RU2558649C1 - Органичитель мощности свч - Google Patents

Органичитель мощности свч Download PDF

Info

Publication number
RU2558649C1
RU2558649C1 RU2014110235/28A RU2014110235A RU2558649C1 RU 2558649 C1 RU2558649 C1 RU 2558649C1 RU 2014110235/28 A RU2014110235/28 A RU 2014110235/28A RU 2014110235 A RU2014110235 A RU 2014110235A RU 2558649 C1 RU2558649 C1 RU 2558649C1
Authority
RU
Russia
Prior art keywords
layer
semiconductor channel
gan
algan
dielectric
Prior art date
Application number
RU2014110235/28A
Other languages
English (en)
Inventor
Алексей Сергеевич Адонин
Вадим Минхатович Миннебаев
Александр Владимирович Перевезенцев
Original Assignee
Открытое акционерное общество "Научно-производственное предприятие "Пульсар"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное предприятие "Пульсар" filed Critical Открытое акционерное общество "Научно-производственное предприятие "Пульсар"
Priority to RU2014110235/28A priority Critical patent/RU2558649C1/ru
Application granted granted Critical
Publication of RU2558649C1 publication Critical patent/RU2558649C1/ru

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Использование: для изготовления полупроводниковых изделий. Сущность изобретения заключается в том, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов, при этом первый электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор. Технический результат: обеспечение возможности снижении прямых потерь при необходимом уровне ограничения входной мощности и обеспечение необходимого уровня ограничения входной мощности СВЧ. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области полупроводниковых изделий и может быть использовано при создании нового поколения СВЧ элементной базы и интегральных схем на основе гетероструктур широкозонных полупроводников.
Известен неуправляемый (пассивный) ограничитель мощности [ГАСАНОВ Л.Г. и др. Твердотельные устройства СВЧ в технике связи. М.,Радио и связь, 1988, с.143], состоящий из отрезка линии передачи, параллельно которому включены pin диоды и диод Шоттки, соединенные встречно-параллельно. Диод Шоттки благодаря малой инерционности и меньшей контактной разности потенциалов открывается раньше при малых уровнях входной мощности и своим током открывает pin диоды, повышая быстродействие ограничителя.
При больших уровнях мощности открытые pin диоды отражают основную часть входной мощности и частично ее рассеивают, а поскольку pin диоды располагаются перед диодом Шоттки, то мощность, дошедшая до диода Шоттки, оказывается значительно ослабленной и безопасной для него. Уровень ограничения проходящей мощности в таком ограничителе соответствует падению прямого напряжения на диоде Шоттки.
Недостатком этого ограничителя является наличие высокой рассеиваемой мощности на pin диодах вследствие их неполного открытия, обусловленного недостаточной величиной тока диода Шоттки из-за наличия отрицательной обратной связи, органически присущей данному ограничителю мощности.
Наиболее близким аналогом является неуправляемый (пассивный) ограничитель СВЧ мощности (патент России №2097877 дата публикации 1997.11.27), содержащий отрезок линии передачи, один из концов которого является входом ограничителя, а другой - его выходом, и шунтирующие эту линию детекторный и переключательный (pin) диоды, соединенные встречно-параллельно, отличающийся наличием со стороны входа ограничителя дополнительного детекторного диода с большой емкостью, включенного последовательно по СВЧ и замкнутого по постоянному току с pin диодом. При входном СВЧ сигнале, мощность которого превышает пороговое значение, pin диод открывается постоянным током детекторного диода, что в свою очередь приводит к резкому возрастанию СВЧ мощности, детектируемой на дополнительном детекторном диоде, постоянный ток которого дополнительно снижает сопротивление pin диода, при этом увеличивается отражение сигнала и снижается мощность, рассеиваемая на pin диоде.
Недостатком этого ограничителя является наличие существенных прямых потерь при малом уровне входного сигнала, обусловленных потерями в дополнительном детекторном диоде, что в конечном итоге приводит к снижению чувствительности приемника, особенно в длинноволновом диапазоне СВЧ.
Задачей настоящего изобретения является устранение вышеуказанных недостатков.
Технический результат изобретения заключается в снижении прямых потерь при необходимом уровне ограничения входной мощности в рабочем управляемом режиме ограничителя, в том числе на контактных соединениях, и обеспечении необходимого уровня ограничения входной мощности СВЧ.
Технический результат обеспечивается тем, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы. Кроме того, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN, и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов. При этом первый электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор.
В соответствии с частным случаем осуществления диэлектрик содержит дополнительный слой из оксида алюминия.
Сущность настоящего изобретения поясняется следующими иллюстрациями:
