RU2550286C1 - Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе - Google Patents

Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе Download PDF

Info

Publication number
RU2550286C1
RU2550286C1 RU2014122633/14A RU2014122633A RU2550286C1 RU 2550286 C1 RU2550286 C1 RU 2550286C1 RU 2014122633/14 A RU2014122633/14 A RU 2014122633/14A RU 2014122633 A RU2014122633 A RU 2014122633A RU 2550286 C1 RU2550286 C1 RU 2550286C1
Authority
RU
Russia
Prior art keywords
hours
phosphate buffer
perfusion
rat
heart
Prior art date
Application number
RU2014122633/14A
Other languages
English (en)
Inventor
Паоло Маккиарини
Елена Александровна Губарева
Александр Сергеевич Сотниченко
Ирина Валерьевна Гилевич
Филипп Юнгеблут
Original Assignee
Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Кубанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО КубГМУ, Минздрава России)
Паоло Маккиарини
Елена Александровна Губарева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Кубанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО КубГМУ, Минздрава России), Паоло Маккиарини, Елена Александровна Губарева filed Critical Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Кубанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО КубГМУ, Минздрава России)
Priority to RU2014122633/14A priority Critical patent/RU2550286C1/ru
Application granted granted Critical
Publication of RU2550286C1 publication Critical patent/RU2550286C1/ru

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к медицине, а именно к регенеративной медицине, и может быть использовано в клеточной и молекулярной биологии, а также в торакальной хирургии для создания биоинженерного органа в качестве трансплантата. Способ моделирования биоинженерного каркаса сердца в эксперименте включает введение крысе антикоагулянта, выделение органа, очищение его от окружающей жировой ткани, канюлирование аорты, осуществление децеллюляризации путем перфузии в биореакторе, а также контроль качества полученного каркаса на биосовместимость и жизнеспособность. При этом антикоагулянт гепарин вводят крысе интраперитонеально в дозе 100 ЕД перед забором органокомплекса сердце-легкие. Аорту канюлируют выше уровня отхождения левой подключичной артерии с последующим лигированием ветвей дуги аорты. Осуществляют лигирование устья полых вен, отсекают легкие. Перфузию для децеллюляризации осуществляют в течение 28 часов через аорту при атмосферном давлении и скорости потока реагентов через орган 2,4-3,6 мл/минуту. При этом перфузию фосфатным буфером с добавлением 1% пенициллина-стрептомицина и деионизированной водой проводят по 1,5 часа. Затем используют 4% раствор дезоксихолата натрия в комбинации с 0,002М Na-ЭДТА в течение 3,5 часов. Фосфатный буфер с добавлением 1% пенициллина-стрептомицина используют в течение 1 часа, свиную панкреатическую ДНКазу-I 2000 ЕД /200 мл фосфатного буфера с кальцием и магнием - в течение 2,5 часов. Завершают децеллюляризацию фосфатным буфером с добавлением 1% пенициллина-стрептомицина со сменой раствора каждые 6 часов. Жизнеспособность клеток на полученном каркасе определяют по наличию дифференциальн�

