RU2543917C1 - Двухпоточный турбомолекулярный вакуумный насос с гибридными проточными частями - Google Patents

Двухпоточный турбомолекулярный вакуумный насос с гибридными проточными частями Download PDF

Info

Publication number
RU2543917C1
RU2543917C1 RU2014110920/06A RU2014110920A RU2543917C1 RU 2543917 C1 RU2543917 C1 RU 2543917C1 RU 2014110920/06 A RU2014110920/06 A RU 2014110920/06A RU 2014110920 A RU2014110920 A RU 2014110920A RU 2543917 C1 RU2543917 C1 RU 2543917C1
Authority
RU
Russia
Prior art keywords
stage
molecular
pump according
rotor
output
Prior art date
Application number
RU2014110920/06A
Other languages
English (en)
Inventor
Владимир Павлович Сергеев
Александр Геннадьевич Воронин
Original Assignee
Общество с ограниченной ответственностью "Владимирский центр механической обработки"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Владимирский центр механической обработки" filed Critical Общество с ограниченной ответственностью "Владимирский центр механической обработки"
Priority to RU2014110920/06A priority Critical patent/RU2543917C1/ru
Application granted granted Critical
Publication of RU2543917C1 publication Critical patent/RU2543917C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Изобретение относится к области вакуумной техники. Насос содержит корпус с входным патрубком и с двумя симметрично расположенными проточными частями относительно входного патрубка. Каждая часть состоит из турбомолекулярной, промежуточной и выходной молекулярной ступеней. Промежуточная ступень выполнена в виде двух кольцевых молекулярных ступеней, концентрично расположенных друг относительно друга с центром расположения на оси вращения вала. Первая кольцевая молекулярная ступень расположена на торцевой поверхности крышки, расположенной между стороной нагнетания турбомолекулярной ступени и стороной всасывания второй кольцевой молекулярной ступени. Последняя расположена между стороной нагнетания первой кольцевой молекулярной ступени и стороной всасывания выходной ступени с формированием потока откачиваемого газа от периферии к центру на сторону всасывания выходной ступени. Выходная ступень образована двумя эквидистантными цилиндрическими участками между внутренней поверхностью ротора и наружной поверхностью корпуса подшипникового узла. На наружной поверхности корпуса узла выполнены многозаходные винтовые канавки. Изобретение направлено на улучшение откачных характеристик насоса за счет повышения степени сжатия промежуточной и выходной ступеней и в результате повышение выходного давления насоса. 16 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области вакуумной техники, в частности к двухпоточным турбомолекулярным вакуумным насосам, и предназначено для использования в различных технологических установках для откачивания газов и поддержания вакуума.
Из уровня техники известен турбомолекулярный вакуумный насос, содержащий комбинированный корпус, состоящий из внешнего корпуса с всасывающим патрубком и внутреннего цилиндрического корпуса, внутри которого по обе стороны относительно всасывающего патрубка размещены две проточные части, состоящие из чередующихся между собой статорных и роторных дисков с радиальными лопатками с соответствующими углами наклона, и статорные диски представляют собой зеркальное отражение роторных, напрессованных на вал с ротором электродвигателя, смонтированного на двух шарикоподшипниках, смазываемых жидкостной смазкой (SU 1807242, 07.04.1993).
Недостатками данного насоса являются:
- невысокий коэффициент компрессии одной ступени, что приводит к необходимости наличия большого числа ступеней, а следовательно, к увеличению габаритов и массы насоса;
- несмотря на наличие большого количества турбомолекулярных ступеней на стороне нагнетания насоса обеспечивается весьма низкое давление нагнетания (порядка 10-1… 10 Па), вследствие чего необходима его комплектация форвакуумным насосом с масляным уплотнением;
- наличие в конструкции насоса жидкостной масляной системы смазывания подшипников усложняет конструкцию насоса из-за необходимости применения лабиринтных уплотнений дополнительным комплектованием масляным насосом для подачи масла в зону расположения подшипников;
- наличие в конструкции насоса жидкостной масляной ванны обуславливает жесткие требования к монтажу насоса: отклонение оси вала от горизонтальной плоскости ±5°, что усложняет процесс монтажа и внедрение насоса в вакуумную систему.
