RU2550089C2 - Охлаждение сверхпроводящих машин - Google Patents
Охлаждение сверхпроводящих машин Download PDFInfo
- Publication number
- RU2550089C2 RU2550089C2 RU2011153676/07A RU2011153676A RU2550089C2 RU 2550089 C2 RU2550089 C2 RU 2550089C2 RU 2011153676/07 A RU2011153676/07 A RU 2011153676/07A RU 2011153676 A RU2011153676 A RU 2011153676A RU 2550089 C2 RU2550089 C2 RU 2550089C2
- Authority
- RU
- Russia
- Prior art keywords
- evaporator
- irrigated
- liquid cooling
- liquid coolant
- liquid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K55/00—Dynamo-electric machines having windings operating at cryogenic temperatures
- H02K55/02—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
- H02K55/04—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0208—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes using moving tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
- F28F1/16—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
- H02K9/20—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/225—Heat pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Geometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Motor Or Generator Cooling System (AREA)
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Изобретение касается устройства для охлаждения сверхпроводящих машин, включающего в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством и которая снабжена испарителем для испарения жидкого охлаждающего средства. Технический результат заключается в улучшении охлаждающих способностей устройства. Устройство для охлаждения сверхпроводящих машин включает в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством и которая снабжена испарителем для испарения жидкого охлаждающего средства. При этом предусмотрены средства, предназначенные для увеличения орошаемой жидким охлаждающим средством поверхности испарителя, которые выполнены в виде по меньшей мере одного вытесняющего элемента для вытеснения жидкого охлаждающего средства. 6 з.п. ф-лы, 5 ил.
Description
Описание
Изобретение касается устройства для охлаждения сверхпроводящих машин, включающего в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством, и которая снабжена испарителем для испарения жидкого охлаждающего средства.
В документе DE 102 44 428 A1 описывается машина, включающая в себя ротор и статор, расположенные в одном корпусе машины, которая содержит устройство, служащее для охлаждения частей внутри этого корпуса. Это устройство охлаждения по меньшей мере на одной торцевой стороне машины снабжено замкнутой системой трубопроводов, включающей в себя находящийся вне корпуса конденсатор, находящийся внутри корпуса испаритель и проходящие между конденсатором и испарителем соединительные трубы, причем в этой системе циркуляция охлаждающего средства осуществляется за счет термосифонного эффекта.
В документе WO 2006/082194 A1 описывается машина, включающая в себя вращающийся вокруг оси ротор, сверхпроводящая обмотка которого соединена теплопроводящим соединением с центральной камерой охлаждающего средства неподвижно вдающегося в полость ротора теплопроводного элемента через каркас обмотки и обеспечивающий тепловой контакт газ. Камера охлаждающего средства с присоединенными к ней сбоку частями трубопроводов и находящейся вне машины конденсорной камерой холодильного узла образует систему трубопроводов, в которой охлаждающее средство циркулирует за счет термосифонного эффекта. Для поддержания подачи охлаждающего средства в центральную камеру охлаждающего средства даже при перекосах ротора камера охлаждающего средства снабжена облицовкой из пористого материала, предпочтительно металлокерамики, с высокой термической проводимостью.
В основу изобретения положена задача улучшить охлаждающую способность устройства, служащего для охлаждения сверхпроводящих машин.
Эта задача решается с помощью устройства с признаками по п.1 формулы изобретения.
Изобретение основано на теории о том, что для достижения необходимой охлаждающей способности в устройстве, служащем для охлаждения сверхпроводящих машин, решающим является не абсолютное количество имеющегося в распоряжении жидкого охлаждающего средства, а размер орошаемой жидким охлаждающим средством поверхности испарителя. Чем больше орошаемая жидким охлаждающим средством поверхность испарителя, тем больше охлаждающего средства может испаряться, т.е. тем больше тепловой энергии может передаваться через эту имеющуюся орошаемую поверхность испаряемому охлаждающему средству. Путем увеличения орошаемой поверхности испарителя может, таким образом, эффективно повышаться имеющаяся охлаждающая способность устройства охлаждения сверхпроводящих машин.
