мешалки. Турбулизующими элементами являются используемые для турбулизации потоков внутренние устройства реакторов с мешалкой. Подобные устройства, которые, как правило, монтируют на стенках реактора с установленной по его центру мешалкой, предотвращают совместное вращение потоков жидкости.
Таким образом, предлагаемый в изобретении способ каталитического получения простых полиэфиролов можно осуществлять с использованием по меньшей мере одного турбулизующего элемента.
Предлагаемый в изобретении способ каталитического получения простых полиэфиролов можно осуществлять также без использования турбулизующего элемента и насоса, причем потребляемая по меньшей мере одной мешалкой мощность, отнесенная к объему реактора, составляет от 0,36 до 7,2 кВт/м3, предпочтительно от 1,2 до 4,8 кВт/м3, особенно предпочтительно от 1,44 до 4,2 кВт/м3.
Предлагаемый в изобретении способ каталитического получения простых полиэфиролов можно осуществлять также с использованием по меньшей мере одного турбулизующего элемента и без использования насоса, причем потребляемая по меньшей мере одной мешалкой мощность, отнесенная к объему реактора, составляет от 0,3 до 6 кВт/м3, предпочтительно от 1 до 4 кВт/м3, особенно предпочтительно от 1,2 до 3,5 кВт/м3.
Предлагаемый в изобретении способ каталитического получения простых полиэфиролов можно осуществлять также без использования мешалки, причем потребляемая по меньшей мере одним насосом мощность, отнесенная к объему реактора, составляет от 0,001 до 1 кВт/м3, предпочтительно от 0,002 до 0,5 кВт/м3, особенно предпочтительно от 0,003 до 0,25 кВт/м3.
Предлагаемый в изобретении способ каталитического получения простых полиэфиролов можно осуществлять также без использования турбулизующих элементов, причем потребляемая по меньшей мере одной мешалкой и по меньшей мере одним насосом совокупная мощность, отнесенная к объему реактора, составляет от 0,361 до 8,2 кВт/м3, предпочтительно от 1,2002 до 5,3 кВт/м3, особенно предпочтительно от 1,443 до 4,45 кВт/м3.
Предлагаемый в изобретении способ каталитического получения простых полиэфиролов можно осуществлять также с использованием по меньшей мере одного турбулизующего элемента, причем потребляемая по меньшей мере одной мешалкой и по меньшей мере одним насосом совокупная мощность, отнесенная к объему реактора, составляет от 0,3001 до 7 кВт/м3, предпочтительно от 1,002 до 4,5 кВт/м3, особенно предпочтительно от 1,203 до 3,75 кВт/м3.
Превращение стартового вещества с алкиленоксидами, как правило, осуществляют при обычных для подобной реакции давлениях в интервале от 0,1 до 1,0 МПа и температурах в интервале от 80 и 140°C. После дозирования алкиленоксидов с целью их более полного превращения чаще всего реализуют дополнительную реакционную стадию. Полученный указанным образом сырой простой полиэфирол освобождают от непревращенного алкиленоксида и легколетучих соединений путем дистилляции, которую предпочтительно осуществляют под вакуумом, после чего обезвоживают и подвергают переработке путем нейтрализации кислоты и выделения образовавшихся при этом солей.
В случае использования аминов в качестве катализаторов они могут оставаться в полиоле. Это относится также к используемым в качестве катализаторов двойным металлоцианидам.
Объектом настоящего изобретения являются также простые полиэфиролы, которые могут быть получены предлагаемым в изобретении способом каталитического получения простых полиэфирполиолов.
Простые полиэфиролы, которые могут быть получены предлагаемым в изобретении способом каталитического получения простых полиэфирполиолов, предпочтительно используют для синтеза полиуретанов, который предпочтительно осуществляют путем превращения получаемых полиэфиролов с полиизоцианатами.
Примеры
Ниже изобретение более подробно рассмотрено на примере некоторых вариантов его осуществления. Приведенные ниже примеры служат для пояснения настоящего изобретения и не ограничивают его объема.
1) Синтез полиола для получения мягких пенопластов [L 2090. BSW]