Description

Предлагаемое изобретение относится к медицине, а именно к регенеративной медицине, и может быть использовано в клеточной биологии, молекулярной биологии, торакальной хирургии для создания технологии получения и использования в практических целях биоинженерного органа в качестве трансплантата.
Сердечно-сосудистые заболевания - основная причина инвалидизации и преждевременной смерти жителей экономически развитых стран [ВОЗ. http://www.who.int/mediacentre/factsheets/fs310/ru/]. Рост заболеваемости, поражение людей все более молодого возраста делают эти болезни важнейшей медико-социальной проблемой здравоохранения [ВОЗ. http://www.who.int/gho/publications/world_health_statistics]. Хроническая сердечная недостаточность (ХСН) - одно из самых частых осложнений заболеваний сердечно-сосудистой системы. Количество больных, которые достигают терминальной стадии ХСН, постоянно растет. Трансплантация сердца - хирургический способ лечения терминальной стадии ХСН. Каждый год в мире проводят более 5400 операций по пересадке сердца [ВОЗ. http://www.who.int/transplantation/gkt/statistics/en/]. В настоящее время, основные проблемы трансплантологии связаны с острой нехваткой донорских органов, сложностью их доставки, трудностью поиска иммунологически совместимых органов и пожизненным назначением иммуносупрессивной терапии [Fuchs J.R et al., 2001]. Поэтому одной из наиболее перспективных задач можно считать развитие тканевой инженерии, как одного из направлений регенеративной медицины [Murphy S.V. et al., 2012, Taylor D.A. 2009].
В развитии современной тканевой инженерии приоритетным направлением является разработка биоинженерных каркасов и биоматериалов, применение которых позволило бы решать как этические, так и иммунологические проблемы трансплантологии. Для создания органов и тканей будут использоваться каркасы или матриксы (биологические или искусственные), клетки (ауто-, алло-, ксеногенные), биореакторы и биоактивные молекулы [Fuchs J.R et al., 2001, McIntire L.V. et al. 2002., Langer R. et al. 1993., Skalak R. Et al. 1988., Amulya S. 2005., Atala A. 2005].
Децеллюляризация - это способ получения биологических каркасов, который направлен на удаление клеток с сохранением внеклеточного матрикса (ВКМ) и трехмерности структуры органа [Badylak S.F. et al. 2011]. Межклеточное вещество рыхлой волокнистой соединительной ткани состоит из волокон и аморфного вещества. Оно является продуктом деятельности клеток этой ткани, в первую очередь фибробластов. Архитектоника и состав ВКМ в каждой ткани являются уникальными, определяют функциональность этой ткани. Тем не менее, структура и состав каждого конкретного белка ВКМ остаются неизменными у различных видов [Exposito J.Y. et al. 1992., Bernard M.P. et al. 1983., Bernard M.P. et al. 1983]. Это способствуют тому, что ВКМ одних видов не вызывает иммунного отторжения у других. При правильном удалении клеточных антигенов, которые вызывают иммунное отторжение без повреждения ВКМ, полученный каркас может служить мощным источником сигналов и содействовать конструктивному ремоделированию тканей после повреждения. «Конструктивное ремоделирование» означает, что каркас ВКМ содействует формированию участка соответствующей ткани в месте имплантации, вместо образования рубцовой ткани [Badylak S.F. 2007]. Для создания соответствующего требованиям каркаса биоинженерного органа требуется: во-первых, воссоздать структуру, сходную с нативной; во-вторых, развитая сосудистая сеть, способная обеспечить адекватную перфузию тканей; в-третьих, необходимо, чтобы клетки, используемые при рецеллюляризации, были способны к дифференцировке во все паренхиматозные и сосудистые структуры органа; в-четвертых, иметь возможность управления микроокружением клеток для воздействия на их физиологию и функции; в-пятых, должна существовать возможность управления дифференцировкой и созреванием клеток in vitro [Taylor D., 2009].
С учетом высокой смертности от хронических заболеваний сердечнососудистой системы, весьма актуальной является разработка способа моделирования биоинженерного каркаса сердца в эксперименте на крысе.
В частности, известен способ децеллюляризации сердца свиньи [Wainwright J.M., Czajka С.А., Patel U.B. et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue engineering: Part C; 2010; 16(3): 525-532]. Протокол включает в себя заморозку сердца свиньи при -80°C, с последующей перфузией через аорту очищенной водой, фосфатно-буферным солевым раствором, детергентами и ферментами: растворами, содержащими 0,02% трипсина, 0,05% ЭДТА, 0,05% NaN3, 3% тритона Х-100, 4% дезоксихолата натрия, а также дезинфекцию каркаса перфузией раствора, содержащего 0,1% надуксусной кислоты и 4% этанола и отмывку каркаса фосфатно-буферным солевым раствором и очищенной водой с общей продолжительностью 25 часов. Контроль качества полученного каркаса определяют гистологическими методами, путем сканирующей электронной микроскопии, количественного определения остаточного уровня ДНК, гликозаминогликанов, а также изучением механических свойств.
Основными недостатками данного способа являются использование больших объемов дорогостоящих реагентов для проведения децеллюляризации, а также необходимость длительного размораживания нативного сердца после извлечения из морозильной камеры, повышающая риск бактериальной контаминации. Способ предусматривает контроль получаемого биоинженерного каркаса сердца только по данным гистологического исследования, по оценке механических и эластических свойств каркаса. Также в данном протоколе децеллюляризацию проводят на модели сердца свиньи, что, в связи с физиологическими отличиями животных, не может транслироваться на модель сердца крысы без изменений и дополнений.
