RU2563405C2 - Дегазация мартенситной нержавеющей стали перед переплавом под слоем шлака - Google Patents

Дегазация мартенситной нержавеющей стали перед переплавом под слоем шлака Download PDF

Info

Publication number
RU2563405C2
RU2563405C2 RU2012119544/02A RU2012119544A RU2563405C2 RU 2563405 C2 RU2563405 C2 RU 2563405C2 RU 2012119544/02 A RU2012119544/02 A RU 2012119544/02A RU 2012119544 A RU2012119544 A RU 2012119544A RU 2563405 C2 RU2563405 C2 RU 2563405C2
Authority
RU
Russia
Prior art keywords
steel
ingot
fatigue
degassing
electroslag remelting
Prior art date
Application number
RU2012119544/02A
Other languages
English (en)
Other versions
RU2012119544A (ru
Inventor
Лоран ФЕРРЕ
Патрик ФИЛИПСОН
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2012119544A publication Critical patent/RU2012119544A/ru
Application granted granted Critical
Publication of RU2563405C2 publication Critical patent/RU2563405C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано при производстве нержавеющей мартенситной стали. Перед этапом электрошлакового переплава слиток подвергают дегазации в вакууме в состоянии жидкого металла в течение времени, достаточного для получения содержания водорода в упомянутом слитке после упомянутого этапа электрошлакового переплава менее чем 3 ppm. Изобретение позволяет уменьшить разброс усталостного поведения нержавеющих мартенситных сталей и улучшить их среднее усталостное состояние. 3 з.п. ф-лы, 4 ил., 1 табл.