В эмалированный автоклав из специальной стали объемом 300 мл, снабженный перемешивающим устройством в виде двух закрепленных одна над другой на штоке четырехлопастных мешалок, а также турбулизующим элементом, загружают 2,4 г глицерина, добавляют 1,33 г 45-процентного водного раствора гидроксида калия, после чего автоклав закрывают и при перемешивании нагревают до 110°C. В течение примерно пяти последующих часов по нагнетательной линии при температуре от 110 до 115°C дозируют 169,4 г чистого пропиленоксида. Превращение продолжают еще в течение двух часов. После этого устраняют избыточное давление, в течение 5 минут через автоклав пропускают азот и устанавливают давление азота 1 бар. Затем при температуре от 110 до 115°C в течение получаса подают 28,2 г чистого этиленоксида, превращение которого продолжают в течение последующего получаса. Используемый гидроксид калия нейтрализуют соляной кислотой. В автоклаве создают вакуум и одновременно пропускают слабый ток азота. После этого реакционную смесь пропускают через пластинчатый фильтр. Определяют гидроксильное число, вязкость и йодное число полученного продукта.
а) Опыт при низком потреблении мощности мешалкой
Описанное выше алкоксилирование выполняют при частоте вращения мешалки 547 об/мин, что соответствует потребляемой мешалкой удельной мощности 0,3 кВт/м3 при вязкости реакционной смеси 50 мПа·с.
b) Опыт при высоком потреблении мощности мешалкой
Повторяют опыт а), однако частота вращения мешалки составляет 1400 об/мин, что соответствует потребляемой мешалкой удельной мощности 3,5 кВт/м3 при вязкости реакционной смеси 50 мПа·с.
Результаты анализа
Опыт 1а) Опыт 1b)
Гидроксильное число [мг КОН/г] 29,7 28
Вязкость [мПа·с, 25°C] 1020 1130
Йодное число [г I2/100 г] 2,5 1,8
Используют следующие методы анализа:
- гидроксильное число определяют согласно DIN 53240-2 (DIN означает немецкий промышленный стандарт),
- йодное число определяют согласно DIN 53241-1 или DGF-V11/ В (DGF означает Немецкое общество по исследованию жиров),
- вязкость определяют согласно DIN 53019-1.
2) Синтез полиола для получения жестких пенопластов [аналогично примеру 1 из немецкого патента РЕ 10322784, с.8]
В автоклав из специальной стали объемом 300 мл, снабженный перемешивающим устройством в виде двух закрепленных одна над другой на штоке четырехлопастных мешалок, а также турбулизующим элементом, загружают 35,3 г глицерина, нагревают до 90°C, добавляют 1,33 г N,N-диметилциклогексиламина, 0,240 г 48-процентного раствора гидроксида калия и 53,8 г порошкообразной сахарозы и реагенты перемешивают посредством мешалки. Затем вводят 200 г пропиленоксида таким образом, чтобы давление составляло не более 7 бар. При этом температура может повыситься до 115°C. Превращение осуществляют при 115°C в течение пяти часов. Затем реакционную смесь в течение 30 минут выдерживают под вакуумом, нейтрализуют и фильтруют.
a) Опыт при низком потреблении мощности мешалкой
Описанное выше алкоксилирование выполняют при частоте вращения мешалки 116 об/мин, что соответствует потребляемой мешалкой удельной мощности 0,3 кВт/м3 при вязкости реакционной смеси 2000 мПа·с.
b) Опыт при высоком потреблении мощности мешалкой
Опыт b) выполняют при частоте вращения мешалки 397 об/мин, что соответствует потребляемой мешалкой удельной мощности 3,5 кВт/м3 при вязкости реакционной смеси 2000 мПа·с.
Результаты анализа
Опыт 2а) Опыт 2b)
Гидроксильное число [мг КОН/г] 480 492
Вязкость [мПа·с, 25°C] 9250 9830
Остаточное содержание сахарозы [г/100 г] 0,12 <0,05
3) Синтез полиола для получения жестких пенопластов при варьировании скорости перекачки [аналогично примеру 1 из немецкого патента РЕ 10322784, с.8]
Повторяют описанный в примере 2) синтез полиола, предназначенного для получения жестких пенопластов, однако реагенты смешивают не путем перемешивания, а путем перекачки.
a) Опыт с низкой скоростью перекачки
Описанное выше алкоксилирование выполнят при скорости перекачки 5 м3ч/м3, что соответствует потребляемой насосом мощности 0,003 кВт/м3.
b) Опыт с высокой скоростью перекачки
Повторяют опыта а), однако скорость перекачки составляет 80 м3/ч/м3, что соответствует потребляемой насосом мощности 0,25 кВт/м3.
Результаты анализа
Опыт 3а) Опыт 3b)
Гидроксильное число [мг КОН/г] 475 492
Вязкость [мПа·с, 25°C] 9180 9830
Остаточное содержание сахарозы [г/100 г] 0,14 0,05
Из приведенных выше экспериментальных данных, в частности, может быть сделан вывод, что определяемое йодным числом содержание ненасыщенных компонентов, соответственно остаточное содержание сахара, при определенных, прежде всего более высоких потребляемых мощностях перемешивания меньше по сравнению с уровнем техники. Кроме того, применение предлагаемого в изобретении способа позволяет обеспечить более узкое молекулярно-массовое распределение, о чем свидетельствуют более низкие значения вязкости.
Таким образом, приведенные выше примеры подтверждают преимущество предлагаемого в изобретении способа синтеза полиолов по сравнению с обычными способами.