Испаритель обычно выполнен в виде полости, ограничением которой служит поверхность испарителя. В зависимости от степени наполнения жидким охлаждающим средством для испарения жидкого охлаждающего средства служит при этом поверхность испарителя большего или меньшего размера. Чтобы увеличить эту орошаемую жидким охлаждающим средством поверхность без необходимости увеличения количества жидкого охлаждающего средства, предлагается, чтобы средства, предназначенные для увеличения орошаемой жидким охлаждающим средством поверхности испарителя, включали в себя по меньшей мере один вытесняющий элемент, служащий для вытеснения жидкого охлаждающего средства. Таким образом экономится охлаждающее средство при одновременном увеличении орошаемой жидким охлаждающим средством поверхности испарителя.
Предпочтительные варианты осуществления предлагаемого изобретением устройства содержатся в зависимых пунктах.
По одному из предпочтительных вариантов осуществления изобретения испаритель расположен внутри ротора сверхпроводящей машины. При этом избыточная тепловая энергия отводится непосредственно из ротора. Достигаемое с помощью изобретения увеличение орошаемой жидким охлаждающим средством поверхности испарителя предпочтительно, в частности, при этом варианте осуществления изобретения, так как обычно объем и вместе с тем также поверхность испарителя, находящегося внутри ротора, ограничены относительно малыми размерами ротора.
Конструктивные преимущества достигаются за счет того, что по другому предпочтительному варианту осуществления изобретения испаритель и по меньшей мере один вытесняющий элемент имеют цилиндрическую, в частности круглую цилиндрическую, форму. Такая форма является простой в изготовлении и тем не менее эффективной для вытеснения жидкого охлаждающего средства.
По другому предпочтительному варианту осуществления изобретения предлагается, чтобы орошаемая жидким охлаждающим средством поверхность испарителя обладала поверхностной структурой, которая выполнена таким образом, чтобы увеличивалась поверхность, эффективно используемая для передачи тепла. Благодаря этому удается достичь особенно сильного увеличения орошаемой жидким охлаждающим средством поверхности испарителя при одновременных малых затратах на конструирование.
С технологической точки зрения особенно просто реализуемой является при этом поверхностная структура по другому предпочтительному варианту осуществления изобретения, которая включает в себя трехмерные, в частности, выполненные в виде пазов или ребер элементы.
Для еще большего повышения охлаждающей способности поверхностная структура по другому предпочтительному варианту осуществления изобретения включает в себя двухмерные, в частности, имеющие форму отверстий или шипов элементы.
По другому варианту осуществления изобретения жидкое охлаждающее средство представляет собой неон. Неон позволяет получить особенно предпочтительную рабочую точку, например, при охлаждении высокотемпературных сверхпроводников, однако является относительно дорогим, так что уменьшение количества охлаждающего средства, которое достигается с помощью изобретения, является особенно актуальным.
Ниже изобретение описывается и поясняется более подробно на примерах осуществления, схематично изображенных на фигурах.
Показано:
фиг.1: сечение сверхпроводящей машины, а также устройства, служащего для охлаждения сверхпроводящей машины, в схематичном изображении;
фиг.2: испаритель по уровню техники в схематичном изображении;
фиг.3: один из примеров осуществления предлагаемого изобретением устройства, снабженного вытесняющим элементом, служащим для вытеснения жидкого охлаждающего средства;
фиг.4: другой пример осуществления предлагаемого изобретением устройства, при котором поверхность испарителя, эффективно используемая для передачи тепла, увеличена, и
фиг.5: один из примеров осуществления предлагаемого изобретением устройства, при котором применены различные средства для увеличения орошаемой жидким охлаждающим средством поверхности.
