RU2563652C2 - Пропиленовые полимерные композиции - Google Patents

Пропиленовые полимерные композиции Download PDF

Info

Publication number
RU2563652C2
RU2563652C2 RU2013107796/04A RU2013107796A RU2563652C2 RU 2563652 C2 RU2563652 C2 RU 2563652C2 RU 2013107796/04 A RU2013107796/04 A RU 2013107796/04A RU 2013107796 A RU2013107796 A RU 2013107796A RU 2563652 C2 RU2563652 C2 RU 2563652C2
Authority
RU
Russia
Prior art keywords
propylene
polymerization
range
propylene polymer
mfr
Prior art date
Application number
RU2013107796/04A
Other languages
English (en)
Other versions
RU2013107796A (ru
Inventor
Марко ЧЬЯРАФОНИ
Паола МАССАРИ
Маникандан РАТХИНАКУМАР
Джизелла БЬОНДИНИ
Тициана КАПУТО
Original Assignee
Базелль Полиолефин Италия Срл
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44534849&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2563652(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Базелль Полиолефин Италия Срл filed Critical Базелль Полиолефин Италия Срл
Publication of RU2013107796A publication Critical patent/RU2013107796A/ru
Application granted granted Critical
Publication of RU2563652C2 publication Critical patent/RU2563652C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst

Abstract

Рассматривается пропиленовая полимерная композиция, содержащая (мас.%): А) 68-80% гомополимера пропилена, имеющего значение показателя полидисперсности (PI) от 4,7 до 10 и скорость течения расплава MFR L (скорость течения расплава согласно ISO 1133, условие L, т.е. 230°C и нагрузка 2,16 кг) в интервале от 10 до 30 г/10 мин; В) 20-32% сополимера пропилена, содержащего 40,1-42,5% последних, включая звенья, производные этилена; причем композиция имеет характеристическую вязкость фракции, растворимой в ксилоле при 25°C, в интервале 3-6 дл/г и MFR L от 4 до 12 г/10 мин. Указанная пропиленовая полимерная композиция является особенно подходящей для изделий, получаемых литьем под давлением, имеющих высокую жесткость и высокие ударные свойства при комнатной и при низких температурах. 2 табл., 6 з.п. ф-лы.

