RU142380U1 - Ограничитель мощности свч - Google Patents

Ограничитель мощности свч Download PDF

Info

Publication number
RU142380U1
RU142380U1 RU2014110238/08U RU2014110238U RU142380U1 RU 142380 U1 RU142380 U1 RU 142380U1 RU 2014110238/08 U RU2014110238/08 U RU 2014110238/08U RU 2014110238 U RU2014110238 U RU 2014110238U RU 142380 U1 RU142380 U1 RU 142380U1
Authority
RU
Russia
Prior art keywords
layer
semiconductor channel
gan
dielectric
algan
Prior art date
Application number
RU2014110238/08U
Other languages
English (en)
Inventor
Алексей Сергеевич Адонин
Вадим Минхатович Миннебаев
Александр Владимирович Перевезенцев
Original Assignee
Открытое акционерное общество "Научно-производственное предприятие "Пульсар"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное предприятие "Пульсар" filed Critical Открытое акционерное общество "Научно-производственное предприятие "Пульсар"
Priority to RU2014110238/08U priority Critical patent/RU142380U1/ru
Application granted granted Critical
Publication of RU142380U1 publication Critical patent/RU142380U1/ru

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

1. Ограничитель мощности СВЧ, включающий электроды и емкостные элементы, отличающийся тем, что емкостные элементы представляют собой конденсаторы, кроме того, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN, и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов.2. Ограничитель по п.1, отличающийся тем, что диэлектрик содержит дополнительный слой из оксида алюминия.3. Ограничитель по п.1, отличающийся тем, что первый электрод полосковой формы, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод полосковой формы, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор.