На фиг.1 показана сверхпроводящая машина 1, а также устройство, служащее для охлаждения сверхпроводящей машины 1, в схематичном изображении. Показано сечение по продольной оси сверхпроводящей машины 1. Показанная в примере осуществления, изображенном на фиг.1, сверхпроводящая машина 1 представляет собой вращающуюся электрическую машину, в частности синхронную машину, например двигатель или генератор. Эта машина включает в себя статор 10, а также ротор 6. Кроме того, она включает в себя корпус 11, служащий для помещения статора 10 и для установки на опору ротора 6. Сверхпроводящая машина 1 охлаждается посредством закрытой термосифонной системы, которая включает в себя испаритель 4, конденсатор 9, а также соединяющие испаритель 4 и конденсатор 9 элементы, например трубные соединения. Испаритель 4, соединяющие элементы и конденсатор 9 ограничивают замкнутый объем, который предусмотрен для помещения жидкого охлаждающего средства 3. У испарителя 4 имеется орошаемая жидким охлаждающим средством 3 поверхность 5, через которую отводимая тепловая энергия, которая выделяется в роторе, передается охлаждающему средству 3. При этом обычно охлаждающее средство 3 за счет передаваемой тепловой энергии переходит из жидкого состояния в газообразное состояние, т.е. охлаждающее средство 3 испаряется или, соответственно, кипит. Вследствие низкой плотности газообразного охлаждающего средства оно поднимается по соединяющим элементам к геодезически более высоко расположенному конденсатору 9 и там при отборе поглощенной тепловой энергии снова переходит из газообразного состояния в жидкое состояние. Снова сжиженное таким образом охлаждающее средство 3 снова течет под действием силы тяжести обратно к испарителю 4 и, в частности, к орошаемой охлаждающим средством 3 поверхности 3 испарителя 4. Такого рода система охлаждения использует, таким образом, так называемый термосифонный эффект. Циркуляционный контур охлаждения поддерживается только за счет указанных разностей плотности или, соответственно, силы тяжести.
На фиг.2 показано осевое сечение испарителя 4 сверхпроводящей машины при останове машины. Другие части машины на фиг.2 в точности не изображены. Испаритель 4, показанный на фиг.2, имеет круглое цилиндрическое поперечное сечение. Изображенный испаритель 4 известен из уровня техники. Испаритель 4 по меньшей мере частично наполнен жидким охлаждающим средством 3. При этом орошаемая или, соответственно, орошенная жидким охлаждающим средством 3 поверхность испарителя 4 обозначена номером 5 позиции.
При охлаждении сверхпроводящих машин 1 посредством термосифонной системы для достижения необходимой охлаждающей способности определенная минимальная поверхность испарителя 4 должна орошаться жидким охлаждающим средством 3. В зависимости от точной геометрии испарителя 4, наряду с часто ограниченной во время фазы охлаждения пленочным кипением теплопередачей, у рассчитанных по фактическим параметрам сверхпроводящих машин для этого необходимо сравнительно большое количество жидкого охлаждающего средства (например, неона, азота или т.п.).
В настоящее время эта проблема обычно решается за счет того, что просто заправляется соответствующее количество охлаждающего средства 3, которое в (обычно горизонтально расположенном) испарителе 4 цилиндрической формы может орошать достаточно большую поверхность. При одновременном сохранении концепции однократно заправляемой, закрытой термосифонной системы этот способ требует сравнительно большой буферной емкости при комнатной температуре (напорная емкость), в которой при отключении или выходе из строя охлаждения постепенно испаряющееся жидкое охлаждающее средство 3 может улавливаться при приемлемом повышении давления. Альтернативно можно, конечно, смириться с тем, что из-за малого наполнения охлаждающим средством процесс охлаждения длится дольше, чем это собственно необходимо.
На фиг.3 показан испаритель 4 по одному из примеров осуществления предлагаемого изобретением устройства. Испаритель 4 по меньшей мере частично наполнен жидким охлаждающим средством 3. За счет применения дополнительного (предпочтительно цилиндрического) вытесняющего элемента 7 может быть значительно уменьшено необходимое количество жидкости, служащей для орошения той же самой поверхности испарителя. Устройство включает в себя в качестве средств 7, 8, предназначенных для увеличения орошаемой жидким охлаждающим средством 3 поверхности 5 испарителя 4, вытесняющий элемент 7, служащий для вытеснения жидкого охлаждающего средства 3. С помощью вытесняющего элемента 7 объем, имеющийся в распоряжении внутри испарителя 4 для жидкого охлаждающего средства 3, ограничивается таким образом, что фактически орошаемая охлаждающим средством 3 поверхность 5 испарителя 4 увеличивается.
На фиг.4 показан испаритель 4 другого примера осуществления предлагаемого изобретением устройства. Альтернативно или дополнительно к варианту осуществления, показанному на фиг.3, сама поверхность испарителя также может быть значительно увеличена путем выполнения соответствующей поверхностной структуры 8 на ее эффективно действующей поверхности. Предпочтительными вариантами осуществления являются одномерные, выполненные в виде пазов или ребер структуры, с помощью которых простым способом может быть значительно увеличена поверхность (в 3-5 раз). В соответствии с изображенным примером осуществления средства 7, 8, служащие для увеличения орошаемой жидким охлаждающим средством поверхности 5 испарителя 4, выполнены в виде поверхностной структуры 8 поверхности испарителя, при этом поверхностная структура 8 выполнена таким образом, что поверхность 5, эффективно используемая для передачи тепла, увеличивается. Поверхностная структура 8 в показанном примере осуществления включает в себя одномерные в этом случае выполненные в виде пазов или ребер элементы. Предпочтительны также двухмерные, несколько более сложные в изготовлении варианты, служащие для увеличения поверхности (такие как, например, выполнение отверстий или структур, подобных шипам), которые позволяют еще больше увеличить эффективную поверхность.
На фиг.5 показан другой пример осуществления испарителя 4 предлагаемого изобретением устройства, которое включает в себя комбинацию средств 7, 8, служащих для увеличения орошаемой жидким охлаждающим средством поверхности 5 испарителя 4. В примере осуществления, показанном на фиг.5, скомбинированы как средства, показанные на фиг.3, т.е. вытесняющий элемент 7, так и средства, показанные на фиг.4, т.е. поверхностная структура 8, служащая для увеличения орошаемой жидким охлаждающим средством поверхности 5 испарителя 4.
Показанные варианты осуществления изобретения позволяют уменьшить необходимое количество жидкости, служащей для орошения определенной минимальной поверхности испарителя 4 как части термосифонного циркуляционного контура охлаждения. Преимущества заключаются в непосредственно связанном с этим уменьшении необходимого буферного объема (обычно с нескольких 100 литров приблизительно до одной десятой) и вместе с тем меньшей занимаемой площади и меньших расходах. При этом также снижаются расходы на непосредственное наполнение термосифонной системы (меньшее количество охлаждающего средства 3).
Резюмируя, можно сказать, что изобретение касается устройства, служащего для охлаждения сверхпроводящих машин 1, включающего в себя закрытую термосифонную систему 2, которая может наполняться жидким охлаждающим средством 3, и которая снабжена испарителем 4, служащим для испарения жидкого охлаждающего средства 3. Чтобы улучшить охлаждающую способность устройства, в соответствии с изобретением предусмотрены средства 7, 8, предназначенные для увеличения орошаемой жидким охлаждающим средством 3 поверхности 5 испарителя 4.
Claims (7)
1. Устройство для охлаждения сверхпроводящих машин (1), включающее в себя закрытую термосифонную систему (2), которая может наполняться жидким охлаждающим средством (3) и которая снабжена испарителем (4) для испарения жидкого охлаждающего средства (3), при этом предусмотрены средства (7,8), предназначенные для увеличения орошаемой жидким охлаждающим средством (3) поверхности (5) испарителя (4), которые выполнены в виде по меньшей мере одного вытесняющего элемента (7) для вытеснения жидкого охлаждающего средства (3).
2. Устройство по п.1, отличающееся тем, что испаритель (4) расположен внутри ротора (6) сверхпроводящей машины (1).
3. Устройство по п.1 или 2, отличающееся тем, что испаритель (4) и по меньшей мере один вытесняющий элемент (7) имеют цилиндрическую, в частности, круглую цилиндрическую, форму.
4. Устройство по п.1, отличающееся тем, что средства (7,8), предназначенные для увеличения орошаемой жидким охлаждающим средством поверхности испарителя, выполнены в виде поверхностной структуры (8) орошаемой жидким охлаждающим средством (3) поверхности (5) испарителя (4), причем эта поверхностная структура (8) выполнена таким образом, что поверхность, эффективно используемая для передачи тепла, увеличивается.
5. Устройство по п.4, отличающееся тем, что поверхностная структура (8) включает в себя одномерные, в частности, выполненные в виде пазов или ребер элементы.
6. Устройство по п.4, отличающееся тем, что поверхностная структура (8) включает в себя двухмерные, в частности, выполненные в виде отверстий или шипов, элементы.
7. Устройство по п.1, отличающееся тем, что жидкое охлаждающее средство (3) представляет собой неон.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009022960A DE102009022960A1 (de) | 2009-05-28 | 2009-05-28 | Kühlung supraleitender Maschinen |
DE102009022960.4 | 2009-05-28 | ||
PCT/EP2010/057098 WO2010136419A2 (de) | 2009-05-28 | 2010-05-25 | Kühlung supraleitender maschinen |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011153676A RU2011153676A (ru) | 2013-07-10 |
RU2550089C2 true RU2550089C2 (ru) | 2015-05-10 |
Family
ID=43014275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011153676/07A RU2550089C2 (ru) | 2009-05-28 | 2010-05-25 | Охлаждение сверхпроводящих машин |
Country Status (10)
Country | Link |
---|---|
US (1) | US20120073787A1 (ru) |
EP (1) | EP2436108A2 (ru) |
JP (1) | JP2012528291A (ru) |
KR (1) | KR20120028888A (ru) |
CN (1) | CN102449889A (ru) |
AU (1) | AU2010252079B2 (ru) |
CA (1) | CA2763596A1 (ru) |
DE (1) | DE102009022960A1 (ru) |
RU (1) | RU2550089C2 (ru) |
WO (1) | WO2010136419A2 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101482570B1 (ko) | 2011-12-30 | 2015-01-16 | 두산중공업 주식회사 | 윅구조를 포함하는 초전도 회전기기 |
CN109120105B (zh) * | 2018-09-29 | 2024-02-20 | 东方电气自动控制工程有限公司 | 一种发电机定子冷却水系统防虹吸装置 |
CN114221491B (zh) * | 2021-12-02 | 2023-07-14 | 国网江苏省电力有限公司经济技术研究院 | 一种超导电机转子换热器结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU805901A1 (ru) * | 1979-03-12 | 1996-05-27 | Э.В. Барбашев | Ротор электрической машины со сверхпроводящей обмоткой возбуждения |
US20060158059A1 (en) * | 2000-08-16 | 2006-07-20 | Florian Steinmeyer | Superconducting device comprising a cooling unit for cooling a rotating, superconductive coil |
JP2008241180A (ja) * | 2007-03-28 | 2008-10-09 | Kobelco & Materials Copper Tube Inc | ヒートパイプ用伝熱管およびヒートパイプ |
US20090121561A1 (en) * | 2005-02-04 | 2009-05-14 | Siemens Aktiengesellschaft | Machine System with Thermosyphon Cooled Superconductor Rotor Winding |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658751A (en) * | 1979-10-19 | 1981-05-21 | Toshiba Corp | Extreme low temperature container for superconducting rotary machine |
JPS5972958A (ja) * | 1982-10-19 | 1984-04-25 | Toshiba Corp | 超電導回転電機 |
JP2000180083A (ja) * | 1998-12-15 | 2000-06-30 | Matsushita Refrig Co Ltd | 伝熱管 |
DE10231434A1 (de) * | 2002-05-15 | 2003-12-04 | Siemens Ag | Einrichtung der Supraleitungstechnik mit thermisch an eine rotierende supraleitende Wicklung angekoppeltem Kaltkopf einer Kälteeinheit |
DE10244428A1 (de) * | 2002-09-24 | 2004-06-17 | Siemens Ag | Elektrische Maschine mit einer Kühleinrichtung |
US6840311B2 (en) * | 2003-02-25 | 2005-01-11 | Delphi Technologies, Inc. | Compact thermosiphon for dissipating heat generated by electronic components |
DE10336277A1 (de) * | 2003-08-07 | 2005-03-24 | Siemens Ag | Maschineneinrichtung mit einer supraleitenden Wicklung und einer Thermosyphon-Kühlung derselben |
DE102004040493A1 (de) * | 2004-08-20 | 2006-03-09 | Siemens Ag | Maschineneinrichtung mit einer supraleitenden Erregerwicklung mit Thermosiphon-Kühlung sowie Verfahren zur Kühlung der Wicklung |
US7994664B2 (en) * | 2004-12-10 | 2011-08-09 | General Electric Company | System and method for cooling a superconducting rotary machine |
JP2008269353A (ja) * | 2007-04-20 | 2008-11-06 | Toshiba Corp | 電子機器 |
DE102007038909B4 (de) * | 2007-08-17 | 2021-07-15 | Osram Gmbh | Wärmeleitrohr und Anordnung mit Wärmeleitrohr |
-
2009
- 2009-05-28 DE DE102009022960A patent/DE102009022960A1/de not_active Withdrawn
-
2010
- 2010-05-25 AU AU2010252079A patent/AU2010252079B2/en not_active Ceased
- 2010-05-25 WO PCT/EP2010/057098 patent/WO2010136419A2/de active Application Filing
- 2010-05-25 JP JP2012512326A patent/JP2012528291A/ja not_active Ceased
- 2010-05-25 KR KR1020117028118A patent/KR20120028888A/ko not_active Application Discontinuation
- 2010-05-25 EP EP10721491A patent/EP2436108A2/de not_active Withdrawn
- 2010-05-25 CN CN2010800228893A patent/CN102449889A/zh active Pending
- 2010-05-25 CA CA2763596A patent/CA2763596A1/en not_active Abandoned
- 2010-05-25 RU RU2011153676/07A patent/RU2550089C2/ru active
- 2010-05-25 US US13/322,856 patent/US20120073787A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU805901A1 (ru) * | 1979-03-12 | 1996-05-27 | Э.В. Барбашев | Ротор электрической машины со сверхпроводящей обмоткой возбуждения |
US20060158059A1 (en) * | 2000-08-16 | 2006-07-20 | Florian Steinmeyer | Superconducting device comprising a cooling unit for cooling a rotating, superconductive coil |
US20090121561A1 (en) * | 2005-02-04 | 2009-05-14 | Siemens Aktiengesellschaft | Machine System with Thermosyphon Cooled Superconductor Rotor Winding |
JP2008241180A (ja) * | 2007-03-28 | 2008-10-09 | Kobelco & Materials Copper Tube Inc | ヒートパイプ用伝熱管およびヒートパイプ |
Also Published As
Publication number | Publication date |
---|---|
US20120073787A1 (en) | 2012-03-29 |
JP2012528291A (ja) | 2012-11-12 |
AU2010252079A1 (en) | 2012-01-12 |
RU2011153676A (ru) | 2013-07-10 |
WO2010136419A3 (de) | 2011-05-12 |
WO2010136419A2 (de) | 2010-12-02 |
KR20120028888A (ko) | 2012-03-23 |
DE102009022960A1 (de) | 2010-12-02 |
AU2010252079B2 (en) | 2014-08-28 |
EP2436108A2 (de) | 2012-04-04 |
CA2763596A1 (en) | 2010-12-02 |
CN102449889A (zh) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4937563B2 (ja) | 超電導回転機を冷却するシステム | |
JP5935232B2 (ja) | 冷凍装置 | |
US20070095075A1 (en) | Superconducting machine device with a superconducting winding and thermosiphon cooling | |
US8117850B2 (en) | Refrigeration apparatus having warm connection element and cold connection element and heat pipe connected to connection elements | |
JP2008027780A (ja) | 液冷媒循環冷却システム | |
JP2015144247A (ja) | 冷却部品及び電子機器 | |
RU2550089C2 (ru) | Охлаждение сверхпроводящих машин | |
JP5523180B2 (ja) | データセンタの補助用冷却装置 | |
KR20070091035A (ko) | 초전도 회전자 권선의 열사이펀 냉각부를 구비한 모터 장치 | |
JP2004303732A (ja) | 超伝導ケーブルを冷却する方法 | |
KR20110097745A (ko) | 응축기가 증발기 하부 또는 측부에 위치하는 저온비등 냉각시스템 | |
KR20130108374A (ko) | 전기 기기용 회전자의 열사이펀 냉각 | |
KR101014689B1 (ko) | 회전형 극저온 냉매 공급장치 | |
JP2011247506A (ja) | データセンタの冷却システム | |
KR20140072040A (ko) | 유닛을 냉각하기 위한 장치 및 방법 | |
JP6596986B2 (ja) | 冷却部品及び電子機器 | |
JPS59107144A (ja) | 太陽熱利用プラント | |
KR200382400Y1 (ko) | 냉동사이클을 적용한 발전기·전동기 프레임 냉각장치 | |
TW202409502A (zh) | 冷卻裝置、冷卻系統和製造方法 | |
KR101344197B1 (ko) | 초전도 발전 시스템 | |
KR101555303B1 (ko) | 재응축장치, 그 재응축장치용 재응축핀의 온도조절방법, 그 재응축장치를 가지는 냉각장치, 그 냉각장치를 이용한 냉각방법 | |
KR100664854B1 (ko) | 극저온 냉각시스템 | |
KR101513816B1 (ko) | 초전도 발전 시스템 | |
KR20140049015A (ko) | 냉각제 이송용 윅 형태의 재료를 포함한 냉각 장치 | |
EP2869005A1 (en) | Cryogenic cooling apparatus |