За ближайший аналог принят способ проведения децеллюляризации сердца крысы [Ott Н.С, Matthiesen T.S, Goh S.K. et al. Perfusion decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine. 2008; 14:213-21], заключающийся в выделении сердца крысы, очищении его от окружающей жировой клетчатки, канюлировании аорты до уровня отхождения плечеголовного ствола, проведении ретроградной перфузии сердца через аорту фосфатным буфером (PBS) с добавлением антикоагулянта гепарина, аденозина и антибиотика-антимикотика, деионизированной водой и растворами детергентов: 1% додецилсульфата натрия и 1% тритона Х-100 в течение ~137 часов. Контроль качества децеллюляризации проводился путем гистологического исследования, анализа морфологической структуры, количественного определения уровня ДНК и механических свойств полученного каркаса.
Основным недостатком данного способа является длительность проведения децеллюляризации, создающая угрозу бактериальной контаминации каркаса, нарушения структуры каркаса в связи с длительностью воздействия детергентов и их высокой концентрацией.
Задачи: максимальное сохранение гистологической структуры внеклеточного матрикса сердца, обеспечение щадящего режима обработки биологического материала, снижение концентрации детергентов, времени экспозиции растворов и вероятности бактериальной контаминации получаемого каркаса, т.е. повышение качества получаемого биоинженерного материала и обеспечение контроля его качества.
Сущностью предлагаемого способа моделирования биоинженерного каркаса сердца в эксперименте на крысе является то, что антикоагулянт гепарин вводят крысе интраперитонеально в дозе 100 ЕД перед забором органокомплекса сердце-легкие, аорту канюлируют выше уровня отхождения левой подключичной артерии с последующим лигированием ветвей дуги аорты, осуществляют лигирование устья полых вен, отсекают легкие, перфузию для децеллюляризации осуществляют в течение 28 часов через аорту при атмосферном давлении и скорости потока реагентов через орган 2,4-3,6 мл/минуту, при этом перфузию фосфатным буфером с добавлением 1% пенициллина-стрептомицина и деионизированной водой проводят по 1,5 часа, затем используют 4% раствор дезоксихолата натрия в комбинации с 0,002М Na2-ЭДТА в течение 3,5 часов, фосфатный буфер с добавлением 1% пенициллина-стрептомицина - в течение 1 часа, свиную панкреатическую ДНКазу-I 2000 ЕД/200 мл фосфатного буфера с кальцием и магнием - 2,5 часов и завершают децеллюляризацию фосфатным буфером с добавлением 1% пенициллина-стрептомицина со сменой раствора каждые 6 часов, причем жизнеспособность клеток на полученном каркасе определяют по наличию дифференциального окрашивания живых и мертвых клеток, по способности дегидрогеназ живых клеток восстанавливать неокрашенные формы 3-4,5-диметилтиазол-2-ил-2,5-дифенилтераразола до голубого кристаллического фармазана, растворимого в диметилсульфоксиде.
Техническим результатом способа является сокращение времени экспозиции перфузионных растворов. Ранее использовавшиеся протоколы повреждали каркас сердца и несли высокий риск развития бактериальной контаминации, что крайне неблагоприятно сказывалось на качестве полученного каркаса сердца и возможности последующего создания биоинженерного органа. Применение дезоксихолата натрия, снижение времени воздействия децеллюляризирующих растворов полностью нивелирует негативные эффекты известных способов того же назначения. Кроме того, способ предусматривает оценку биосовместимости и жизнеспособности клеток, засеянных на каркас, по наличию дифференциального окрашивания живых и мертвых клеток, по способности дегидрогеназ живых клеток восстанавливать неокрашенные формы 3-4,5-диметилтиазол-2-ил-2,5-дифенилтераразола до голубого кристаллического фармазана, растворимого в диметилсульфоксиде (МТТ-тест).
Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе осуществляют следующим образом: для децеллюляризации используют предварительно гепаринизированных крыс (интраперитонеально вводят 100 ЕД антикоагулянта гепарина). Выделяют органокомплекс сердце-легкие. Очищают от окружающей жировой ткани. Аорту канюлируют на расстоянии 3-3,5 см от сердца выше уровня отхождения левой подключичной артерии. Ветви дуги аорты: плечеголовной ствол, левую общую сонную и левую подключичную артерии лигируют. Переднюю и заднюю полые вены отсекают. Устья полых вен лигируют. Отсекают легкие. Для проведения децеллюляризации сердце помещают в биореактор и начинают ретроградную перфузию жидкости через аорту в течение 28 часов при атмосферном давлении и скорости потока реагентов 2,4-3,6 мл/мин. Этапы децеллюляризации: фосфатный буфер с добавлением 1% пенициллина-стрептомицина - 1,5 часа, деионизированная вода - 1,5 часа, дезоксихолат натрия 4% в комбинации с 0,002М Na2 - ЭДТА - 3,5 часа, фосфатный буфер с добавлением 1% пенициллина-стрептомицина - 1 час, свиная панкреатическая ДНКаза-I 2000 ЕД /200 мл фосфатного буфера с кальцием и магнием - 2,5 часа, фосфатный буфер с добавлением 1% пенициллина-стрептомицина - 18 часов, со сменой раствора каждые 6 часов. Все растворы должны быть стерильными.