Description

Настоящее изобретение относится к способу производства нержавеющей мартенситной стали, содержащему этап электрошлакового переплава слитка упомянутой стали, затем этап охлаждения упомянутого слитка.
В настоящем изобретении, если не обусловлено иное, процентные содержания состава являются процентными содержаниями по весу.
Нержавеющая мартенситная сталь является сталью с содержанием хрома более чем 10,5% и структурой, которая является по существу мартенситной.
Важно, чтобы усталостное поведение такой стали было как можно более хорошим, так чтобы срок службы деталей, выпущенных из такой стали, максимизировался.
Для этой цели стремятся улучшить примесные характеристики стали, то есть уменьшить количество нежелательных примесей (определенных лигатурных, оксидных, карбидных и неметаллических составных фаз), присутствующих в стали. Такие примеси действуют в качестве мест зарождения трещины, которые под циклическим нагружением имеют следствием преждевременное разрушение стали.
Экспериментально, большой разброс наблюдается в результатах испытаний на усталость, выполняемых на образцах для испытаний такой стали, то есть для каждого уровня усталостного нагружения при сообщенной деформации срок службы (соответствующий количеству циклов, приводящему к разрушению усталостного образца, в такой стали) меняется в широком диапазоне. Примеси ответственны за минимальные значения, в статистическом смысле, для усталостного срока службы стали (нижние значения диапазона).
Для того чтобы уменьшить такой разброс усталостного поведения, то есть для того чтобы поднять такие нижние значения, а также чтобы улучшить среднее значение усталостного поведения, необходимо улучшать примесные характеристики стали. Известна технология электрошлакового переплава, ESR. В такой технологии стальной слиток помещается в тигель, в который залит шлак (смесь минералов, например извести, фторидов, магнезии, алюминия, кальцита), при условии, чтобы нижний торец слитка был погружен в шлак. Затем электрический ток пропускается через слиток, который действует в качестве электрода. Такой ток достаточно высок, чтобы нагревать и расплавлять шлак и нагревать нижний торец стального электрода. Нижний торец такого электрода находится в контакте со шлаком и, значит, он плавится и проходит через шлак в виде мелких капелек, а затем затвердевает под слоем шлака, который всплывает, чтобы формировать новый слиток, который по этой причине постепенно растет. Шлак, среди прочего, действует в качестве фильтра, который извлекает примеси из капелек стали, с тем чтобы сталь такого нового слитка, расположенного под слоем шлака, содержала в себе меньшее количество примесей, чем начальный слиток (электрод). Такая операция выполняется под атмосферным давлением и на воздухе.
Хотя технология ESR может уменьшать разброс усталостного поведения нержавеющих мартенситных сталей посредством устранения примесей, такой разброс по-прежнему слишком велик в показателях срока службы деталей.
Неразрушающее испытание с использованием ультразвука, выполненное авторами изобретения, показало, что упомянутые стали не включают в себя практически никаких известных водородных дефектов (флокенов).
Разброс результатов усталостного поведения, особенно значений нижней границы диапазона результатов, таким образом обусловлен другим нежелательным механизмом преждевременного зарождения трещин в стали, которые имеют следствием преждевременное усталостное разрушение.
Цель настоящего изобретения состоит в том, чтобы предоставить способ производства, который позволяет поднимать эти нижние значения и таким образом уменьшать разброс усталостного поведения нержавеющих мартенситных сталей и улучшать их среднее усталостное поведение.
Цель достигается тем, что перед этапом электрошлакового переплава слиток подвергается дегазации в вакууме в течение времени, достаточного для получения содержания водорода в слитке менее чем 3 ppm (миллионные доли, частей на миллион).
Таким образом снижается формирование газовых фаз микроскопических размеров (не обнаружимых промышленными средствами неразрушающего испытания), составленных легкими элементами внутри стали, и таким образом предотвращается преждевременное зарождение трещин от упомянутых микроскопических фаз, которые вызывают преждевременное разрушение стали при усталости.
Изобретение и его преимущества могут быть лучше понятны из последующего подробного описания реализации, показанной в качестве неограничивающего примера. Описание делает ссылку на прилагаемые чертежи, на которых:
фиг. 1 сравнивает кривые усталостного срока службы для стали по изобретению и стали предшествующего уровня техники;
фиг. 2 показывает кривую усталостного нагружения;
фиг. 3 - схема, иллюстрирующая дендриты и междендритовые области; и
фиг. 4 - фотография, снятая с использованием электронного микроскопа, поверхности излома после усталостной нагрузки, показывающая газовую фазу, которая породила такой излом.
Во время процесса ESR сталь, которая была отфильтрована шлаком, охлаждается и постепенно затвердевает, чтобы сформировать слиток. Это затвердевание происходит во время охлаждения и влечет за собой рост дендритов, как проиллюстрировано на фиг. 3. Согласно фазовой диаграмме для нержавеющих мартенситных сталей дендриты 10, соответствующие первым затвердевшим зернам, при определении более богаты альфа-образующими (альфагенными) элементами, при том что междендритные области 20 являются более богатыми гамма-образующими (гаммагенными) элементами (применение известного правила рычага для фазовых диаграмм). Альфагенный элемент является элементом, который благоприятствует формированию структуры ферритного типа (структурам, которые более устойчивы при низких температурах: бейниту, ферриту-перлиту, мартенситу). Гаммагенный элемент является элементом, который благоприятствует аустенитной структуре (структуре, которая устойчива при высоких температурах). Таким образом возникает сегрегация между дендритами 10 и междендритными областями 20.
Эта местная сегрегация в химическом составе затем сохраняется на всем протяжении производства даже во время последующих операций горячей формовки. Таким образом, эта сегрегация обнаруживается как в только что отвердевшем слитке, так и в деформированном впоследствии слитке.