Description

Полезная модель относится к области полупроводниковых изделий и может быть использована при создании нового поколения СВЧ элементной базы и интегральных схем на основе гетероструктур широкозонных полупроводников.
Известен неуправляемый (пассивный) ограничитель мощности [ГАСАНОВ Л.Г. и др. "Твердотельные устройства СВЧ в технике связи", Москва «Радио и связь» 1988. с. 143] состоящий из отрезка линии передачи, параллельно которому включены pin диоды и диод Шоттки, соединенные встречно-параллельно. Диод Шоттки благодаря малой инерционности и меньшей контактной разности потенциалов открывается раньше при малых уровнях входной мощности и своим током открывает pin диоды, повышая быстродействие ограничителя.
При больших уровнях мощности открытые pin диоды отражают основную часть входной мощности и частично ее рассеивают, а поскольку pin диоды располагаются перед диодом Шоттки, то мощность дошедшая до диода Шоттки оказывается значительно ослабленной и безопасной для него. Уровень ограничения проходящей мощности в таком ограничителе соответствует падению прямого напряжения на диоде Шоттки.
Недостатком этого ограничителя является наличие высокой рассеиваемой мощности на pin диодах вследствие их неполного открытия обусловленного недостаточной величиной тока диода Шоттки из-за наличия отрицательной обратной связи, органически присущей данному ограничителю мощности.
Наиболее близким аналогом является неуправляемый (пассивный) ограничитель СВЧ мощности (патент России №2097877 дата публикации 1997.11.27), содержащий отрезок линии передачи один из концов которого является входом ограничителя, а другой его выходом, и шунтирующие эту линию детекторный и переключательный (pin) диоды, соединенные встречно-параллельно, отличающийся наличием со стороны входа ограничителя дополнительного детекторного диода с большой емкостью, включенного последовательно по СВЧ и замкнутого по постоянному току с pin диодом. При входном СВЧ сигнале, мощность которого превышает пороговое значение, pin диод открывается постоянным током детекторного диода, что в свою очередь приводит к резкому возрастанию СВЧ мощности, детектируемой на дополнительном детекторном диоде, постоянный ток которого дополнительно снижает сопротивление pin диода, при этом увеличивается отражение сигнала и снижается мощность рассеиваемая на pin диоде.
Недостатком этого ограничителя является наличие существенных прямых потерь при малом уровне входного сигнала, обусловленных потерями в дополнительном детекторном диоде, что в конечном итоге приводит к снижению чувствительности приемника, особенно в длинноволновом диапазоне СВЧ.
Задачей настоящей полезной модели является устранение вышеуказанных недостатков.
Технический результат полезной модели заключается в снижении прямых потерь при необходимом уровне ограничения входной мощности в рабочем управляемом режиме ограничителя.
Технический результат обеспечивается тем, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы, кроме того, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал. Поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов.
В соответствии с частными случаями выполнения устройство может иметь следующие конструктивные особенности.
Диэлектрик содержит дополнительный слой из оксида алюминия.
Один электрод полосковой формы, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а другой электрод полосковой формы, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор.
Сущность настоящей полезной модели поясняется следующими иллюстрациями:
фиг. 1 - отображено устройство в разрезе;
фиг. 2 - отображена схема настоящего устройства.
На фиг. 1 отображены следующие конструктивные элементы:
1 - подложка из слоя сапфира;
2 - буферный слой из АПЧ;
3 - буферный слой из GaN;
4 - слой из GaN i типа;
5 - слой твердого раствора AlGaN;
6 - нижняя обкладка конденсаторов образованная ДЭГ в интерфейсе AlGaN/GaN;
7 - сглаживающий слой из GaN;
8 - диэлектрик, включающий слой из HfO2;
9 - металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсаторов.
Настоящее устройство изготавливают следующим образом.
На подложке из сапфира 1, толщиной 150-200 мкм, последовательно размещают буферный слой из нитрида алюминия 2, толщиной 0,7 нм, эпитаксиальную структуру на основе широкозонных III-нитридов в виде слоев 3-6, состоящих: из второго буферного слоя 3 из GaN, толщиной 200 нм, нелегированного слоя 4 из GaN i-типа, толщиной 200 нм, слоя твердого раствора AlGaN 5, толщиной 4,5 нм, а в интерфейсе AlGaN/GaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, образующий нижние обкладки 6 конденсаторов. Поверх твердого раствора 5 AlGaN последовательно размещены: сглаживающий слой из нитрида галлия 7 толщиной 3-8 нм, диэлектрик в виде слоя из двуокиси гафния 8 и слоя из оксида алюминия и слой металлических электродов 9 полосковой формы, которые образуют верхнюю обкладку конденсатора.
Использование слоев из оксидов металлов обусловлено следующим. Двуокись гафния является представителем наиболее перспективных диэлектрических материалов и используется в качестве пассивирующего слоя и подзатворного диэлектрика. Этот материал обладает высокими диэлектрической проницаемостью (K=20-25) и шириной запрещенной зоны Eg=5,8 эВ, а также термодинамически стабилен в диапазоне рабочих температур рассматриваемых устройств. Кроме того, двуокись гафния, как диэлектрический материал подходит для устройств с емкостно соединенными контактами, имеет высокую диэлектрическую проницаемость, более сильную емкостную связь и низкую плотность состояний границы раздела.
При необходимости повышения электрической прочности диэлектрика 8, поверх слоя 8 размещается слой оксида алюминия. Использование слоев из двуокиси гафния 8 и оксида алюминия, позволяют минимизировать утечки тока и увеличить значение напряжения пробоя.
Слой из AlGaN 5 предназначен для образования в гетеропереходе AlGaN/GaN, в его приповерхностном слое проводящего канала (двумерного электронного газа (ДЭГ) с высокой подвижностью носителей заряда), возникающего за счет разрыва зон и поляризационных эффектов при образовании гетероперехода AlGaN/GaN. Основным требованием к этому слою является структурное совершенство, достаточное для обеспечения высокой подвижности электронов, и высокого сопротивления. Поэтому канальный слой не легируется, а в ряде случаев используются специальные приемы для обеспечения необходимого сопротивления. Между буферным слоем из нитрида алюминия 2 и слоем из нитрида галлия 4 i-типа располагается переходная область в виде второго буферного слоя из нитрида галлия 3, которая служит для уменьшения рассогласования параметров решетки и растущих на ней эпитаксиальных слоев. Между слоем твердого раствора AlGaN 5 и диэлектрическим слоем 8 HfO2 размещен дополнительный слой 7 из химически более стабильного, по сравнению с AlGaN, материала из нитрида галлия (сглаживающий слой).
В процессе изготовления экспериментальных образцов в гетероструктуре кристалла вместо буферного слоя нитрида галлия 3 был опробован дополнительный буферный слой в виде короткопериодной сверхрешетки AlGaN/GaN, что позволил существенно снизить плотность ростовых дефектов и улучшить электрическую изоляцию между каналом переключателя и подложкой.
Таким образом, предлагается конструкция устройства, которое позволяет использовать емкостные соединенные контакты, тем самым устраняя потребность в омических контактах, что уменьшает рассеиваемую мощность. Низкое сопротивление в открытом состоянии возникает в результате чрезвычайно высокой плотности носителей в канале - сверх 1013 см-2, высокой подвижности электронов до 2500 см2/В·с, высоких полей пробоя и широкого диапазона рабочих температур в пределах от криогенного до ЗООС или даже выше.
Схема устройства приведена на фиг. 2. Первый электрод (E1), сформированный на полупроводниковом канале и полупроводниковый канал образуют первый управляемый напряжением конденсатор; второй электрод (E2), сформированный на полупроводниковом канале и полупроводниковый канал образуют второй управляемый напряжением конденсатор Входной импульс может быть подан между землей E0 и электродом E1 в то время как второй импульс подается между землей E0 и электродом E2.
Устройство подключено в другую схему, если амплитуда входного сигнала (A) не превышает напряжение, необходимое для обеднения одного из конденсаторов (C1) или (C2), импеданс устройства будет очень низким и устройство не будет ограничивать мощность СВЧ. Однако, если амплитуда входного сигнала (B) превышает напряжение, конденсаторы (C1) и (C2) выключаются в течение соответствующего положительного и отрицательного полупериодов.