Наиболее близким аналогом заявленного изобретения является двухпоточный турбомолекулярный вакуумный насос, в корпусе которого по обе стороны всасывающего патрубка расположены трехступенчатые проточные части, каждая из которых состоит из турбомолекулярной проточной ступени, состоящей из чередующихся между собой статорных и роторных дисков с радиальными лопатками с соответствующими углами наклона, при этом статорные диски представляют собой зеркальное отражение роторных, промежуточной молекулярной проточной ступени, образованной спиральными пазами ротора и выступами статора переменной глубины и встречного направления, при этом их поверхности выполнены ступенчатыми, а третья выходная молекулярная ступень образована спиральными пазами, выполненными на внутренней поверхности статора и на наружной поверхности ротора встречного направления (Механические вакуумные насосы. Е.С. Фролов, И.В. Автономова, В.И. Васильев, Н.К. Никулин, П.И. Пластинин, под общей ред. Е.С. Фролова. М., Машиностроение, 1984. - 284 с.).
Недостатками вышеуказанного насоса является то, что промежуточная молекулярная ступень выполнена по конусным поверхностям с расположением их оснований на стороне всасывания, а вершины на стороне нагнетания, таким образом, при вращении внутренней поверхности ротора относительно наружной поверхности статора происходит ступенчатое изменение окружной скорости в сторону уменьшения со стороны всасывания на сторону нагнетания, а из теории вакуумной техники известно, что быстрота откачки прямо пропорциональна скорости перемещения стенки (в данном случае относительной окружной скорости внутренней поверхности вращающегося ротора), о чем свидетельствует формула (Вакуумная техника. Л.Н. Розанов. М., Высшая школа, 1990. - 320 с.):
Smax=γ·Fк·Vp,
где Fк - площадь поперечного сечения канала (паза);
γ - коэффициент, учитывающий соотношения движущейся (внутренняя поверхность ротора) и неподвижной частей периметра канала (паза);
Vp - скорость перемещения стенки (окружная скорость внутренней поверхности вращающегося ротора).
Таким образом, уменьшение окружной скорости вращения со стороны всасывания на сторону нагнетания приводит к уменьшению быстроты действия на каждой ступеньке, кроме того, уменьшение скорости уменьшает степень сжатия на каждом ступенчатом участке промежуточной молекулярной ступени, и вследствие этого увеличивается обратный поток по рабочим зазорам данной ступени, таким образом, дополнительно уменьшая быстроту действия ступени; кроме того, выполнение на внутренней поверхности ротора спиральных пазов не способствует повышению степени сжатия, так как уменьшается активная рабочая поверхность, что способствует увеличению обратного потока по каналу со стороны нагнетания выступа, расположенного между двумя спиральными пазами, на сторону его всасывания;
- третья выходная молекулярная ступень с выполненными спиральными пазами на обоих поверхностях проточной части также имеет меньшую степень сжатия по сравнению с конструкцией, если бы спиральные пазы были бы выполнены только на одной из ее рабочих поверхностей; выходная ступень должна обладать наибольшей степенью сжатия, так как она зачастую определяет наибольшую степень сжатия всей проточной части насоса: по давлению на стороне нагнетания потребитель вакуумных данных откачных средств определяет на месте эксплуатационные возможности насоса и назначает необходимые форвакуумные средства откачки;
- промежуточная молекулярная ступень технологически трудно выполнима из-за ее конусности и из-за относительно высокой прецизионности выполнения как радиальных, так и торцевых рабочих зазоров, которые составляют десятые доли миллиметра радиальных зазоров (обычно 0,1…0,2 мм) и торцевых (обычно 0,5…1,0 мм).
Задача, на решение которой направлено предложенное изобретение, заключается в создании двухпоточного турбомолекулярного вакуумного насоса, который исключал бы указанные выше недостатки.
Технический результат, достигаемый при реализации данного изобретения, заключается в улучшении откачных характеристик насоса за счет повышения степени сжатия промежуточной и выходной ступеней и в результате повышения выходного давления насоса.
Указанный технический результат в турбомолекулярном вакуумном насосе, содержащем корпус с входным патрубком и с двумя симметрично расположенными проточными частями относительно входного патрубка, каждая из которых состоит из турбомолекулярной, промежуточной и выходной молекулярной ступеней, достигается тем, что промежуточная ступень выполнена в виде двух кольцевых молекулярных ступеней, концентрично расположенных относительно друг друга с центром расположения на оси вращения вала, при этом первая кольцевая молекулярная ступень расположена на торцевой поверхности боковой крышки, расположенной между стороной нагнетания турбомолекулярной ступени и стороной всасывания второй кольцевой молекулярной ступени, расположенной между стороной нагнетания первой кольцевой молекулярной ступени и стороной всасывания выходной молекулярной ступени, с формированием потока откачиваемого газа от периферии к центру на сторону всасывания выходной молекулярной ступени, причем выходная молекулярная ступень образована двумя эквидистантными цилиндрическими участками между внутренней поверхностью ротора и наружной поверхностью корпуса подшипникового узла, на наружной поверхности корпуса которого выполнены многозаходные винтовые канавки.