Как только материал затвердел, дендриты 10 вначале превращаются в ферритные структуры во время охлаждения наряду с тем, что междендритные области 20 пребразуются впоследствии, частично или полностью, при более низких температурах и таким образом сохраняют аустенитную структуру на больший срок.
Во время упомянутого охлаждения в твердом состоянии местная структурная неоднородность заключается в сосуществовании микроструктур аустенитного и ферритного типа. При этих условиях легкие элементы (H, N, O), которые более растворимы в аустенитной, чем в ферритной, структурах, имеют тенденцию концентрироваться в междендритных областях 20. Эта концентрация увеличивается при большом количестве гаммагенных элементов в междендритных областях. При температурах, меньших чем 300°C, легкие элементы диффундируют с чрезвычайно низкими скоростями и остаются захваченными в своих областях. После завершения полного или частичного превращения междендритных зон в ферритную структуру предел растворимости этих газовых фаз достигается только при условиях определенной концентрации, и эти газовые фазы образуют карманы газа (или вещество в физическом состоянии, которое дает высокую ковкость и несжимаемость).
Во время фазы охлаждения, чем больше диаметр слитка (или деформированного впоследствии слитка) на торце ESR (или, в более общем смысле, чем больше максимальный размер слитка) или чем ниже скорость охлаждения слитка, тем большей является склонность легких элементов к диффузии из дендритов по направлению в междендритные области, где они концентрируются в течение периода сосуществования ферритных и аустенитных структур. Существует риск того, что растворимость этих легких элементов локально превышается в междендритных областях. Когда концентрация легких элементов превышает эту растворимость, микроскопические газовые карманы, содержащие в себе упомянутые легкие элементы, в таком случае появляются в стали.
В дополнение, в то время как охлаждение завершается, аустенит междендритных областей имеет тенденцию локально превращаться в мартенсит, когда температура стали падает ниже температуры Ms мартенситного превращения, которая находится выше температуры окружающей среды. Однако мартенсит имеет пороговое значение растворимости для легких элементов, которое является более низким, чем у аустенита. Таким образом, большие микроскопические газовые включения/фазы появляются в стали во время этого мартенситного превращения.
Во время последующих деформаций, которым подвергается сталь в течение горячей формовки (например, ковки), эти фазы уплощаются в плоскую форму.
При усталостном нагружении такие плоские элементы действуют в качестве мест сосредоточения механических напряжений, которые ответственны за преждевременное зарождение трещин и уменьшение энергии, необходимой для зарождения трещины. Это затем вызывает преждевременное разрушение стали, которое становится причиной низких значений в результатах усталостного поведения.
Приведенные выводы были подтверждены наблюдениями авторов изобретения, как показывает фотография электронного микроскопа на фиг. 4.
На этой фотографии на поверхности излома нержавеющей мартенситной стали может быть видна по существу глобулярная зона P, от которой радиально расходятся трещины F. Эта зона P является отпечатком газовой фазы, образованной легкими элементами, которые находятся в источнике формирования этих трещин F и которые, распространяясь и укрупняясь, создали макроскопические зоны излома.
Авторы настоящего изобретения выполнили испытания над нержавеющими мартенситными сталями и обнаружили, что если перед электрошлаковым переплавом такая сталь в жидком состоянии подвергается операции дегазации в вакууме в течение времени, достаточного для получения содержания H (водорода) в упомянутом слитке менее чем 3 ppm, тогда, во-первых, это содержание H (водорода) является недостаточным для приведения к комбинации между H и O (кислородом), а также N (азотом) в газовых фазах, которые вероятно должны формироваться после электрошлакового переплава такой стали.
Во-вторых, это уменьшенное количество газообразных элементов остается ниже, чем значение, которое вызывало бы превышение растворимости этих газовых фаз даже в мартенсите после концентрации в аустентных структурах, сосуществующих с ферритными структурами. Обеспечивается возможность поддержания концентрации гаммагенных элементов в междендритных областях и концентрации альфагенных элементов в дендритах по существу постоянными. Таким образом, риск формирования нежелательных газовых фаз внутри стали снижается.
Предпочтительно, шлак дегидратируется перед использованием в тигле ESR. Фактически, возможно, что концентрация H в стальном слитке из электрошлакового переплава, ESR, будет более высокой, чем концентрация H в упомянутом слитке до его электрошлакового переплава. Водород может проходить через шлак в слиток во время реализации способа ESR. Посредством заблаговременной дегидратации шлака количество водорода, присутствующего в шлаке, минимизируется, и, таким образом, количество водорода, который мог бы проходить из шлака в слиток во время способа ESR, минимизируется.
Предпочтительно, перед ESR жидкий металл слитка подвергается дегазации в вакууме в течение времени, которого достаточно для получения содержания водорода в слитке после этапа электрошлакового переплава, которое является меньшим чем 3 ppm.
Способ для дегазации в вакууме сплава известен и поэтому описание, приведенное ниже, является кратким. Он состоит в размещении еще жидкого металла в емкости, в которой создано по меньшей мере низкое разряжение. В качестве альтернативы, упомянутая дегазация в вакууме может выполняться погружением в жидкую сталь, содержащуюся в ковше линии, присоединяемой к сосуду, в котором создан вакуум. Сталь всасывается в сосуд за счет создаваемого в сосуде вакуума, затем опускается обратно в ковш через контейнер через упомянутую линию. Сосуд, к тому же, может включать в себя впускную линию и выпускную линию (патрубки), обе из которых погружены в жидкую сталь, причем сталь затем проходит через сосуд, входя через впускную линию и выходя через выпускную линию.