Claims (3)

1. Ограничитель мощности СВЧ, включающий электроды и емкостные элементы, отличающийся тем, что емкостные элементы представляют собой конденсаторы, кроме того, ограничитель мощности СВЧ включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN, слой из твердого раствора AlGaN, и в интерфейсе GaN/AlGaN гетероструктуры с двумерным электронным газом высокой плотности образован полупроводниковый канал, поверх твердого раствора AlGaN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния, а поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхние обкладки конденсаторов.
2. Ограничитель по п.1, отличающийся тем, что диэлектрик содержит дополнительный слой из оксида алюминия.
3. Ограничитель по п.1, отличающийся тем, что первый электрод полосковой формы, сформированный на полупроводниковом канале, и полупроводниковый канал образуют первый управляемый напряжением конденсатор, а второй электрод полосковой формы, сформированный на полупроводниковом канале, и полупроводниковый канал образуют второй управляемый напряжением конденсатор.
Figure 00000001
RU2014110238/08U 2014-03-18 2014-03-18 Ограничитель мощности свч RU142380U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014110238/08U RU142380U1 (ru) 2014-03-18 2014-03-18 Ограничитель мощности свч

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014110238/08U RU142380U1 (ru) 2014-03-18 2014-03-18 Ограничитель мощности свч

Publications (1)

Publication Number Publication Date
RU142380U1 true RU142380U1 (ru) 2014-06-27

Family

ID=51219310

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110238/08U RU142380U1 (ru) 2014-03-18 2014-03-18 Ограничитель мощности свч

Country Status (1)

Country Link
RU (1) RU142380U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640965C1 (ru) * 2016-09-19 2018-01-12 Акционерное общество "Научно-производственное предприятие "Пульсар" ПСЕВДОМОРФНЫЙ ОГРАНИЧИТЕЛЬ МОЩНОСТИ НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaN/InGaN

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640965C1 (ru) * 2016-09-19 2018-01-12 Акционерное общество "Научно-производственное предприятие "Пульсар" ПСЕВДОМОРФНЫЙ ОГРАНИЧИТЕЛЬ МОЩНОСТИ НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaN/InGaN

Similar Documents

Publication Publication Date Title
US9331163B2 (en) Transistor with diamond gate
EP3316314A1 (en) Aluminum-gallium-nitride compound/gallium-nitride high-electron-mobility transistor
JP5587564B2 (ja) 電界効果トランジスタおよび電界効果トランジスタの製造方法
EP3552240A1 (en) Semiconductor device and method for designing semiconductor device
CN104916633A (zh) 半导体装置
CN107393890B (zh) 一种石墨烯掩埋散热层和纵向沟道GaN MISFET元胞结构及制备方法
CN104916679A (zh) 半导体装置
CN110518068A (zh) 一种具有p-GaN栅结构的常关型InAlN/GaN HMET器件及其制备方法
CN108878524B (zh) 一种氮化镓基高电子迁移率晶体管
JP2022103163A (ja) 窒化物半導体トランジスタ装置
RU142380U1 (ru) Ограничитель мощности свч
RU2558649C1 (ru) Органичитель мощности свч
Selvaraj et al. MOCVD grown normally-OFF type AlGaN/GaN HEMTs on 4 inch Si using p-InGaN cap layer with high breakdown
US10396193B2 (en) III-nitride high electron mobility transistor
RU2563533C2 (ru) Мощный переключатель свч
TW201916357A (zh) 半導體功率元件
RU2640965C1 (ru) ПСЕВДОМОРФНЫЙ ОГРАНИЧИТЕЛЬ МОЩНОСТИ НА ОСНОВЕ ГЕТЕРОСТРУКТУРЫ AlGaN/InGaN
TWI666773B (zh) 半導體功率元件
RU2574810C2 (ru) Мощный переключатель свч
RU143079U1 (ru) Коммутирующее устройство свч
RU2574809C2 (ru) Псевдоморфный переключатель свч
Mao et al. InAlN/AlN/GaN field-plated MIS-HEMTs with a plasma-enhanced chemical vapor deposition SiN gate dielectric
RU140856U1 (ru) Мощный переключатель свч
RU2574808C2 (ru) Мощный псевдоморфный переключатель свч
Fujii et al. Fabrication of enhancement‐mode AlxGa1–xN/GaN junction heterostructure field‐effect transistors with p‐type GaN gate contact