Многозаходные винтовые канавки имеют угол наклона в сторону вращения вала.
Первая кольцевая молекулярная ступень расположена на торцевой поверхности кольцевого выступа боковой крышки с пазами, образованными выступами и обращенными в сторону торцевой поверхности роторного диска турбомолекулярной ступени и с углами наклона в сторону против вращения вала.
Вторая кольцевая молекулярная ступень расположена на торцевой поверхности кольцевого выступа ротора в виде пазов, образованных выступами и обращенных в сторону торцевой поверхности боковой крышки и с углами наклона в сторону вращения вала.
В промежуточной ступени пазы, образованные выступами, имеют постоянную ширину и глубину.
В промежуточной ступени пазы, образованные выступами, имеют переменную ширину, уменьшающуюся со стороны всасывания на сторону нагнетания, и постоянную глубину.
В промежуточной ступени пазы, образованные выступами, имеют постоянную ширину и уменьшающуюся глубину со стороны всасывания на сторону нагнетания.
В промежуточной ступени пазы, образованные выступами, имеют уменьшающиеся ширину и глубину со стороны всасывания на сторону нагнетания.
В промежуточной ступени пазы, образованные выступами, выполнены дугами.
В промежуточной ступени пазы, образованные выступами, имеют одинаковую глубину.
Первая ступень промежуточной ступени имеет глубину пазов, меньшую, чем вторая ступень.
Многозаходные винтовые канавки выполнены постоянной глубины.
Многозаходные винтовые канавки выполнены переменной глубины с уменьшением в сторону нагнетания.
Выходная молекулярная ступень выполнена с многозаходными канавками на внутренней поверхности ротора с постоянной глубиной и с углом наклона в сторону вращения.
Выходная молекулярная ступень выполнена с многозаходными канавками на внутренней поверхности ротора с уменьшающейся глубиной со стороны всасывания на сторону нагнетания.
Наружный диаметр первой кольцевой молекулярной ступени по меньшей мере равен наружному диаметру роторного диска.
Турбомолекулярная ступень состоит из комплекта статорных и роторных дисков с радиально расположенными на периферии лопатками с соответствующими углами наклона, причем статорные лопатки зеркально отражены роторным лопаткам.
Промежуточная молекулярная ступень выполнена в виде двух кольцевых молекулярных ступеней, концентрично расположенных относительно друг друга с центром расположения на оси вращения вала и размещенных на торцевых поверхностях боковой крышки и (гибридного) ротора, расположенной между стороной нагнетания турбомолекулярной ступени и стороной всасывания выходной молекулярной ступени с формированием потока откачиваемого газа от периферии к центру на сторону всасывания выходной молекулярной ступени, при этом благодаря оптически закрытым пазам первой и второй ступеней и развитой структуре межлопаточных пазов, образованных выступами, а также в силу того, что окружные скорости ступеней приближены к окружной скорости роторного диска со стороны нагнетания турбомолекулярной ступени позволяют в целом повысить ее степень сжатия, что создает более благоприятные условия для работы выходной ступени, позволив расширить ее геометрические параметры в сторону увеличения ее пропускной способности не снижая степени сжатия.
Выходная молекулярная ступень, образованная двумя эквидистантными цилиндрическими участками между внутренней поверхностью (гибридного) ротора и наружной поверхностью корпуса подшипникового узла, выполнена с многозаходными винтовыми канавками только на наружной поверхности корпуса подшипникового узла, что увеличивает степень сжатия, т.к. выполнение каких-либо каналов, пазов на сопрягаемой поверхности понижает ее степень сжатия, хотя при этом увеличивается быстрота откачки, но только в пределах более низких давлений, что не приемлемо для выходной ступени любых конструкций вакуумных насосов.
Благодаря наличию отличительных признаков повышается степень сжатия всего насоса в целом, уменьшаются обратные потоки и увеличивается быстрота действия насоса.