Выше по течению от проведения вакуумной дегазации сталь, как правило, подвергается рафинированию в атмосфере. Упомянутое рафинирование позволяет создавать превосходную химическую концентрацию и снижать содержание серы и углерода как можно больше в пределах требуемого диапазона. В случае мартенситных нержавеющих сталей используемым наиболее экономично промышленным методом является аргон-кислородное обезуглероживание (AOD), которое выполняется в обычной атмосфере. Комбинация из способа AOD, сопровождаемая дегазацией в вакууме, как описано выше, составляет способ, который имеет преимущество в том, что является менее дорогостоящим и более быстрым для выполнения, чем способы экстракции загрязнений, которые выполняются в вакуумном сосуде, такие как VOD (вакуумное кислородное обезуглероживание).
Авторы изобретения выполнили испытания со сталями Z12CNDV12, приготовленными с использованием способа по изобретению, то есть с дегазацией слитка, применяя вышеприведенные параметры перед ESR; результаты этих испытаний представлены ниже.
Состав сталей Z12CNDV12 был следующим (стандарт DMD0242-20, индекс E):
C (от 0,10% до 0,17%) - Si (<0,30%) - Mn (от 0,5% до 0,9%) - Cr (от 11% до 12,5%) - Ni (от 2% до 3%) - Mo (1,50% до 2,00%) - V (от 0,25% до 0,40%) - N2 (от 0,010% до 0,050%) - Cu (<0,5%) - S (<0,015%) - P (<0,025%) и удовлетворял критерию:
4,5≤(Cr-40*C-2*Mn-4*Ni+6*Si+4*Mo+11*V-30*N)<9
Фиг. 1 качественно показывает улучшения, обеспечиваемые изобретением.
Экспериментально, значение было получено для количества N циклов разрушения, необходимых для разрушения образца стали, подвергнутого циклической растягивающей нагрузке, в качестве функции псевдопеременного механического напряжения C (нагрузки на образце при сообщенной деформации, в соответствии со стандартом DMC0401 Снекмы, используемым для этих испытаний).
Такое циклическое нагружение показано в виде схемы на фиг. 2. Период T представляет собой один цикл. Механическое напряжение меняется между максимальным значением Cmax и минимальным значением Cmin.
Посредством усталостного испытания статистически достаточного количества образцов изобретатели получали точки N=f(C), по которым они вычерчивали среднестатистическую кривую C-N (механическое напряжение C в качестве функции количества N циклов усталостного нагружения). Среднеквадратические отклонения для нагрузок затем рассчитывались для данного количества циклов.
На фиг. 1 первая кривая 15 (тонкая линия) является (схематично) средней кривой, полученной для стали, получаемой в соответствии с предшествующим уровнем техники. Эта первая средняя кривая C-N находится между двумя кривыми 16 и 14, показанными в качестве тонких пунктирных линий. Эти кривые 16 и 14 расположены соответственно на расстоянии +3σ1 и -3σ1 от первой кривой 15, σ1 является среднеквадратическим отклонением распределения экспериментальных точек, полученных во время этих испытаний на усталость; ±3σ1 соответствует по статистике доверительному интервалу 99,7%. Расстояние между этими двумя пунктирными кривыми 14 и 16, таким образом, является мерой разброса результатов. Кривая 14 является ограничивающим фактором для размеров детали.
На фиг. 1 вторая кривая 25 (толстая линия) является (схематично) средней кривой, полученной по результатам усталостных испытаний, выполненных над сталью, полученной в соответствии с изобретением, под нагружением в соответствии с фиг. 2. Эта вторая средняя кривая C-N лежит между двумя кривыми 26 и 24, показанными в качестве толстых пунктирных линий, расположенных соответственно на расстоянии +3σ2 и -3σ2 от второй кривой 25, σ является среднеквадратическим отклонением экспериментальных точек, полученных во время этих испытаний на усталость. Кривая 24 является ограничивающим фактором для размеров детали.
Должно быть отмечено, что вторая кривая 25 расположена выше первой кривой 15, что означает, что при усталостном нагружении на уровне C нагружения, образцы стали, полученные в соответствии с изобретением, разрушаются в среднем на более высоком количестве N циклов, чем то, при котором разрушаются образцы стали предшествующего уровня техники.
В дополнение, расстояние между двумя кривыми 26 и 24, показанными в качестве толстых пунктирных линий, является меньшим, чем расстояние между двумя кривыми 16 и 14, показанными в качестве тонких пунктирных линий, что означает, что разброс усталостного поведения стали, выпущенной в соответствии с изобретением, является меньшим, чем у стали предшествующего уровня техники.
Фиг. 1 иллюстрирует экспериментальные результаты, обобщенные в таблице 1, приведенной ниже.
Таблица 1 показывает результаты олигоциклического усталостного нагружения в соответствии с фиг. 2 с нулевым минимальным механическим напряжением Cmin при температуре 250°C, с N=20000 циклов и N=50000 циклов. «Олигоциклическая усталость» означает, что частота нагружения имеет значение порядка 1 Гц (частота определяется в качестве количества периодов T в секунду).
Таблица 1
Олигоциклические условия испытаний на усталость Сталь предшествующего уровня техники Сталь, произведенная в соответствии с изобретением
N Температура Cmin Разброс Cmin Разброс
2×105 200°C 100%=M 120% M 130% M 44% M
5×104 400°C 100%=M 143% M 130% M 90% M
Должно быть отмечено, что для данного значения количества циклов N, минимальное значение усталостного нагружения, необходимое для разрушения стали по изобретению, является более высоким, чем минимальное значение M для усталостного нагружения (установленным на 100%), необходимого для разрушения стали предшествующего уровня техники. Разброс (=6σ) для результатов на этом количестве N циклов для стали по изобретению является меньшим, чем разброс для результатов стали предшествующего уровня техники (разбросы, выраженные в качестве процента минимального значения M).
Преимущественно, содержание углерода нержавеющей мартенситной стали является более низким, чем содержание углерода, ниже которого сталь является доэвтектоидной, например содержание 0,49%. Фактически, низкое содержание углерода предоставляет возможность лучшей диффузии легирующих элементов и снижения температур раствора для первичных или специальных карбидов, которая дает в результате лучшую гомогенизацию.
Перед электрошлаковым переплавом, например, мартенситная сталь изготавливается на воздухе.