Контроль качества полученного биоинженерного каркаса осуществляют методами гистологического исследования (окрашивание гематоксилином и эозином, по Ван Гизон, трихромом по Массону, флуорофором DAPI (4′,6-диамидино-2-фенилиндолом)), сканирующей электронной микроскопии для подтверждения сохранности архитектоники внеклеточного матрикса сердца и отсутствия клеточных элементов на сердечном каркасе, количественного определения уровня оставшейся ДНК [Badylak S.F. et al., 2011], а также путем определения предельных биомеханических параметров на растяжение каркаса на универсальных испытательных машинах фирмы Инстрон модель 5965 (датчик 50 Н) и на Lloyd LRX (100 N load cell) [Witzenburg С. et al., 2012]. Сохранность белков внеклеточного матрикса и отсутствие внутриклеточных белков определяют при помощи иммуногистохимического исследования [Ott Н.С.et al., 2008]. Проходимость сосудистого русла определяют перфузией через аорту 0,4% раствора трипанового синего. Жизнеспособность клеток на полученном каркасе определяют путем колориметрического анализа с использованием МТТ-реагента по способности дегидрогеназ живых клеток восстанавливать неокрашенные формы 3-4,5-диметилтиазол-2-ил-2,5-дифенилтераразола до голубого кристаллического фармазана, растворимого в диметилсульфоксиде, в целях установления цитотоксичности полученного каркаса и проведения последующих экспериментов по рецеллюляризации. Колориметрический анализ проводят согласно рекомендациям в инструкции производителя (инструкция прилагается). Также для определения цитотоксичности каркаса проводят дифференциальное окрашивание живых и мертвых клеток с применением флуоресцентных красителей - кальцеина AM (окрашивает живые клетки) и гомодимера этидия (окрашивает мертвые клетки).
Способ апробирован в течение 2 лет на биологическом материале (сердце) экспериментальных животных (крысы). Результаты полностью подтвердили решаемые задачи. Получены естественные каркасы органов, с сохранным внеклеточным матриксом и отсутствием клеточных структур.
Figure 00000001
Figure 00000002
Данный способ моделирования биоинженерного каркаса сердца в эксперименте на крысе использован в эксперименте на 50 крысах-самцах линии Lewis. Выполнены забор и фиксация в биореакторе сердца с последующей децеллюляризацией по предлагаемому способу.
Пример: после проведения эвтаназии передозировкой наркотических средств в соответствии с этическими требованиями и интраперитонеального введения 100 ЕД гепарина произвели забор органокомплекса сердце-легкие у крысы-самца линии Lewis весом 200 г. Органокомплекс очистили от окружающей жировой ткани, лигировали устья полых вен, плечеголовной ствол, левую общую сонную артерию, левую подключичную артерию, отсекли легкие, канулировали аорту и фиксировали в биореакторе. Начали децеллюляризацию сердца путем перфузии сердца через аорту децеллюляризирующими растворами: фосфатным буфером с добавлением 1% пенициллина-стрептомицина в течение 1,5 часов, деионизированной водой - 1,5 часа, 4% водным раствором дезоксихолата натрия в комбинации с 0,002М Na2-ЭДТА 3,5 часа, фосфатным буфером с добавлением 1% пенициллина-стрептомицина в течение 1 часа, свиной панкреатической ДНКазой I (2000 ЕД растворили в 200 мл фосфатного буфера с кальцием и магнием - 2,5 часа, фосфатным буфером с добавлением 1% пенициллина-стрептомицина в течение 18 часов со сменой раствора каждые 6 часов. Контроль качества полученного биоинженерного каркаса осуществляли методами гистологического исследования (окрашиванием гематоксилином и эозином, по Ван Гизон, трихромом по Массону, флуорофором DAPI (4′,6-диамидино-2-фенилиндолом)), путем применения сканирующей электронной микроскопии для подтверждения сохранности архитектоники внеклеточного матрикса сердца и отсутствия клеточных элементов на сердечном каркасе, количественно определили уровень оставшейся ДНК, установили предельные биомеханические параметры на растяжение каркаса на универсальных испытательных машинах фирмы Инстрон модель 5965 (датчик 50 Н) и на Lloyd LRX (100 N load cell). Сохранность белков внеклеточного матрикса (коллагена I, III и IV типов, ламинина, эластина, фибронектина) и отсутствие внутриклеточных белков (актина, тропомиозина, фактора Виллебранда) определили при помощи иммуногистохимического исследования, по наличию либо отсутствию специфичной реакции с антителами против данных белков. Проходимость сосудистого русла выявили перфузией через аорту 0,4% раствора трипанового синего, которая показала проходимость коронарных артерий и позволила визуализировать сосуды вплоть до артерий третьего-четвертого порядка. Жизнеспособность клеток на полученном каркасе определяли путем колориметрического анализа с использованием МТТ-реагента по способности дегидрогеназ живых клеток восстанавливать неокрашенные формы 3-4,5-диметилтиазол-2-ил-2,5-дифенилтераразола до голубого кристаллического фармазана, растворимого в диметилсульфоксиде (МТТ-тест) в целях установления цитотоксичности полученного каркаса и проведения последующих экспериментов по рецеллюляризации. Также для определения цитотоксичности каркаса провели дифференциальное окрашивание живых и мертвых клеток с применением флуоресцентных красителей - кальцеина AM (окрашивал живые клетки) и гомодимера этидия (окрашивал мертвые клетки).
В результате экспериментов по децеллюляризации получен каркас сердца с сохранением гистологической архитектоники и белков внеклеточного матрикса. Результаты рецеллюляризации показывают, что полученный каркас не является токсичным для клеток.

Claims (1)

  1. Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе, включающий введение крысе антикоагулянта, выделение органа, очищение его от окружающей жировой ткани, канюлирование аорты, осуществление децеллюляризации путем перфузии в биореакторе, а также контроль качества полученного каркаса на биосовместимость и жизнеспособность, отличающийся тем, что антикоагулянт гепарин вводят крысе интраперитонеально в дозе 100 ЕД перед забором органокомплекса сердце-легкие, аорту канюлируют выше уровня отхождения левой подключичной артерии с последующим лигированием ветвей дуги аорты, осуществляют лигирование устья полых вен, отсекают легкие, перфузию для децеллюляризации осуществляют в течение 28 часов через аорту при атмосферном давлении и скорости потока реагентов через орган 2,4-3,6 мл/минуту, при этом перфузию фосфатным буфером с добавлением 1% пенициллина-стрептомицина и деионизированной водой проводят по 1,5 часа, затем используют 4% раствор дезоксихолата натрия в комбинации с 0,002М Na2-ЭДТА в течение 3,5 часов, фосфатный буфер с добавлением 1% пенициллина-стрептомицина - в течение 1 часа, свиную панкреатическую ДНКазу-I 2000 ЕД/200 мл фосфатного буфера с кальцием и магнием - 2,5 часов и завершают децеллюляризацию фосфатным буфером с добавлением 1% пенициллина-стрептомицина со сменой раствора каждые 6 часов, причем жизнеспособность клеток на полученном каркасе определяют по наличию дифференциального окрашивания живых и мертвых клеток, по способности дегидрогеназ живых клеток восстанавливать неокрашенные формы 3-4,5-диметилтиазол-2-ил-2,5-дифенилтераразола до голубого кристаллического фармазана, растворимого в диметилсульфоксиде.
RU2014122633/14A 2014-06-03 2014-06-03 Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе RU2550286C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014122633/14A RU2550286C1 (ru) 2014-06-03 2014-06-03 Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014122633/14A RU2550286C1 (ru) 2014-06-03 2014-06-03 Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе

Publications (1)

Publication Number Publication Date
RU2550286C1 true RU2550286C1 (ru) 2015-05-10

Family

ID=53293917

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014122633/14A RU2550286C1 (ru) 2014-06-03 2014-06-03 Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе

Country Status (1)

Country Link
RU (1) RU2550286C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654686C1 (ru) * 2017-06-07 2018-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный медицинский университет" Минздрава России (ФГБОУ ВО КубГМУ Минздрава России) Способ восстановления функциональных свойств тканеинженерной конструкции диафрагмы
RU2662083C1 (ru) * 2017-10-05 2018-07-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ гетеротопической абдоминальной трансплантации сердца у крыс, снижающий вторичную тепловую ишемию миокарда донорского сердца
RU187284U1 (ru) * 2018-03-15 2019-02-28 Александр Викторович Никольский Учебная анатомическая модель сердца человека
RU2713803C1 (ru) * 2019-01-10 2020-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Амурская государственная медицинская академия" Министерства здравоохранения Российской Федерации Способ децеллюризации легкого для получения внеклеточного матрикса

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU54768U1 (ru) * 2005-09-29 2006-07-27 Владимир Андреевич Болсуновский Комбинированный сосудистый гомографт и биологический сосудистый гомографт болсуновского
RU2461622C2 (ru) * 2007-11-28 2012-09-20 Огенодженесис, Инк. Биоинженерный конструкт для имплантации ткани и способ изготовления названного биоинженерного конструкта (варианты)
RU2504334C1 (ru) * 2012-11-28 2014-01-20 Федеральное государственное бюджетное учреждение "Федеральный Центр сердца, крови и Эндокринологии имени В.А. Алмазова" Министерства здравоохранения Российской Федерации Способ децеллюляризации кровеносных сосудов малого калибра
US8666762B2 (en) * 2006-09-21 2014-03-04 Biomedical Synergies, Inc. Tissue management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU54768U1 (ru) * 2005-09-29 2006-07-27 Владимир Андреевич Болсуновский Комбинированный сосудистый гомографт и биологический сосудистый гомографт болсуновского
US8666762B2 (en) * 2006-09-21 2014-03-04 Biomedical Synergies, Inc. Tissue management system
RU2461622C2 (ru) * 2007-11-28 2012-09-20 Огенодженесис, Инк. Биоинженерный конструкт для имплантации ткани и способ изготовления названного биоинженерного конструкта (варианты)
RU2504334C1 (ru) * 2012-11-28 2014-01-20 Федеральное государственное бюджетное учреждение "Федеральный Центр сердца, крови и Эндокринологии имени В.А. Алмазова" Министерства здравоохранения Российской Федерации Способ децеллюляризации кровеносных сосудов малого калибра

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OTT Н.С. et al. Perfusion decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine. 2008; 14: 213-21. *
ЧЕРКАВСКАЯ О. В. Клинические результаты применения новых биоинженерных технологий (стенты, захватывающие клетки-предшественники эндотелия) в лечении ишемической болезни сердца. Вестник рентгенологии и радиологии, 2012, N 1, С. 9-16. HUANG YC et al. Modulating the functional performance of bioengineered heart muscle using growth factor stimulation.Ann Biomed Eng. 2008 Aug;36(8):1372-82, реф. AMIEL G.E. et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells, Tissue Eng. 2006 Aug; 12(8):2355-65, реф *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654686C1 (ru) * 2017-06-07 2018-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный медицинский университет" Минздрава России (ФГБОУ ВО КубГМУ Минздрава России) Способ восстановления функциональных свойств тканеинженерной конструкции диафрагмы
RU2662083C1 (ru) * 2017-10-05 2018-07-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ гетеротопической абдоминальной трансплантации сердца у крыс, снижающий вторичную тепловую ишемию миокарда донорского сердца
RU187284U1 (ru) * 2018-03-15 2019-02-28 Александр Викторович Никольский Учебная анатомическая модель сердца человека
RU2713803C1 (ru) * 2019-01-10 2020-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Амурская государственная медицинская академия" Министерства здравоохранения Российской Федерации Способ децеллюризации легкого для получения внеклеточного матрикса

Similar Documents

Publication Publication Date Title
Porzionato et al. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives
Caralt et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation
JP6609595B2 (ja) 肺臓の組織工学
Weymann et al. Development and Evaluation of a Perfusion Decellularization Porcine Heart Model–Generation of 3-Dimensional Myocardial Neoscaffolds–
Zhang et al. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps
RU2635478C2 (ru) Удаление и восстановление содержания клеток в органах и тканях
Crapo et al. An overview of tissue and whole organ decellularization processes
Wu et al. Optimizing perfusion-decellularization methods of porcine livers for clinical-scale whole-organ bioengineering
Milan et al. Decellularization and preservation of human skin: A platform for tissue engineering and reconstructive surgery
RU2550286C1 (ru) Способ моделирования биоинженерного каркаса сердца в эксперименте на крысе
Nari et al. Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers
Shahabipour et al. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering
Ansari et al. Development and characterization of a porcine liver scaffold
CN104587528A (zh) 人心脏瓣膜组织脱细胞基质及其制备和应用
JP2017128606A (ja) 生物工学で作製された同種異系弁
Łabuś et al. Own experience from the use of a substitute of an allogeneic acellular dermal matrix revitalized with in vitro cultured skin cells in clinical practice
RU2547799C1 (ru) Способ создания биоинженерного каркаса легкого крысы
KR102530336B1 (ko) 개인맞춤 혈관을 제조하는 방법
Kwon et al. Decellularization
RU2654686C1 (ru) Способ восстановления функциональных свойств тканеинженерной конструкции диафрагмы
RU2662554C2 (ru) Способ подготовки материала для создания биоинженерной конструкции пищевода
DE112019002479B4 (de) Verfahren zur herstellung einer kollagen-laminin-matrix zur heilung von hautgeschwüren, verbrennungen und wunden beim menschen
Akbarzadeh et al. Coronary-Based Right Heart Flap Recellularization by Rat Neonatal Whole Cardiac Cells: A Viable Sheep Cardiac Patch Model for Possible Management of Heart Aneurysm
Sembiring et al. Comparative Assessment of Various Concentration and Exposure Time of Sodium Dodecyl Sulfate as Decellularization Agents for Small-Vessels Vascular Tissue Engineering
US20230174942A1 (en) Novel fabrication of coronary based decellularized heart flaps to treat aneurysm following myocardial infarction

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160604