Description

Настоящее изобретение относится к пропиленовой полимерной композиции, имеющей оптимальный баланс свойств, в частности улучшенное относительное удлинение при разрыве и улучшенную ударную вязкость при комнатной температуре и при низких температурах.
Как известно, изотактический полипропилен наделен исключительной комбинацией превосходных свойств, которые делают его подходящим для очень большого числа применений. Для того чтобы улучшить указанные свойства, в способ стереорегулярной гомополимеризации пропилена вводят одну или более стадий сополимеризации, или один или более мономеров вводится в матрицу гомополимера.
WO 05/014713 относится к гетерофазной полиолефиновой композиции, содержащей (мас.%):
1) 65-95% кристаллического пропиленового полимера, выбранного из пропиленового гомополимера и статистического сополимера пропилена с 0,1-10% α-олефина, выбранного из этилена, С410 альфа-олефина и их смеси, причем указанный полимер является нерастворимым в ксилоле при температуре окружающей среды в количестве свыше 85% и имеет показатель полидисперсности в интервале от 4 до 13, предпочтительно 4,5-12, более предпочтительно 5-9, и значение характеристической вязкости выше 2,2 дл/г, предпочтительно 2,2-4,5 дл/г; и
2) 5-35% эластомерного олефинового сополимера этилена с С310 альфа-олефином и, необязательно, диеном, имеющего содержание этилена в интервале от 15 до 85% и значение характеристической вязкости по меньшей мере 1,4 дл/г, предпочтительно от 2,5 до 5 дл/г.
WO 2006/037705 относится к олефиновой полимерной композиции, содержащей (по массе, если не указано иное):
А) 60-85%, предпочтительно 65-80%, более предпочтительно 65-75%, кристаллического гомополимера пропилена или кристаллического сополимера пропилена, содержащего 3% или менее этилена или С410 α-олефина (олефинов) или их комбинаций, причем указанный гомополимер или сополимер имеет значение показателя полидисперсности (PI) 4,5-6, предпочтительно 4,5-5,5, и содержание изотактических пентад (mmmm), измеренное методом 13С-ЯМР на фракции, не растворимой в ксилоле при 25°C, выше 96%, предпочтительно выше 98%;
В) 15-40%, предпочтительно 20-35%, более предпочтительно 25-35%, частично аморфного сополимера этилена, содержащего от 34,5 до 70,0%, предпочтительно от 35,0 до 50,0%, более предпочтительно от 35,0 до 40,0%, даже более предпочтительно пропилена или С410 α-олефина (олефинов) или их комбинаций и, необязательно, незначительные пропорции диена.
Утверждается, что вышеуказанная композиция имеет хорошие ударные свойства и хорошие характеристики относительного удлинения при разрыве.
Заявителем найден специальный класс пропиленовой полимерной композиции, способный показывать намного лучшие механические свойства в отношении относительного удлинения при разрыве и ударной вязкости при комнатной температуре, как и при низкой температуре.
Предметом настоящего изобретения является пропиленовая композиция, содержащая (мас.%):
А) 68-80%, предпочтительно 70-80%, более предпочтительно 71-78%, гомополимера пропилена, имеющего значение показателя полидисперсности (PI) от 4,7 до 10, предпочтительно от 5,1 до 10, даже более предпочтительно от 5,6 до 9; и скорость течения расплава MFR L (скорость течения расплава согласно ISO 1133, условие L, т.е. 230°C и нагрузка 2,16 кг) от 10 до 30 г/10 мин, в частности от 12 до 25 р/10 мин, и
В) 20-32%, предпочтительно 20-30%, более предпочтительно 22-29%, сополимера пропилена с 40,1-42,5% последних, включая звенья, производные этилена;
причем композиция имеет характеристическую вязкость фракции, растворимой в ксилоле при 25°C, в интервале 3,0-6,0 дл/г, предпочтительно в интервале 3,5-5 дл/г, более предпочтительно в интервале 3,6-4 дл/г.
Из приведенных выше определений видно, что термин «сополимер» включает полимеры, содержащие только два вида сомономеров.
Предпочтительно, гомополимер пропилена А) имеет молекулярно-массовое распределение многомодального типа, более предпочтительно бимодального типа.
Под термином «молекулярно-массовое распределение многомодального типа» понимается, что кривая молекулярно-массового распределения, полученная методом ГПХ, показывает более одного максимума или единственный максимум и одну или более точек перегиба.
Другими предпочтительными характеристиками композиции являются:
- MFR L (скорость течения расплава по ISO 1133, условие L, т.е. 230°C и нагрузка 1,16 кг) от 4 до 12 г/10 мин: в частности от 4 до 10 г/10 мин, более предпочтительно от 4 до 9 г/10 мин.
Кроме того, композиции настоящего изобретения наделены некоторыми или всеми из указанных свойств:
- модуль упругости при изгибе составляет от 900 до 2000 МПа, предпочтительно от 1000 до 1500 МПа, даже более предпочтительно от 1050 до 1300 МПа;
- ударная вязкость по Изоду, измеренная при 23°C, составляет выше 40 кДж/м2, предпочтительно составляет 45-60 кДж/м2, более предпочтительно 50-60 кДж/м2;
- ударная вязкость по Изоду, измеренная при 0°C, составляет выше 10 кДж/м2, предпочтительно составляет 15-50 кДж/м2, более предпочтительно 25-40 кДж/м2;
- ударная вязкость по Изоду, измеренная при -20°C, составляет выше 5 кДж/м2, предпочтительно составляет 8-30 кДж/м2, более предпочтительно 10-30 кДж/м2;
- значение относительного удлинения при разрыве находится в интервале от 150 до 700%, предпочтительно 200-600%, более предпочтительно 400-600%, согласно методу ISO 527.
С композициями настоящего изобретения можно достигнуть оптимального баланса свойств, в частности значения ударной вязкости по Изоду, измеренные при комнатной и низкой температурах, являются особенно высокими.
Пропиленовые полимерные композиции настоящего изобретения могут быть получены последовательной полимеризацией, по меньшей мере в две стадии причем каждая стадия последовательной полимеризации проводится в присутствии полимерного материала, образованного непосредственно предшествующей реакцией полимеризации, где сополимер (А) обычно получают на по меньшей мере первой стадии полимеризации, а сополимер (В) обычно получают по меньшей мере на второй стадии полимеризации.
Предпочтительно, каждая стадия полимеризации выполняется в присутствии высокостереоспецифических гетерогенных катализаторов Циглера-Натта. Катализаторы Циглера-Натта, подходящие для получения пропиленовых полимерных композиций настоящего изобретения, содержат твердый каталитический компонент, содержащий по меньшей мере одно титановое соединение, имеющее по меньшей мере одну связь титан-галоген, и по меньшей мере электронодонорное соединение (внутренний донор), оба нанесенные на хлорид магния. Системы катализаторов Циглера-Натта дополнительно содержат алюмоорганическое соединение в качестве основного катализатора и, необязательно, внешнее электронодонорное соединение.