Claims (4)

1. Способ производства мартенситной нержавеющей стали, содержащий этап, на котором осуществляют электрошлаковый переплав слитка упомянутой стали, затем этап, на котором охлаждают упомянутый слиток, отличающийся тем, что перед этапом электрошлакового переплава слиток подвергают дегазации в вакууме в состоянии жидкого металла в течение времени, достаточного для получения содержания водорода в упомянутом слитке после упомянутого этапа электрошлакового переплава менее чем 3 ppm.
2. Способ по п. 1, отличающийся тем, что шлак, используемый на упомянутом этапе переплава, заранее подвергают дегидратации.
3. Способ по п. 1, отличающийся тем, что перед упомянутой дегазацией в вакууме упомянутый слиток подвергают рафинированию в атмосфере.
4. Способ по п. 1, отличающийся тем, что содержание углерода в упомянутой стали является меньшим, чем содержание углерода, ниже которого сталь является доэвтектоидной.
RU2012119544/02A 2009-10-12 2010-10-11 Дегазация мартенситной нержавеющей стали перед переплавом под слоем шлака RU2563405C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0957109 2009-10-12
FR0957109A FR2951196B1 (fr) 2009-10-12 2009-10-12 Degazage d'aciers martensitiques inoxydables avant refusion sous laitier
PCT/FR2010/052141 WO2011045514A1 (fr) 2009-10-12 2010-10-11 Degazage d'aciers martensitiques inoxydables avant refusion sous laitier