фиг.1 - отображено устройство в разрезе;
фиг.2 - отображена схема настоящего устройства.
На фиг.1 отображены следующие конструктивные элементы:
1 - подложка из слоя сапфира;
2 - буферный слой из AlN;
3 - буферный слой из GaN;
4 - слой из GaN i-типа;
5 - слой твердого раствора AlGaN;
6 - нижняя обкладка конденсаторов, образованная ДЭГ в интерфейсе AlGaN/GaN;
7 - сглаживающий слой из GaN;
8 - диэлектрик, включающий слой из НfO2;
9 - металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсаторов.
Настоящее устройство изготавливают следующим образом.
На подложке из сапфира 1, толщиной 150-200 мкм, последовательно размещают буферный слой из нитрида алюминия 2, толщиной 0,7 нм, эпитаксиальную структуру на основе широкозонных III-нитридов в виде слоев 3-6, состоящих из второго буферного слоя 3 из GaN, толщиной 200 нм, нелегированного слоя 4 из GaN i-типа, толщиной 200 нм, слоя твердого раствора AlGaN 5, толщиной 4,5 нм, а в интерфейсе AlGaN/GaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, образующий нижние обкладки 6 конденсаторов. Поверх твердого раствора 5 AlGaN последовательно размещены: сглаживающий слой из нитрида галлия 7 толщиной 3-8 нм, диэлектрик в виде слоя из двуокиси гафния 8 и слоя из оксида алюминия и слой металлических электродов 9 полосковой формы, которые образуют верхнюю обкладку конденсатора.
Использование слоев из оксидов металлов обусловлено следующим. Двуокись гафния является представителем наиболее перспективных диэлектрических материалов и используется в качестве пассивирующего слоя и подзатворного диэлектрика. Этот материал обладает высокими диэлектрической проницаемостью (К=20-25) и шириной запрещенной зоны Eg=5,8 эВ, а также термодинамически стабилен в диапазоне рабочих температур рассматриваемых устройств. Кроме того, двуокись гафния как диэлектрический материал подходит для устройств с емкостно соединенными контактами, имеет высокую диэлектрическую проницаемость, более сильную емкостную связь и низкую плотность состояний границы раздела.
При необходимости повышения электрической прочности диэлектрика 8, поверх слоя HfO2 размещается слой оксида алюминия. Использование слоев из двуокиси гафния и оксида алюминия позволяет минимизировать утечки тока и увеличить значение напряжения пробоя.
Слой из AlGaN 5 предназначен для образования в гетеропереходе AlGaN/GaN, в его приповерхностном слое проводящего канала (двумерного электронного газа (ДЭГ) с высокой подвижностью носителей заряда), возникающего за счет разрыва зон и поляризационных эффектов при образовании гетероперехода AlGaN/GaN. Основным требованием к этому слою является структурное совершенство, достаточное для обеспечения высокой подвижности электронов, и высокого сопротивления. Поэтому канальный слой не легируется, а в ряде случаев используются специальные приемы для обеспечения необходимого сопротивления. Между буферным слоем из нитрида алюминия 2 и слоем из нитрида галлия 4 i-типа располагается переходная область в виде второго буферного слоя из нитрида галлия 3, которая служит для уменьшения рассогласования параметров решетки и растущих на ней эпитаксиальных слоев. Между слоем твердого раствора AlGaN 5 и диэлектрическим слоем НfO2 размещен дополнительный слой 7 из химически более стабильного по сравнению с AlGaN материала из нитрида галлия (сглаживающий слой).
В процессе изготовления экспериментальных образцов в гетероструктуре кристалла вместо буферного слоя нитрида галлия 3 был опробован дополнительный буферный слой в виде короткопериодной сверхрешетки AlGaN/GaN, что позволило существенно снизить плотность ростовых дефектов и улучшить электрическую изоляцию между каналом переключателя и подложкой.
Таким образом, предлагается конструкция устройства, которое позволяет использовать емкостные соединенные контакты, тем самым устраняя потребность в омических контактах, что уменьшает рассеиваемую мощность. Низкое сопротивление в открытом состоянии возникает в результате чрезвычайно высокой плотности носителей в канале - сверх 1013 см-2, высокой подвижности электронов до 2500 см2/В·с, высоких полей пробоя и широкого диапазона рабочих температур в пределах от криогенного до 300С или даже выше.
Схема устройства приведена на фиг.2. Первый электрод (E1), сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор; второй электрод (E2), сформированный на полупроводниковом канале и полупроводниковый канал образуют второй управляемый напряжением конденсатор. Входной импульс может быть подан между землей E0 и электродом E1, в то время как второй импульс подается между землей E0 и электродом E2.
Устройство подключено в другую схему, если амплитуда входного сигнала (A) не превышает напряжение, необходимое для обеднения одного из конденсаторов (C1) или (C2), импеданс устройства будет очень низким и устройство не будет ограничивать мощность СВЧ. Однако если амплитуда входного сигнала (B) превышает напряжение, конденсаторы (C1) и (C2) выключаются в течение соответствующего положительного и отрицательного полупериодов.