Подходящие каталитические системы описаны в Европейских патентах ЕР 45977, ЕР 361494, ЕР 728769, ЕР 1272533 и в Международной заявке на патент WO 0163261.
Предпочтительно, твердый каталитический компонент содержит Mg, Ti, галоген и электронодонор выбран из сукцинатов формулы (I)
Figure 00000001
в которой радикалами R1 и R2, одинаковыми или отличающимися друг от друга, является С120 линейная или разветвленная алкил-, алкенил-, циклоалкил-, арил-, арилалкил- или алкиларил-группа, необязательно, содержащая гетероатомы, принадлежащие к группам 15-17 периодической системы элементов; радикалами R3-R6, одинаковыми или отличающимися друг от друга, является водород или С12 линейная или разветвленная алкил-, алкенил-, циклоалкил-, арил-, арилалкил- или алкиларил-группа, необязательно, содержащая гетероатомы, и радикалы R3-R6, которые соединены с одним и тем же углеродным атомом, могут быть соединены вместе с образованием цикла.
R1 и R2, предпочтительно, представляют собой С18 алкил-, циклоалкил-, арил-, арилалкил- или алкиларил-группу.
Особенно предпочтительными являются соединения, в которых R1 и R2 выбраны из первичных алкилов и, в частности, разветвленных первичных алкилов. Примерами подходящих R1 и R2 групп являются метил, этил, н-пропил, н-бутил, изобутил, неопентил, 2-этилгексил. Особенно предпочтительными являются этил, изобутил и неопентил.
Одной из предпочтительных групп соединений, описываемых формулой (I), является группа соединений, в которой R3-R5 представляют собой водород, а R6 представляет собой разветвленный алкил, циклоалкил-, арил-, арилалкил- и алкиларил-радикал, имеющий от 3 до 10 углеродных атомов. Другой предпочтительной группой соединений формулы (I) является группа соединений, в которой по меньшей мере два радикала из R3-R5 не являются водородом и выбраны из С12 линейной или разветвленной алкил-, алкенил-, циклоалкил-, арил-, арилалкил- или алкиларил-группы, необязательно, содержащая гетероатомы.
Особенно предпочтительными являются соединения, в которых два радикала, не являющихся водородом, связаны с одним и тем же углеродным атомом. Кроме того, также соединения, в которых два радикала, не являющихся водородом, связаны с различными углеродными атомами, т.е. R3 и R5 или R4 и R6, являются особенно предпочтительными.
Согласно предпочтительному способу твердый каталитический компонент может быть получен взаимодействием титанового соединения формулы Ti(OR)n-yXy, где n представляет собой валентность титана, а y - число от 1 до n, предпочтительно TiCl4, с хлоридом магния, получаемым из аддукта формулы MgCl2·pROH, где р представляет собой число от 0,1 до 6, предпочтительно, от 2 до 3,5, и R представляет собой радикал, имеющий 1-18 углеродных атомов. Аддукт может быть подходяще получен в сферической форме смешением спирта и хлорида магния в присутствии инертного углеводорода, не смешивающегося с аддуктом, при работе в условиях перемешивания при температуре плавления аддукта (100-130°C). Затем эмульсию быстро охлаждают, что вызывает затвердевание аддукта в форме сферических частиц. Примеры сферических аддуктов, полученных указанным способом, описаны в US 4399054 и US 446948. Полученный таким образом аддукт может прямо взаимодействовать с Ti соединением, или он может быть подвергнут термически регулируемому деалкоголированию (80-130°C) с тем, чтобы получать аддукт, в котором число молей спирта является обычно меньше 3, предпочтительно в интервале 0,1-2,5. Взаимодействие с Ti соединением может выполняться при суспендировании аддукта (деалкоголированного или как такового) в холодном TiCl4 (обычно 0°C); смесь нагревают до температуры 80-130°C и выдерживают при данной температуре в течение 0,5-2 ч. Обработка TiCl4 может проводиться один или более раз. Внутренний донор может быть введен в процессе обработки TiCl4, и обработка электронодонорным соединением может быть повторена один или более раз. Обычно сукцинат формулы (I) используется в мольном соотношении с MgCl2 в интервале от 0,01 до 1, предпочтительно от 0,05 до 0,5. Получение компонентов катализатора в сферической форме описано, например, в заявке на Европейский патент ЕР-А-395083 и в Международной заявке на патент WO 98144001. Твердые каталитические компоненты, полученные согласно вышеуказанному способу, имеют площадь поверхности (по методу БЭТ) обычно в интервале от 20 до 500 м2/г и, предпочтительно в интервале от 50 до 400 м2/г, и общую пористость (по методу БЭТ) выше 0,2 см3/г, предпочтительно в интервале 0,2-0,6 см3/г. Пористость (ртутный метод) благодаря порам с радиусом до 10000 Å обычно находится в интервале от 0,3 до 1,5 см3/г, предпочтительно от 0,45 до 1 см3/г.
Алюмоорганическим соединением является, предпочтительно алкил-Al, выбранный из соединений триалкилалюминий, таких как, например, триэтилалюминий, триизобутилалюминий, три-н-бутил-алюминий, три-н-гексилалюминий, три-н-октилалюминий. Также можно использовать смеси триалкилалюминия с алкилалюминийгалогенидами, алкилалюминийгидридами или алкилалюминийсесквихлоридами, такие как AlEt2Cl и Al2Et3Cl3.
Предпочтительные внешние электронодонорные соединения включают в себя соединения кремния, простые эфиры, сложные эфиры, такие как этил-4-этоксибензоат, амины, гетероциклические соединения и, в частности 2,2,6,6-тетраметилпиперидин, кетоны и простые 1,3-диэфиры. Другим классом предпочтительных внешних электронодонорных соединений является класс соединений кремния формулы R5aR6bSi(OR7)c, где a и b являются целыми числами от 0 до 2, с представляет собой целое число от 1 до 3, и сумма (a+b+c) равняется 4; R5, R6 и R7 представляют собой алкил-, циклоалкил- или арил-радикалы, имеющие 1-18 углеродных атомов, необязательно содержащие гетероатомы. Особенно предпочтительными являются метилциклогексилдиметоксисилан, дифенилдиметоксисилан, метил-трет-бутилдиметоксисилан, дициклопентилдиметоксисилан, 2-этилпиперидинил-2-трет-бутилдиметокси-силан, 1,1,1-трифторопропил-2-этилпиперидинилдиметоксисилан и 1,1,1-трифторопропилметилдиметоксисилан. Внешнее электронодонорное соединение используется в таком количестве, чтобы получить мольное соотношение между алюмоорганическим соединением и указанным электронодонорным соединением от 0,1 до 500.
Способ полимеризации может осуществляться в газовой фазе и/или в жидкой фазе в реакторах непрерывного или периодического действия, таких как реактор с псевдоожиженным слоем или суспензионный реактор. Например, можно осуществлять полимеризацию пропиленового полимера (А) в жидкой фазе с использованием жидкого пропилена в качестве разбавителя, тогда как стадия сополимеризации с получением фракции сополимера пропилена (В) осуществляется в газовой фазе без промежуточных стадий, за исключением частичного дегазирования мономеров. Альтернативно, все последовательные стадии полимеризации могут проводиться в газовой фазе. Время реакции, температура и давление стадий полимеризации не являются критическими, однако, температура для полимеризации фракций (А) и (В), которая может быть одинаковой или различной, составляет обычно от 50 до 120°C. Если полимеризация проводится в газовой фазе, давление полимеризации, предпочтительно, находится в интервале от 0,5 до 12 МПа. Каталитическая система может предварительно взаимодействовать (форполимеризоваться) с небольшими количествами олефинов. Молекулярная масса пропиленовых полимерных композиций регулируется с использованием известных регуляторов, таких как водород.
Согласно предпочтительному варианту пропиленовый полимер (А) получают способом газофазной полимеризации, осуществляемым, по меньшей мере, в двух соединенных полимеризационных зонах. Указанный способ полимеризации описан в Европейском патенте ЕР 782587.
Способ осуществляется в первой и второй соединенных полимеризационных зонах, в которые пропилен и этилен и альфа-олефины подаются в присутствии каталитической системы, и из которых полученный полимер выгружается. Растущие полимерные частицы проходят через первую из указанных полимеризационных зон (вертикальная труба, идущая вверх) в условиях быстрого псевдоожижения, выходят из указанной первой полимеризационной зоны и поступают во вторую из указанных полимеризационных зон (вертикальная труба, идущая вниз), через которую они проходят в уплотненной форме под действием силы тяжести, выходят из указанной второй полимеризационной зоны и повторно вводятся в указанную первую полимеризационную зону, таким образом, устанавливая циркуляцию полимера между двумя полимеризационными зонами. Обычно условия быстрого псевдоожижения в первой полимеризационной зоне устанавливаются при подаче газообразной смеси мономеров ниже точки повторного введения растущего полимера в указанную первую полимеризационную зону. Скорость транспортирования газа в первую полимеризационную зону является выше, чем скорость транспортирования в рабочих условиях, и обычно составляет от 2 до 15 м/с. Во второй полимеризационной зоне, где полимер проходит в уплотненной форме под действием силы тяжести, достигаются высокие значения плотности твердого материала, которые близки к объемной плотности полимера, таким образом, может быть получен положительный прирост давления в направлении потока, так что становится возможным повторно вводить полимер в первую полимеризационную зону без помощи механического средства. Таким образом, устанавливается «контур» циркуляции, который определяется равновесием давлений между двумя полимеризационными зонами и потерей напора, вводимого в систему. Необязательно, один или более инертных газов, таких как азот или алифатические углеводороды, поддерживаются в полимеризационных зонах в таких количествах, что сумма парциальных давлений инертных газов составляет, предпочтительно от 5 до 80% общего давления газов. Рабочие параметры, такие как, например, температура, являются такими, какие обычно используются в способах газофазной полимеризации олефинов, например, от 50 до 120°C. Способ может осуществляться при рабочем давлении в интервале от 0,5 до 10 МПа, предпочтительно от 1,5 до 6 МПа. Предпочтительно, различные каталитические компоненты подаются в первую полимеризационную зону в любой точке указанной первой полимеризационной зоны. Однако они также могут подаваться в любой точке второй полимеризационной зоны. Регуляторы молекулярной массы, известные в технике, в частности водород, могут использоваться для регулирования молекулярной массы растущего полимера.
На второй стадии особенно предпочтительного способа полимеризации сополимер пропилена и этилена (В) получают в традиционном газофазном реакторе с псевдоожиженным слоем в присутствии полимерного материала и каталитической системы, поступающих с предшествующей стадии полимеризации. Полимеризационная смесь выгружается из вертикальной трубы, идущей вниз, в сепаратор газ/твердый материал и затем подается в газофазный реактор с псевдоожиженным слоем, работающий в традиционных условиях температуры и давления.
Пропиленовые полимерные композиции настоящего изобретения могут быть также получены раздельным получением указанных сополимеров (А) и (В) при работе с теми же катализаторами и, по существу, в таких же условиях полимеризации, как указано ранее, и последующим механическим смешением указанных сополимеров в расплавленном состоянии с использованием традиционного смесительного оборудования, например двухшнековых экструдеров.
Пропиленовые полимерные композиции настоящего изобретения могут дополнительно содержать добавки, обычно используемые в области полиолефинов, такие как антиоксиданты, светостабилизаторы, зародышеобразователи, антикислоты, красители и наполнители.
Главным применением пропиленовых полимерных композиций настоящего изобретения является получение формованных изделий, в частности изделий, получаемых литьем под давлением. Изделия, получаемые литьем под давлением, содержащие пропиленовые полимерные композиции настоящего изобретения, имеют высокие значения модуля упругости при изгибе в сочетании с хорошими ударными свойствами и особенно высоким относительным удлинением при разрыве.
Следующие примеры приводятся для иллюстрации, но не для ограничения настоящего изобретения.
ПРИМЕРЫ
Данные по пропиленовым полимерным материалам получают в соответствии со следующими методами.
Фракция, растворимая в ксилоле