Publications (2)

Publication Number Publication Date
RU2012119544A RU2012119544A (ru) 2013-11-20
RU2563405C2 true RU2563405C2 (ru) 2015-09-20

Family

ID=41683393

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012119544/02A RU2563405C2 (ru) 2009-10-12 2010-10-11 Дегазация мартенситной нержавеющей стали перед переплавом под слоем шлака

Country Status (9)

Country Link
US (1) US8709123B2 (ru)
EP (1) EP2488670B1 (ru)
JP (1) JP5791617B2 (ru)
CN (1) CN102575309A (ru)
BR (1) BR112012008526B1 (ru)
CA (1) CA2777035C (ru)
FR (1) FR2951196B1 (ru)
RU (1) RU2563405C2 (ru)
WO (1) WO2011045514A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105936978B (zh) * 2016-06-24 2017-12-29 东北大学 一种加压电渣重熔气相渗氮制备高氮奥氏体不锈钢的渣系
CN105950883B (zh) * 2016-06-24 2017-12-08 东北大学 一种加压电渣重熔气相渗氮制备高氮马氏体不锈钢的渣系
US11341260B2 (en) * 2020-03-04 2022-05-24 Red Hat, Inc. Optimizing allocation of access control identifiers to a container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1010140A1 (ru) * 1981-11-13 1983-04-07 Научно-производственное объединение "Тулачермет" Способ вакуумировани жидкой стали
US4589916A (en) * 1984-02-23 1986-05-20 Daido Tokushuko Kabushiki Kaisha Ultra clean stainless steel for extremely fine wire
EP0577997A1 (en) * 1992-06-11 1994-01-12 The Japan Steel Works, Ltd. Electrode for electroslag remelting and process of producing alloy using the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147405A (en) * 1975-06-13 1976-12-17 Nippon Steel Corp A process and apparatus for production of low hydrogen content casting ingot in electro-slag remelting process
DE3036461C2 (de) * 1980-09-26 1983-09-15 Wacker-Chemie GmbH, 8000 München Verfahren zur Herstellung von basischen Schlacken für das Elektro-Schlacke-Umschmelzverfahren
US5252120A (en) * 1992-10-26 1993-10-12 A. Finkl & Sons Co. Method and apparatus for double vacuum production of steel
US5364588A (en) * 1992-10-26 1994-11-15 A. Finkl & Sons Co. Double stabilized stainless-type steel die block
JPH06336657A (ja) * 1993-06-01 1994-12-06 Daido Steel Co Ltd 超高圧部材用鋼およびその製造方法
JPH0768369A (ja) * 1993-07-06 1995-03-14 Daido Steel Co Ltd Esr用スラグの保管方法
JPH07238344A (ja) * 1994-02-28 1995-09-12 Daido Steel Co Ltd 高清浄鋼およびその製造方法
US6110300A (en) * 1997-04-07 2000-08-29 A. Finkl & Sons Co. Tool for glass molding operations and method of manufacture thereof
US5820817A (en) * 1997-07-28 1998-10-13 General Electric Company Steel alloy
US6273973B1 (en) * 1999-12-02 2001-08-14 Ati Properties, Inc. Steelmaking process
WO2002048416A1 (fr) * 2000-12-14 2002-06-20 Yoshiyuki Shimizu Acier inoxydable a teneur elevee en silicium
CN100364678C (zh) * 2004-09-27 2008-01-30 宋春雨 铝铸轧机用辊套的冶炼及铸锻造的制造方法
JP2006265570A (ja) * 2005-03-22 2006-10-05 Daido Steel Co Ltd 鋳塊の製造方法
CN1686666A (zh) * 2005-04-18 2005-10-26 宝钢集团上海五钢有限公司 大型高铬钢冷轧辊辊坯的生产方法
JP2007302954A (ja) * 2006-05-11 2007-11-22 Daido Steel Co Ltd 真空エレクトロスラグ再溶解方法および真空エレクトロスラグ再溶解装置
FR2904634B1 (fr) * 2006-08-03 2008-12-19 Aubert & Duval Soc Par Actions Procede de fabrication d'ebauches en acier
FR2935624B1 (fr) 2008-09-05 2011-06-10 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane
FR2935625B1 (fr) 2008-09-05 2011-09-09 Snecma Procede de fabrication d'une piece thermamecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane
FR2935623B1 (fr) 2008-09-05 2011-12-09 Snecma Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane
FR2947566B1 (fr) 2009-07-03 2011-12-16 Snecma Procede d'elaboration d'un acier martensitique a durcissement mixte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1010140A1 (ru) * 1981-11-13 1983-04-07 Научно-производственное объединение "Тулачермет" Способ вакуумировани жидкой стали
US4589916A (en) * 1984-02-23 1986-05-20 Daido Tokushuko Kabushiki Kaisha Ultra clean stainless steel for extremely fine wire
EP0577997A1 (en) * 1992-06-11 1994-01-12 The Japan Steel Works, Ltd. Electrode for electroslag remelting and process of producing alloy using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МЕДОВАР Б.И. и др. Электрошлаковая технология за рубежом. Киев, "Наукова думка", 1982, с.187 *