Claims (2)

1. Ограничитель мощности СВЧ, включающий электроды и емкостные элементы, отличающийся тем, что емкостные элементы представляют собой конденсаторы, кроме того, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN, и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов, при этом первый электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор.
2. Ограничитель по п.1, отличающийся тем, что диэлектрик содержит дополнительный слой из оксида алюминия.
RU2014110235/28A 2014-03-18 2014-03-18 Органичитель мощности свч RU2558649C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014110235/28A RU2558649C1 (ru) 2014-03-18 2014-03-18 Органичитель мощности свч

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014110235/28A RU2558649C1 (ru) 2014-03-18 2014-03-18 Органичитель мощности свч

Publications (1)

Publication Number Publication Date
RU2558649C1 true RU2558649C1 (ru) 2015-08-10

Family

ID=53795962

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110235/28A RU2558649C1 (ru) 2014-03-18 2014-03-18 Органичитель мощности свч

Country Status (1)

Country Link
RU (1) RU2558649C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640965C1 (ru) * 2016-09-19 2018-01-12 Акционерное общество "Научно-производственное предприятие "Пульсар" ПСЕВДОМОРФНЫЙ ОГРАНИЧИТЕЛЬ МОЩНОСТИ НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaN/InGaN

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94011539A (ru) * 1994-04-04 1996-04-20 Особое конструкторское бюро Московского энергетического института Ограничитель свч мощности
RU2058630C1 (ru) * 1991-08-07 1996-04-20 Научно-исследовательский институт полупроводниковых приборов Свч-ограничитель
US20040021152A1 (en) * 2002-08-05 2004-02-05 Chanh Nguyen Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate
US20040201037A1 (en) * 2003-04-08 2004-10-14 Qhalid Fareed Heterostructure semiconductor device
RU78008U1 (ru) * 2008-06-11 2008-11-10 Открытое акционерное общество "ОКБ-Планета" Ограничитель мощности свч
RU102846U1 (ru) * 2010-10-25 2011-03-10 Открытое акционерное общество "Научно-исследовательский институт полупроводниковых приборов" (ОАО "НИИПП") Ограничитель свч мощности

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2058630C1 (ru) * 1991-08-07 1996-04-20 Научно-исследовательский институт полупроводниковых приборов Свч-ограничитель
RU94011539A (ru) * 1994-04-04 1996-04-20 Особое конструкторское бюро Московского энергетического института Ограничитель свч мощности
US20040021152A1 (en) * 2002-08-05 2004-02-05 Chanh Nguyen Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate
US20040201037A1 (en) * 2003-04-08 2004-10-14 Qhalid Fareed Heterostructure semiconductor device
RU78008U1 (ru) * 2008-06-11 2008-11-10 Открытое акционерное общество "ОКБ-Планета" Ограничитель мощности свч
RU102846U1 (ru) * 2010-10-25 2011-03-10 Открытое акционерное общество "Научно-исследовательский институт полупроводниковых приборов" (ОАО "НИИПП") Ограничитель свч мощности

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640965C1 (ru) * 2016-09-19 2018-01-12 Акционерное общество "Научно-производственное предприятие "Пульсар" ПСЕВДОМОРФНЫЙ ОГРАНИЧИТЕЛЬ МОЩНОСТИ НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaN/InGaN

Similar Documents

Publication Publication Date Title
US8304811B2 (en) HEMT device and a manufacturing of the HEMT device
JP5487615B2 (ja) 電界効果半導体装置及びその製造方法
JP6476114B2 (ja) 調整可能な及び高いゲート・ソース定格電圧を備えるiii‐窒化物エンハンスメントモードトランジスタ
JP6522102B2 (ja) 電界効果ダイオード及びその製造方法
CN105206664B (zh) 基于硅衬底的hemt器件及其制造方法
CN104916679A (zh) 半导体装置
JP2022103163A (ja) 窒化物半導体トランジスタ装置
RU2558649C1 (ru) Органичитель мощности свч
RU142380U1 (ru) Ограничитель мощности свч
Selvaraj et al. MOCVD grown normally-OFF type AlGaN/GaN HEMTs on 4 inch Si using p-InGaN cap layer with high breakdown
RU2563533C2 (ru) Мощный переключатель свч
TWI728165B (zh) 三族氮化物高速電子遷移率場效應電晶體元件
TW201916357A (zh) 半導體功率元件
Jahan et al. RF power limiter using capacitively-coupled contacts III-nitride varactor
RU2640965C1 (ru) ПСЕВДОМОРФНЫЙ ОГРАНИЧИТЕЛЬ МОЩНОСТИ НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaN/InGaN
TWI666773B (zh) 半導體功率元件
RU143079U1 (ru) Коммутирующее устройство свч
RU2574810C2 (ru) Мощный переключатель свч
RU2574809C2 (ru) Псевдоморфный переключатель свч
RU140856U1 (ru) Мощный переключатель свч
RU2640966C1 (ru) ПСЕВДОМОРФНОЕ КОММУТИРУЮЩЕЕ УСТРОЙСТВО НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaN/InGaN
RU2574808C2 (ru) Мощный псевдоморфный переключатель свч
Fujii et al. Fabrication of enhancement‐mode AlxGa1–xN/GaN junction heterostructure field‐effect transistors with p‐type GaN gate contact
RU2672159C1 (ru) Свч переключатель с изолированными электродами
RU177500U1 (ru) Мощный переключатель свч