2,5 г полимера и 250 мл орто-ксилола вводят в стеклянную колбу, оборудованную холодильником и магнитной мешалкой. Температуру повышают в течение 30 мин до точки кипения растворителя. Полученный таким образом раствор затем подвергают кипячению с обратным холодильником и перемешиванию в течение еще 30 мин. Закрытую колбу затем выдерживают в течение 30 мин на водяной бане со льдом, а также на водяной бане, термостатированной при 250°C в течение 30 мин. Полученное таким образом твердое вещество отфильтровывают на быстрофильтрующей бумаге, и отфильтрованную жидкость делят на две аликвоты по 100 мл. Одну 100 мл аликвоту отфильтрованной жидкости выливают в предварительно взвешенный алюминиевый контейнер, который нагревают на нагревательной плите в токе азота для удаления растворителя выпариванием. Контейнер затем выдерживают в термошкафу при 80°C под вакуумом до получения постоянной массы. Остаток взвешивают с определением процентного содержания полимера, растворимого в ксилоле.
Содержание этилена (С2)
Определяется методом ИК-спектроскопии.
Содержание сомономера компонента В определяют на осажденной «аморфной» фракции полимера. Осажденную «аморфную» фракцию получают следующим образом: к одной 100 мл аликвоте отфильтрованной жидкости, полученной, как описано выше (методика для фракции, растворимой в ксилоле), добавляют 200 мл ацетона при интенсивном перемешивании. Осаждение должно быть полным, как подтверждается чистым разделением раствор-твердый материал. Полученное таким образом твердое вещество фильтруют на тарированном металлическом фильтре и сушат в вакууме при 70°C до достижения постоянной массы.
Мольное соотношение подаваемых газов
Определяется методом газовой хроматографии.
Скорость течения расплава (MFR)
Определяется согласно ISO 1133 (230°C, 2,16 кг).
Характеристическая вязкость
Определяется в тетрагидронафталине при 135°C.
Модуль упругости при изгибе
Определяется согласно ISO 178.
Удлинение в точке предела текучести и относительное удлинение при разрыве
Определяется согласно ISO 527.
Ударная вязкость по Изоду
Определяется согласно ISO 18011А.
Показатель полидисперсности (PI)
Показатель полидисперсности определяет молекулярно-массовое распределение полимера. Для определения значения PI модульное разделение при низком значении модуля, например 500 Па, определяется при температуре 200°C с использованием реометра с параллельными пластинами модели RMS-800, поставляемого фирмой Rheometrics (США), работающего при частоте осциллирования, которая увеличивается от 0,01 рад/с до 100 рад/с. С использованием величины модульного разделения, PI может быть выведен с использованием следующего уравнения:
PI=54,6×(модульное разделение)-1,76,
в котором модульное разделение (MS) определяется как:
MS=(частота при G'=500 Па)/(частота при G”=500 Па),
где G' представляет собой модуль накопления, а G” представляет собой модуль потерь.
Пример 1 и Сравнительный пример 1
Катализатор Циглера-Натта получают в соответствии с примером 5 (строки 48-55) Европейского патента ЕР 728769. Триэтилалюминий (TEAl) используют в качестве сокатализатора и дициклопентилдиметоксисилан - в качестве внешнего электронодонора.
Пропиленовые полимерные композиции примеров получают двухстадийным способом полимеризации, в котором сополимер (А) получают на первой стадии полимеризации при подаче мономеров и каталитической системы в газофазный реактор полимеризации, имеющий две соединенные полимеризационные зоны, вертикальную трубу, идущую вверх, и вертикальную трубу, идущую вниз, как описано в Европейском патенте ЕР 782587. Пример 1 осуществляют с использованием «барьерного питания» жидкого пропилена согласно описанию ЕР 1012195 для того, чтобы дифференцировать концентрацию водорода между вертикальной трубой, идущей вверх, и вертикальной трубой, идущей вниз, и получить молекулярно-массовое распределение бимодального типа. Сравнительный пример 1 осуществляют без использования «барьерного питания» жидкого пропилена.
Полимеризационную смесь разгружают из указанного первого реактора, транспортируют в сепаратор газ-твердый материал, и полимеризованный материал направляют в традиционный газофазный реактор с псевдоожиженным слоем, где получают пропилен-этиленовый сополимер (В). Рабочие условия указаны в таблице 1.
Полимерные частицы, выходящие со второй стадии полимеризации, подвергают обработке водяным паром для удаления непрореагировавших мономеров и сушат.
В пропиленовые полимерные композиции вводят следующие добавки: GMS - 0,1%, Irganox 1010 - 0,05%, Irgafos 168 - 0,05%, DSTDP (дистеарил-3,3'-дитиопропионат) - 0,21% и бензоат натрия NaBz - 0,09% и экструдируют в двухшнековом экструдере Berstorff (L/D=33) в следующих рабочих условиях:
Температура секции питания: 190-210°C
Температура расплава: 240°C
Температура секции головки: 230°C
Производительность: 16 кг/ч
Скорость вращения: 250 об/мин
Таблица 1
Пример 1 Сравн. пример 1
Компонент (А)
TEAL/внешний электронодонор мас./мас. 8 7
TEAL/ катализатор мас./мас. 6 6
Температура °С 80 75
Давление бар (кПа) 28 (2800) 27 (2700)
Срез выдерживания вертикальная труба, идущая вверх мас.% 40 40
вертикальная труба, идущая вниз мас.% 60 60
Н23- (вертикальная труба, идущая вверх) мол./мол. 0,21 0,045
Н23- (вертикальная труба, идущая вниз) мол./мол. 0,005 0,045
Компонент В (газофазный реактор)
Температура °С 80 80
Давление МПа 1,9 1,6
Срез* % 25 23
С2-2-3- мол./мол. 0,20 0,22
Н22- мол./мол. 0,09 0,013
* Количество компонента В по отношению к (А+В)
С2- - этилен; С3- - пропилен
Сравнительный пример 2
Пропиленовой полимерной композицией сравнительного примера 2 является композиция согласно примеру 1 WO 2006/037705.
Свойства композиций, полученных в соответствии с примером 1 и сравнительными примерами 1 и 2, представлены в таблице 2.
Таблица 2
Пример 1 Сравн. пример 1 Сравн. пример 2
MFR компонента (А) г/10 мин 25 32 72
Показатель полидисперсности 5,7 4,3 5,4
Процентное содержание компонента (В) сополимера мас.% 25 23 30
Процентное содержание С2- компонента (В) мас.% 40,5 38 43
MFR композиции г/10 мин 7,0 11,6 13
Характеристическая вязкость растворимых в ксилоле дл/г 3,7 3,4 3,05
Модуль упругости при изгибе МПа 1100 1100 1010
Ударная вязкость по Изоду при 23°C кДж/м2 52,0 42,1 49,2
Ударная вязкость по Изоду при 0°C кДж/м2 31,0 10 10,3
Ударная вязкость по Изоду при -20°C кДж/м2 11,3 8,2 9,2
Относительное удлинение при разрыве % 573 425 378
С2- - этилен
Из сравнения примера 1 настоящего изобретения и сравнительных примеров 1 и 2 видно, что когда удовлетворяются параметры настоящего изобретения, ударная вязкость по Изоду при комнатной температуре и при низких температурах улучшается без какого-либо снижения свойств жесткости.

Claims (7)

1. Пропиленовая полимерная композиция, которая содержит (мас.%):
А) 68-80% гомополимера пропилена, имеющего значение показателя полидисперсности (PI) от 4,7 до 10 и скорость течения расплава (MFR L) (скорость течения расплава согласно ISO 1133, условие L, т.е. 230°C и нагрузка 2,16 кг) в интервале от 10 до 30 г/10 мин;
В) 20-32% сополимера пропилена, содержащего 40,1-42,5% последних, включая звенья, производные этилена;
причем композиция имеет характеристическую вязкость фракции, растворимой в ксилоле при 25°C, в интервале 3-6 дл/г и MFR L от 4 до 12 г/10 мин.
2. Композиция по п.1, в которой компонент А) имеет значение показателя полидисперсности PI от 5 до 10.
3. Композиция по п.1 или 2, в которой компонент А) имеет MFR L (скорость течения расплава согласно ISO 1133, условие L, т.е. 230°C и нагрузка 2,16 кг) в интервале от 12 до 25 г/10 мин.
4. Композиция по п.1, которая имеет характеристическую вязкость фракции, растворимой в ксилоле при 25°C, в интервале 3,5-5,0 дл/г.
5. Композиция по п.1, которая имеет ударную вязкость по Изоду, измеренную при 23°C, выше 40 кДж/м2.
6. Композиция по п.1, которая имеет ударную вязкость по Изоду, измеренную при 0°C, выше 10 кДж/м2.
7. Композиция по п.1, которая имеет ударную вязкость по Изоду, измеренную при -20°C, выше 5 кДж/м2.
RU2013107796/04A 2010-07-23 2011-07-22 Пропиленовые полимерные композиции RU2563652C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US40017810P 2010-07-23 2010-07-23
EP10170590.3 2010-07-23
US61/400,178 2010-07-23
EP10170590 2010-07-23
PCT/EP2011/062591 WO2012010678A1 (en) 2010-07-23 2011-07-22 Propylene polymer compositions

Publications (2)

Publication Number Publication Date
RU2013107796A RU2013107796A (ru) 2014-08-27
RU2563652C2 true RU2563652C2 (ru) 2015-09-20

Family

ID=44534849

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013107796/04A RU2563652C2 (ru) 2010-07-23 2011-07-22 Пропиленовые полимерные композиции

Country Status (6)

Country Link
US (1) US9303159B2 (ru)
EP (1) EP2596060B1 (ru)
CN (1) CN102985478B (ru)
BR (1) BR112013001644A2 (ru)
RU (1) RU2563652C2 (ru)
WO (1) WO2012010678A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697706C1 (ru) * 2016-04-14 2019-08-19 Базелл Полиолефин Италия С.Р.Л. Пропилен-полимерные композиции
RU2721529C2 (ru) * 2015-11-05 2020-05-19 Базелл Полиолефин Италия С.Р.Л. Гетерофазные пропиленовые сополимеры

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642151B2 (ja) * 2009-03-23 2014-12-17 サンアロマー株式会社 ポリオレフィンマスターバッチ及び射出成形に適したポリオレフィン組成物
US10465025B2 (en) 2014-01-15 2019-11-05 Exxonmobil Chemical Patents Inc. Low comonomer propylene-based impact copolymers
US9309334B2 (en) * 2014-01-15 2016-04-12 Exxonmobil Chemical Patents Inc. Propylene-based impact copolymers
RU2704136C1 (ru) * 2015-11-17 2019-10-24 Бореалис Аг Композиция tpo с высокой текучестью с превосходной ударной прочностью при низкой температуре
US10759933B2 (en) 2016-10-14 2020-09-01 Basell Poliolefine Italia S.R.L. Nucleated propylene polymer composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2304598C2 (ru) * 2002-03-12 2007-08-20 Базелль Полиолефин Италия С.П.А. Композиция маточной смеси для получения полиолефиновых изделий литьевым формованием
RU2011142788A (ru) * 2009-03-23 2013-04-27 Базелль Полиолефин Италия С.Р.Л. Полиолефиновая маточная смесь и композиция, подходящая для литьевого формования

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1096661B (it) 1978-06-13 1985-08-26 Montedison Spa Procedimento per la preparazione di prodotti in forma sferoidale solidi a temperatura ambiente
IT1098272B (it) 1978-08-22 1985-09-07 Montedison Spa Componenti,di catalizzatori e catalizzatori per la polimerizzazione delle alfa-olefine
IT1209255B (it) 1980-08-13 1989-07-16 Montedison Spa Catalizzatori per la polimerizzazione di olefine.
IT1227258B (it) 1988-09-30 1991-03-28 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1230134B (it) 1989-04-28 1991-10-14 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine.
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
AUPO591797A0 (en) 1997-03-27 1997-04-24 Commonwealth Scientific And Industrial Research Organisation High avidity polyvalent and polyspecific reagents
IT1275573B (it) 1995-07-20 1997-08-07 Spherilene Spa Processo ed apparecchiatura per la pomimerizzazione in fase gas delle alfa-olefine
US6689845B1 (en) 1998-07-08 2004-02-10 Basell Poliolefine Italia S.P.A. Process and apparatus for the gas-phase polymerization
IL140154A (en) 1999-04-15 2006-07-05 Basell Technology Co Bv Ingredients and catalysts for the polymerization of olefins
KR100899958B1 (ko) 2000-10-13 2009-05-28 바셀 폴리올레핀 이탈리아 에스.알.엘 올레핀 중합용 촉매 성분
MY136027A (en) * 2003-04-02 2008-07-31 Basell Poliolefine Spa Polyolefin masterbatch and composition suitable for injection molding
TW200427763A (en) * 2003-04-03 2004-12-16 Basell Poliolefine Spa Impact resistant polyolefin compositions
CN100443536C (zh) 2003-08-05 2008-12-17 巴塞尔聚烯烃意大利有限责任公司 聚烯烃制品
TW200505985A (en) * 2003-08-07 2005-02-16 Basell Poliolefine Spa Polyolefin composition having a high balance of stiffness and impact strength
KR20070112105A (ko) * 2004-10-04 2007-11-22 바셀 폴리올레핀 이탈리아 에스.알.엘 엘라스토머 폴리올레핀 조성물
JP4921382B2 (ja) * 2004-12-20 2012-04-25 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ プロピレンの重合法法及び装置
WO2006067023A1 (en) * 2004-12-23 2006-06-29 Basell Poliolefine Italia S.R.L. Polyolefinic compositions having good whitening resistance
EP2358796B1 (en) * 2008-12-17 2012-12-19 Basell Poliolefine Italia S.r.l. Foamed polyolefin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2304598C2 (ru) * 2002-03-12 2007-08-20 Базелль Полиолефин Италия С.П.А. Композиция маточной смеси для получения полиолефиновых изделий литьевым формованием
RU2011142788A (ru) * 2009-03-23 2013-04-27 Базелль Полиолефин Италия С.Р.Л. Полиолефиновая маточная смесь и композиция, подходящая для литьевого формования

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721529C2 (ru) * 2015-11-05 2020-05-19 Базелл Полиолефин Италия С.Р.Л. Гетерофазные пропиленовые сополимеры
RU2697706C1 (ru) * 2016-04-14 2019-08-19 Базелл Полиолефин Италия С.Р.Л. Пропилен-полимерные композиции
RU2697706C9 (ru) * 2016-04-14 2020-02-28 Базелл Полиолефин Италия С.Р.Л. Пропилен-полимерные композиции

Also Published As

Publication number Publication date
US20130123432A1 (en) 2013-05-16
WO2012010678A1 (en) 2012-01-26
EP2596060A1 (en) 2013-05-29
CN102985478B (zh) 2015-04-29
CN102985478A (zh) 2013-03-20
EP2596060B1 (en) 2014-05-28
US9303159B2 (en) 2016-04-05
BR112013001644A2 (pt) 2016-05-24
RU2013107796A (ru) 2014-08-27

Similar Documents

Publication Publication Date Title
RU2563652C2 (ru) Пропиленовые полимерные композиции
US20160272802A1 (en) Polyolefin masterbatch and composition suitable for injection molding
US20080071032A1 (en) Elastomeric Polyolefin Compositions
US20100121000A1 (en) Process for the preparation of soft propylene polymer compositions
US9296884B2 (en) Propylene polymer compositions
US8735497B2 (en) Propylene polymers compositions
WO2009050045A2 (en) Process for the preparation of high fluidity propylene polymers
US8569419B2 (en) Propylene polymer compositions
EP2480604B1 (en) Propylene polymer compositions
US8835568B2 (en) Propylene polymer compositions
EP3443035B1 (en) Propylene polymer compositions
US8975338B2 (en) Propylene polymer compositions
US8729188B2 (en) Propylene polymer compositions
EP2505606B1 (en) Polyolefin composition for pipe systems
WO2011035994A1 (en) Propylene polymer compositions
WO2011036002A1 (en) Propylene polymer compositions