Сущность изобретения поясняется чертежами, где на фиг.1 изображен продольный разрез турбомолекулярного вакуумного насоса; на фиг.2 - поперечный разрез А-А по фиг.1 промежуточной ступени.
Турбомолекулярный вакуумный насос (двухпоточный) с гибридными проточными частями содержит комбинированный корпус 1 с входным (всасывающим) патрубком и опоясывающий наружную поверхность внутреннего полого цилиндрического корпуса 2 с центральным кольцевым отверстием 3 с продольными перемычками 4, определяющие по его периферии всасывающие окна и заключенного между боковыми крышками 5, в одной из которых смонтирован одноопорный подшипниковый узел, состоящий из корпуса 6, статора электродвигателя, подшипниковой втулки 7 подшипника качения 8 с консистентной смазкой и пружиной сжатия 9, обеспечивающей пружинный предварительный натяг подшипников; в другой тоже одноопорный узел, состоящий из корпуса 10, подшипниковой втулки 11 с подшипником качения 12 с консистентной смазкой, пружиной сжатия 13, обеспечивающей неподвижную и «мягкую» фиксацию в осевом направлении подшипника, и тем самым компенсируя назначаемые поля допусков, имеющих место при изготовлении деталей подшипникового узла и сборки; устройство для выставки рабочих торцевых зазоров между статорными 14 и роторными дисками 15 турбомолекулярной проточной части посредством перемещения подшипниковой втулки 11 с неподвижным подшипником 12 и вала 16 с двумя роторными группами вдоль оси насоса при помощи ходового винта 17 и гайки 18, закрепленной на торцевой поверхности подшипниковой втулки 11. Во внутреннем цилиндрическом корпусе 2 относительно центрального кольцевого отверстия 3 по обе его стороны размещены соответственно левая и правая гибридные проточные ступени, каждая из которых состоит из трех последовательно следующих одна за другой откачных ступеней: турбомолекулярная, состоящая из комплекта статорных 14 и роторных дисков 15 с радиально расположенными на периферии лопатками с соответствующими углами наклона, причем статорные лопатки зеркально отражены роторным, при этом обе турбомолекулярные ступени расположены вдоль внутренней поверхности цилиндрического корпуса с направлением откачиваемого потока газа со стороны всасывания на сторону нагнетания вдоль оси вращения ротора в зону расположения второй промежуточной молекулярной ступени, которая выполнена в виде двух кольцевых молекулярных ступеней соответственно 19 и 20, концентрично расположенных относительно друг друга с центром расположения на оси вращения вала 16, при этом первая молекулярная ступень 19 расположена на торцевой поверхности кольцевого выступа 21 боковой крышки 6 с пазами, образованными выступами 22 и обращенными в сторону торцевой поверхности роторного диска 23, и с углами наклона в сторону против вращения вала 16, а вторая ступень 20 расположена на торцевой поверхности кольцевого выступа 24 ротора в виде пазов, образованных выступами 25 и обращенных в сторону торцевой поверхности боковой крышки 6, и с углами наклона в сторону вращения вала 16, причем промежуточная ступень формирует поток откачиваемого газа от периферии к центру оси вращения ротора на сторону всасывания выходной молекулярной ступени, образованной двумя эквидистантными цилиндрическими участками между внутренней поверхностью 26 гибридного ротора и наружной поверхностью 27 с многозаходными винтовыми канавками корпуса 6 подшипникового узла, и осуществляет откачку газа по винтовым канавкам со стороны ее всасывания на сторону нагнетания, которая посредством форвакуумного трубопровода 28 связана с форвакуумным насосом.
Насос работает следующим образом.
После завершения процесса форвакуумной откачки газа в насосе и в откачиваемом объеме насос посредством электродвигателя выходит на рабочую скорость и осуществляет процесс высоковакуумной откачки одновременно двумя гибридными проточными частями, в которых газ последовательно проходит турбомолекулярные, промежуточные и выходные ступени, в каждой из которых газ претерпевает процесс сжатия, и далее от стороны нагнетания выходной ступени газ через форвакуумный трубопровод откачивается форвакуумным насосом, либо сначала поступает в форвакуумный баллон с последующей откачкой при достижении в нем значения давления, не превышающего выходного давления самого насоса, при этом насос вступает в работу периодически, в этом варианте обеспечивается экономия электроэнергии и увеличивается срок службы самого форвакуумного насоса и улучшаются экологические условия окружающей среды.
Заявленное изобретение улучшает откачные характеристики: повышает степень сжатия, повышает скорость действия и уменьшает предельное остаточное давление.

Claims (17)

1. Турбомолекулярный вакуумный насос, содержащий корпус с входным патрубком и с двумя симметрично расположенными проточными частями относительно входного патрубка, каждая из которых состоит из турбомолекулярной, промежуточной и выходной молекулярной ступеней, отличающийся тем, что промежуточная ступень выполнена в виде двух кольцевых молекулярных ступеней, концентрично расположенных относительно друг друга с центром расположения на оси вращения вала, при этом первая кольцевая молекулярная ступень расположена на торцевой поверхности боковой крышки, расположенной между стороной нагнетания турбомолекулярной ступени и стороной всасывания второй кольцевой молекулярной ступени, расположенной между стороной нагнетания первой кольцевой молекулярной ступени и стороной всасывания выходной молекулярной ступени, с формированием потока откачиваемого газа от периферии к центру на сторону всасывания выходной молекулярной ступени, причем выходная молекулярная ступень образована двумя эквидистантными цилиндрическими участками между внутренней поверхностью ротора и наружной поверхностью корпуса подшипникового узла, на наружной поверхности корпуса которого выполнены многозаходные винтовые канавки.
2. Насос по п.1, отличающийся тем, что многозаходные винтовые канавки имеют угол наклона в сторону вращения вала.
3. Насос по п.1, отличающийся тем, что первая кольцевая молекулярная ступень расположена на торцевой поверхности кольцевого выступа боковой крышки с пазами, образованными выступами и обращенными в сторону торцевой поверхности роторного диска турбомолекулярной ступени и с углами наклона в сторону против вращения вала.
4. Насос по п.1, отличающийся тем, что вторая кольцевая молекулярная ступень расположена на торцевой поверхности кольцевого выступа ротора в виде пазов, образованных выступами и обращенных в сторону торцевой поверхности боковой крышки и с углами наклона в сторону вращения вала.
5. Насос по п.1, отличающийся тем, что в промежуточной ступени пазы, образованные выступами, имеют постоянную ширину и глубину.
6. Насос по п.1, отличающийся тем, что в промежуточной ступени пазы, образованные выступами, имеют переменную ширину, уменьшающуюся со стороны всасывания на сторону нагнетания, и постоянную глубину.
7. Насос по п.1, отличающийся тем, что в промежуточной ступени пазы, образованные выступами, имеют постоянную ширину и уменьшающуюся глубину со стороны всасывания на сторону нагнетания.
8. Насос по п.1, отличающийся тем, что в промежуточной ступени пазы, образованные выступами, имеют уменьшающуюся ширину и глубину со стороны всасывания на сторону нагнетания.
9. Насос по п.1, отличающийся тем, что в промежуточной ступени пазы, образованные выступами, выполнены дугами.
10. Насос по п.1, отличающийся тем, что в промежуточной ступени пазы, образованные выступами, имеют одинаковую глубину.
11. Насос по п.1, отличающийся тем, что первая ступень промежуточной ступени имеет глубину пазов меньшую, чем вторая ступень.
12. Насос по п.2, отличающийся тем, что многозаходные винтовые канавки выполнены постоянной глубины.
13. Насос по п.2, отличающийся тем, что многозаходные винтовые канавки выполнены переменной глубины с уменьшением в сторону нагнетания.
14. Насос по п.1, отличающийся тем, что выходная молекулярная ступень выполнена с многозаходными канавками на внутренней поверхности ротора с постоянной глубиной и с углом наклона в сторону вращения.
15. Насос по п.1, отличающийся тем, что выходная молекулярная ступень выполнена с многозаходными канавками на внутренней поверхности ротора с уменьшающейся глубиной со стороны всасывания на сторону нагнетания.
16. Насос по п.1, отличающийся тем, что наружный диаметр первой кольцевой молекулярной ступени по меньшей мере равен наружному диаметру роторного диска.
17. Насос по п.1, отличающийся тем, что турбомолекулярная ступень состоит из комплекта статорных и роторных дисков с радиально расположенными на периферии лопатками с соответствующими углами наклона, причем статорные лопатки зеркально отражены роторным лопаткам.
RU2014110920/06A 2014-03-24 2014-03-24 Двухпоточный турбомолекулярный вакуумный насос с гибридными проточными частями RU2543917C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014110920/06A RU2543917C1 (ru) 2014-03-24 2014-03-24 Двухпоточный турбомолекулярный вакуумный насос с гибридными проточными частями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014110920/06A RU2543917C1 (ru) 2014-03-24 2014-03-24 Двухпоточный турбомолекулярный вакуумный насос с гибридными проточными частями

Publications (1)

Publication Number Publication Date
RU2543917C1 true RU2543917C1 (ru) 2015-03-10

Family

ID=53290346

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110920/06A RU2543917C1 (ru) 2014-03-24 2014-03-24 Двухпоточный турбомолекулярный вакуумный насос с гибридными проточными частями

Country Status (1)

Country Link
RU (1) RU2543917C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116895A (ja) * 1983-11-30 1985-06-24 Hitachi Ltd 真空ポンプ
RU2168070C2 (ru) * 1998-12-17 2001-05-27 Научно-технический промышленно-производственный кооператив "Плазвак" Молекулярный вакуумный насос
US6779969B2 (en) * 2001-12-04 2004-08-24 Boc Edwards Technologies Limited Vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116895A (ja) * 1983-11-30 1985-06-24 Hitachi Ltd 真空ポンプ
RU2168070C2 (ru) * 1998-12-17 2001-05-27 Научно-технический промышленно-производственный кооператив "Плазвак" Молекулярный вакуумный насос
US6779969B2 (en) * 2001-12-04 2004-08-24 Boc Edwards Technologies Limited Vacuum pump

Similar Documents

Publication Publication Date Title
US9909592B2 (en) Vacuum pump
US10151314B2 (en) Gear-driven flow-through pitot tube pump
JP6913147B2 (ja) 真空ポンプ
WO2014184603A1 (en) Bi-directional shaft seal
US9670931B2 (en) Rotary vacuum pump
RU2656098C1 (ru) Щелевое уплотнение рабочего колеса насоса
JP2016522357A (ja) 遠心ロータ
CN204082560U (zh) 原油管道输送用输油管线泵
RU2543917C1 (ru) Двухпоточный турбомолекулярный вакуумный насос с гибридными проточными частями
WO2008027388B1 (en) Vacuum pumps with improved pumping channel cross sections
CN203822655U (zh) 连续重整装置用泵
RU2560133C1 (ru) Однопоточный четырехступенчатый турбомолекулярный насос
CN111788393A (zh) 干式真空泵
JP2016040461A (ja) 遠心回転機械
US11846285B2 (en) Pump with a bearing lubrication system
US9599229B2 (en) Cartridge seal for a centrifugal pump
WO2021105656A1 (en) Pumping stage of a vacuum pump
US10669850B2 (en) Impeller-type liquid ring compressor
CN103225623A (zh) 单壳体对称式径向剖分多级离心泵
JP2017133450A (ja) ポンプ
CA2993290C (en) Modular thrust-compensating rotor assembly
RU2490519C1 (ru) Турбомолекулярный насос с однопоточной турбомолекулярной проточной частью
RU2017128437A (ru) Аэродинамический газотурбинный двигатель
JPH04334792A (ja) 液化ガス用サブマージド型ポンプのジャーナル軸受冷却・潤滑方式
US11933321B2 (en) Rotary pump for conveying a fluid

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170325