Claims (1)

  1. Способ каталитического получения простых полиэфиролов, причем в качестве стартовых реагентов используют глицерин и/или сахарозу, в качестве алкиленоксида пропиленоксид, этиленоксид, бутиленоксид, изобутиленоксид, оксид стирола или их смеси, в качестве катализаторов третичные амины и/или гидроксиды щелочных или щелочно-земельных металлов и/или катализатор, выбранный из группы, включающей мультиметаллоцианидные катализаторы, превращение стартового вещества с алкиленоксидами осуществляют при давлениях в интервале от 0,1 до 1,0 МПа и температурах в интервале от 80 до 140°C, причем потребляемая по меньшей мере одной мешалкой или по меньшей мере одной мешалкой и насосом мощность, отнесенная к объему реактора, составляет от 1 до 4 кВт/м3 или от 1,002 до 4,5 кВт/м3, причем используют по меньшей мере один турбулизующий элемент, и
    причем (i) не используют насос и потребляемая при этом по меньшей мере одной мешалкой мощность, отнесенная к объему реактора, составляет от 1 до 4 кВт/м3, предпочтительно от 1,2 до 3,5 кВт/м3, или (ii) совокупная мощность, потребляемая по меньшей мере одной мешалкой и по меньшей мере одним насосом, отнесенная к объему реактора, составляет от 1,002 до 4,5 кВт/м3, предпочтительно от 1,203 до 3,75 кВт/м3,
    причем в случае использования мешалки удельную потребляемую мощность Р, отнесенную к объему реактора, рассчитывают по формуле Р=Ne*n3*d5*ρ, в которой Ne означает коэффициент Ньютона, n означает частоту вращения мешалки в об/мин, d означает диаметр мешалки и ρ означает плотность содержимого реактора, и причем в случае использования насоса удельную потребляемую мощность Р, отнесенную к объему реактора, рассчитывают по формуле Р=Δр*
    Figure 00000004
    , в которой Δр означает падение давления (в Па) между выходом насоса и входом в реактор и
    Figure 00000004
    означает скорость потока (в м3/с).
RU2012142695/04A 2010-03-09 2011-03-04 Способ получения простых полиэфирполиолов RU2566295C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10155882 2010-03-09
EP10155882.3 2010-03-09
PCT/EP2011/053272 WO2011110484A1 (de) 2010-03-09 2011-03-04 Verfahren zur herstellung von polyether-polyolen

Publications (2)

Publication Number Publication Date
RU2012142695A RU2012142695A (ru) 2014-04-20
RU2566295C2 true RU2566295C2 (ru) 2015-10-20

Family

ID=43795183

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012142695/04A RU2566295C2 (ru) 2010-03-09 2011-03-04 Способ получения простых полиэфирполиолов

Country Status (10)

Country Link
EP (1) EP2545099B1 (ru)
JP (1) JP2013521389A (ru)
KR (1) KR101793760B1 (ru)
CN (1) CN102791767A (ru)
BR (1) BR112012022364A2 (ru)
ES (1) ES2472718T3 (ru)
MX (1) MX2012010323A (ru)
RU (1) RU2566295C2 (ru)
SG (1) SG183538A1 (ru)
WO (1) WO2011110484A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795278B (zh) * 2014-08-11 2021-02-19 科思创德国股份有限公司 制备聚醚碳酸酯多元醇的方法
US10040903B2 (en) 2016-09-13 2018-08-07 Covestro Llc Polymer polyol quality
KR20220107101A (ko) 2021-01-24 2022-08-02 최형준 플라스틱의 강성과 내충격성을 강화하기 위한 복합재료 제조 방법
KR20210019470A (ko) 2021-02-02 2021-02-22 최형준 고강성, 고내충격성 섬유감화플라스틱의 대량생산 기술

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396780A (en) * 1979-01-24 1983-08-02 Vsesojuzny Nauchno-Issledovatelsky Institute Sinteticheskikh Smol Continuous method of producing polyethers
RU2081127C1 (ru) * 1994-11-30 1997-06-10 Товарищество с ограниченной ответственностью Научно-производственное предприятие "Макромер" Способ получения гидроксилсодержащих простых полиэфиров для жестких пенополиуретанов
EP1258502A2 (en) * 2001-05-16 2002-11-20 Nippon Shokubai Co., Ltd. Method for production of alkoxylated compound
EP1327650A1 (en) * 2002-01-15 2003-07-16 Dai-Ichi Kogyo Seiyaku Co., Ltd. Production process for ethylene oxide copolymer
DE10322784A1 (de) * 2003-05-19 2004-12-09 Basf Ag Verfahren zur Herstellung von Polyetherolen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247199A (ja) * 1992-03-04 1993-09-24 Asahi Glass Co Ltd ポリエーテル類の製造方法
JP2000044671A (ja) * 1998-05-26 2000-02-15 Asahi Chem Ind Co Ltd ポリエ―テルグリコ―ルの分子量分布の制御方法
JP4251820B2 (ja) * 2001-05-16 2009-04-08 株式会社日本触媒 アルコキシレート化合物の製造方法
JP4289890B2 (ja) * 2002-01-15 2009-07-01 第一工業製薬株式会社 エチレンオキシド系共重合体の製造方法
JP2007297572A (ja) * 2005-05-20 2007-11-15 Nippon Shokubai Co Ltd アルキレンオキシド系重合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396780A (en) * 1979-01-24 1983-08-02 Vsesojuzny Nauchno-Issledovatelsky Institute Sinteticheskikh Smol Continuous method of producing polyethers
RU2081127C1 (ru) * 1994-11-30 1997-06-10 Товарищество с ограниченной ответственностью Научно-производственное предприятие "Макромер" Способ получения гидроксилсодержащих простых полиэфиров для жестких пенополиуретанов
EP1258502A2 (en) * 2001-05-16 2002-11-20 Nippon Shokubai Co., Ltd. Method for production of alkoxylated compound
EP1327650A1 (en) * 2002-01-15 2003-07-16 Dai-Ichi Kogyo Seiyaku Co., Ltd. Production process for ethylene oxide copolymer
DE10322784A1 (de) * 2003-05-19 2004-12-09 Basf Ag Verfahren zur Herstellung von Polyetherolen

Also Published As

Publication number Publication date
CN102791767A (zh) 2012-11-21
EP2545099A1 (de) 2013-01-16
ES2472718T3 (es) 2014-07-02
KR101793760B1 (ko) 2017-11-03
BR112012022364A2 (pt) 2019-09-24
SG183538A1 (en) 2012-10-30
RU2012142695A (ru) 2014-04-20
JP2013521389A (ja) 2013-06-10
KR20130006653A (ko) 2013-01-17
WO2011110484A1 (de) 2011-09-15
EP2545099B1 (de) 2014-05-07
MX2012010323A (es) 2012-09-28

Similar Documents

Publication Publication Date Title
JP5042224B2 (ja) ポリエーテルアルコールの製造方法
JP4277686B2 (ja) ポリエーテル類の連続製造方法
JP2000504753A (ja) 開始剤の連続添加による二重金属シアン化物触媒を用いたポリオールの製法
RU2448125C2 (ru) Способ получения простых полиэфирспиртов
RU2566295C2 (ru) Способ получения простых полиэфирполиолов
EP2970583B1 (en) Improved continuous process for the production of low molecular weight polyethers with a dmc catalyst
EP2543689B1 (en) Continuous method for the synthesis of polyols
JP5230617B2 (ja) ポリエーテルアルコールの連続製造法
CN104004176B (zh) 制备聚醚多元醇的方法
US8461285B2 (en) Process for preparing polyether polyols
KR101521295B1 (ko) 생산성이 높은 알콕실화 방법
MX2007015048A (es) Proceso continuo para la produccion de etoxilados de alquilfenol.
EP2223953A1 (en) Continuous processes for the production of ethoxylates
MX2008002095A (en) Method for production of polyether alcohols

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170305

MF41 Cancelling an invention patent (total invalidation of the patent)

Effective date: 20190122