Also Published As

Publication number Publication date
CA2777035C (fr) 2018-03-20
CA2777035A1 (fr) 2011-04-21
FR2951196B1 (fr) 2011-11-25
EP2488670B1 (fr) 2019-06-26
WO2011045514A1 (fr) 2011-04-21
US8709123B2 (en) 2014-04-29
RU2012119544A (ru) 2013-11-20
BR112012008526B1 (pt) 2021-11-16
EP2488670A1 (fr) 2012-08-22
CN102575309A (zh) 2012-07-11
FR2951196A1 (fr) 2011-04-15
JP5791617B2 (ja) 2015-10-07
US20120279350A1 (en) 2012-11-08
JP2013507531A (ja) 2013-03-04
BR112012008526A2 (pt) 2016-04-05

Similar Documents

Publication Publication Date Title
CN105463298A (zh) 一种加压感应冶炼低铝高氮马氏体不锈钢的方法
RU2656899C1 (ru) Способ изготовления мартенситно-стареющей стали
You et al. Removal of inclusions from nickel-based superalloy by induced directional solidification during electron beam smelting
WO2012018239A2 (ko) 고탄소 크롬 베어링강 및 그 제조방법
RU2563405C2 (ru) Дегазация мартенситной нержавеющей стали перед переплавом под слоем шлака
US7445678B2 (en) Maraging steel and method of producing the same
US20070039418A1 (en) Method for producing steel ingot
CN102575311B (zh) 矿渣层下再熔后的马氏体不锈钢的热处理
Tewary et al. Effect of annealing on microstructure and mechanical behaviour of cold rolled low C, high Mn TWIP steel
JP5868859B2 (ja) スラグ層の下での再溶解後のマルテンサイト系ステンレス鋼の均質化
JPWO2016010072A1 (ja) マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
RU2700347C1 (ru) Жаропрочный сплав
CN113355482B (zh) 一种Al-Ca复合铰丝细化夹杂物的P92钢的制备方法
Fang et al. Solidification Behavior and Microstructure Analysis of a Cold Working Die Steel Prepared by Vacuum Arc Melting
CN118086792A (zh) 一种q370r-hic抗酸容器钢板及生产方法
Song et al. The effect of rolling on graphitization characteristics of strip cast Fe-C-Si white cast iron

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner