RU2539578C1 - Способ получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов - Google Patents

Способ получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов Download PDF

Info

Publication number
RU2539578C1
RU2539578C1 RU2013139346/04A RU2013139346A RU2539578C1 RU 2539578 C1 RU2539578 C1 RU 2539578C1 RU 2013139346/04 A RU2013139346/04 A RU 2013139346/04A RU 2013139346 A RU2013139346 A RU 2013139346A RU 2539578 C1 RU2539578 C1 RU 2539578C1
Authority
RU
Russia
Prior art keywords
formula
chloro
amino
fluoro
reaction
Prior art date
Application number
RU2013139346/04A
Other languages
English (en)
Inventor
Юаньмин Чжу
Грегори Т. УАЙТЕКЕР
Ким Э. АРНДТ
Джеймс М. Ренга
Роберт Д. ФРОУЭС
Original Assignee
ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи filed Critical ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Application granted granted Critical
Publication of RU2539578C1 publication Critical patent/RU2539578C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/803Processes of preparation
    • C07D213/807Processes of preparation by oxidation of pyridines or condensed pyridines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/803Processes of preparation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pyridine Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу получения 4-амино-3-хлор-5-фтор-6-(замещенного)пиколината формулы I
Figure 00000001
где R представляет собой (C1-C4)алкил, циклопропил, (C2-C4)алкенил или фенил, содержащий от 1 до 4 заместителей, в качестве которых независимо выбирают галоген, (C1-C4)алкил, (C1-C4)галоалкил, (C1-C4)алкокси или (C1-C4)галоалкокси; и R1 представляет собой (C1-C12)алкил или незамещенный или замещенный (C7-C11)арилалкил, включающему фторидное замещение, аминирование, реакцию с гидразином, галогенирование, гидролиз и этерификацию, а также катализируемое переходными металлами сочетание. 3 н. и 1 з.п. ф-лы, 6 пр.

Description

Настоящее изобретение относится к способу получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов. Более конкретно, настоящее изобретение относится к способу получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов, в которых 5-фторзаместитель вводят путем галогенидного замещения на ранней стадии в схеме способа.
Патент США № 6297197 B1 описывает, помимо прочего, определенные 4-амино-3-хлор-5-фтор-6-(алкокси или арилокси)пиколинатные соединения и их использование в качестве гербицидов. Патенты США №№ 6784137 B2 и 7314849 B2 описывают, помимо прочего, определенные 4-амино-3-хлор-5-фтор-6-(арил)пиколинатные соединения и их использование в качестве гербицидов. Патент США № 7432227 B2 описывает, помимо прочего, определенные 4-амино-3-хлор-5-фтор-6-(алкил)пиколинатные соединения и их использование в качестве гербицидов. Каждый из этих патентов описывает получение 4-амино-3-хлор-5-фтор-пиколинатных исходных материалов путем фторирования соответствующих 5-(незамещенных)пиколинатов, используя 1-(хлорметил)-4-фтор-1,4-диазониабицикло[2.2.2]октана бис(тетрафторборат). Было бы выгодно получать 4-амино-3-хлор-5-фтор-6-(замещенные)пиколинаты, не применяя непосредственное фторирование пиколината в положении 5 дорогостоящим фторирующим реагентом, таким как 1-(хлорметил)-4-фтор-1,4-диазониабицикло[2.2.2]октана бис(тетрафторборат).
Настоящее изобретение относится к способу получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов из 3,4,5,6-тетрахлорпиколинонитрила. Более конкретно, настоящее изобретение относится к способу получения 4-амино-3-хлор-5-фтор-6-(замещенного)пиколината формулы I
Figure 00000001
в которой
R представляет собой (C1-C4)алкил, циклопропил, (C2-C4)алкенил или фенил, содержащий от 1 до 4 заместителей, в качестве которых независимо выбирают галоген, (C1-C4)алкил, (C1-C4)галогеналкил, (C1-C4)алкокси или (C1-C4)галогеналкокси; и
R1 представляет собой (C1-C12)алкил или незамещенный или замещенный (C7-C11)арилалкил;
который включает следующие стадии:
a) фторирование 3,4,5,6-тетрахлорпиколинонитрила (формула A)
Figure 00000002
источником фторид-иона для получения 3-хлор-4,5,6-трифторпиколинонитрила (формула B)
Figure 00000003
b) аминирование 3-хлор-4,5,6-трифторпиколинонитрила (формула B) аммиаком для получения 4-амино-3-хлор-5,6-дифторпиколинонитрила (формула C)
Figure 00000004
c) реакцию фторзаместителя в положении 6 4-амино-3-хлор-5,6-дифторпиколинонитрила (формула C) с гидразином для получения 4-амино-3-хлор-5-фтор-6-гидразинопиколинонитрила (формула D)
Figure 00000005
d) галогенирование 4-амино-3-хлор-5-фтор-6-гидразинопиколинонитрила (формула D) источником хлора, брома или йода для получения 4-амино-3-хлор-5-фтор-6-галогенпиколинонитрила формулы E
Figure 00000006
в которой L представляет собой Br, Cl или I;
e) гидролиз и этерификацию 4-амино-3-хлор-5-фтор-6-галогенпиколинонитрила формулы E сильной кислотой и спиртом (R1OH) для получения 4-амино-3-хлор-5-фтор-6-галогенпиколината формулы F
Figure 00000007
в которой L и R1 являются такими, как определено выше; и
f) сочетание 4-амино-3-хлор-5-фтор-6-галогенпиколината формулы F с арил-, алкил- или алкенилметаллоорганическим соединением формулы G
Figure 00000008
в которой R является таким, как определено выше, и Met представляет собой Zn-галогенид, Zn-R, три-((C1-C4)алкил)олово, медь или B(OR2)(OR3), где R2 и R3 независимо друг от друга представляют собой водород или (C1-C4)алкил или совместно образуют этиленовую или пропиленовую группу в присутствии содержащего переходный металл катализатора для получения 4-амино-3-хлор-5-фтор-6-(замещенного)пиколината формулы I.
Стадии (a)-(f) можно осуществлять в последовательности, представленной на схеме I, или некоторые из стадий можно менять местами, получая другие последовательности, насколько это допускает совместимость химических реагентов. Например, стадию (f) можно осуществлять перед гидролизом и этерификацией стадии (e).
Схема I
Figure 00000009
Дополнительный аспект настоящего изобретения относится к усовершенствованному способу увеличения количества выделяемого 3-хлор-4,5,6-трифторпиколинонитрила (формула B)
Figure 00000010
полученного фторированием 3,4,5,6-тетрахлорпиколинонитрила (формула A)
Figure 00000011
источником фторид-ионов, где усовершенствование включает следующие стадии:
i) выделение полностью фторированного 3,4,5,6-тетрафторпиколинонитрила (формула H)
Figure 00000012
в качестве побочного продукта фторирования 3,4,5,6-тетрахлорпиколинонитрила;
ii) реакция выделенного 3,4,5,6-тетрафторпиколинонитрила (H) (a) с хлоридом лития (LiCl), (b) с 3,4,5,6-тетрахлорпиколинонитрилом (формула A) в присутствии катализатора межфазного переноса или (c) с сочетанием LiCl и 3,4,5,6-тетрахлорпиколинонитрила для получения смеси, которую составляют преимущественно 3,4,5,6-тетрахлорпиколинонитрил, монофтортрихлорпиколинонитрил и дифтордихлорпиколинонитрил; и
iii) возвращение смеси, которую составляют преимущественно 3,4,5,6-тетрахлорпиколинонитрил, монофтортрихлорпиколинонитрил и дифтордихлорпиколинонитрилы в реакцию фторирования для получения 3-хлор-4,5,6-трифторпиколинонитрила (формула B).
Следующий аспект настоящего изобретения представляет собой новый промежуточный продукт, полученный при использовании настоящего способа, а именно соединение:
Figure 00000013
Подробное описание изобретения
Термины «алкил», «алкенил» и «алкинил», а также производные термины, такие как «алкокси», «ацил», «алкилтио» и «алкилсульфонил», при использовании в настоящем документе включают в пределах своего объема содержащие линейные цепи, разветвленные цепи и циклические радикалы. Если определенно не установлены другие условия, каждый из них может быть незамещенным или содержать один или более заместителей, в качестве которых выбирают, не ограничиваясь этим, галоген, гидрокси, алкокси, алкилтио, (C1-C6)ацил, формил, циано, арилокси или арил при том условии, что заместители являются стерически совместимыми и выполняются правила химической связи и энергии деформации. Термины «алкенил» и «аклкинил» предназначены для включения одной или нескольких ненасыщенных связей.
Термин «арилалкил» при использовании в настоящем документе означает фенил, замещенный алкильной группой, содержащий всего от 7 до 11 атомов углерода, такой как бензильная (-CH2C6H5), 2-метилнафтильная (-CH2C10H7) и 1-или 2-фенетильная (-CH2CH2C6H5 или -CH(CH3)C6H5). Сама фенильная группа может быть незамещенной или содержать один или несколько заместителей, в качестве которых независимо выбирают галоген, нитрогруппу, цианогруппу, (C1-C6)алкил, (C1-C6)алкокси, галогенированный (C1-C6)алкил, галогенированный (C1-C6)алкокси, (C1-C6)алкилтио, C(O)O(C1-C6)алкил, или два соседних заместителя совместно образуют группу -O(CH2)nO-, в которой n составляет 1 или 2, при том условии, что заместители являются стерически совместимыми и выполняются правила химической связи и энергии деформации.
Если определенно не установлены другие ограничения, термин «галоген», а также производные термины, такие как «гало», означают фтор, хлор, бром и йод.
Фенильные группы, содержащие от 1 до 4 заместителей, в качестве которых независимо выбирают галоген, (C1-C4)алкил, (C1-C4)галогеналкил, (C1-C4)алкокси или (C1-C4)галогеналкокси, могут иметь любую ориентацию, но предпочтительными являются 4-замещенный фенильный, 2,4-дизамещенный фенильный, 2,3,4-тризамещенный фенильный 2,4,5-тризамещенный фенильный, и 2,3,4,6-тетразамещенный фенильный изомеры.
4-амино-3-хлор-5-фтор-6-(замещенные)пиколинаты получают из 3,4,5,6-тетрахлорпиколинонитрилов, используя последовательность стадий, включающих фторидное замещение, аминирование, реакцию с гидразином, галогенирование, гидролиз, этерификацию и катализируемую переходными металлами комбинацию. Отдельные стадии можно осуществлять, используя другие последовательности.
3,4,5,6-тетрахлорпиколинонитрил в качестве исходного материала представляет собой известное соединение, которое имеется в продаже.
В реакции фторидного замещения фторированный пиколинонитрил получают, когда соответствующий хлорированный пиколинонитрил реагирует приблизительно с одним эквивалентом источника фторид-ионов на каждого подлежащего обмену хлоридного заместителя в кольце.
Figure 00000014
Типичные источники фторид-ионов представляют собой фториды щелочных металлов, которые включают фторид натрия (NaF), фторид калия (KF) и фторид цезия (CsF), причем предпочтительными являются KF и CsF.
Фторид четвертичного алкил- или ариламмония или фосфония можно также использовать в качестве источника фторид-ионов или в качестве добавки. Предпочтительно реакцию осуществляют, используя полярный апротонный растворитель или реакционную среду, такую как диметилсульфоксид (DMSO), N-метилпирролидон (NMP), N,N-диметилформамид (DMF), гексаметилфосфорамид (HMPA) или сульфолан. Температура, при которой проводят реакцию, не имеет решающего значения, но обычно она составляет от 60°C до 180°C и предпочтительно от 70°C до 80°C. В зависимости от того какой растворитель используют в конкретной реакции, оптимальная температура будет изменяться. Вообще говоря, чем ниже температура, тем медленнее будет проходить реакция. Данную реакцию проводят, как правило, при перемешивании с достаточно высокой интенсивностью, чтобы поддерживать практически однородно диспергированную смесь реагентов.
При проведении реакции фторирования не имеет решающего значения ни скорость, ни последовательность введения реагентов. Как правило, растворитель и фторид щелочного металла смешивают перед тем, как хлорированный пиколинонитрил добавляют в реакционную смесь. Для типичной реакции требуется, как правило, от 2 до 100 часов, предпочтительно от 3 до 6 часов, и ее обычно проводят при атмосферном давлении окружающей среды.
Хотя точное количество реагентов не имеет решающего значения, оказывается предпочтительным использование количества фторида щелочного металла, которое обеспечивает, по меньшей мере, эквимолярное количество атомов фтора по отношению к числу подлежащих обмену атомов хлора в исходном материале, т. е., по меньшей мере, эквимолярное количество фторида щелочного металла. После завершения реакции желательный продукт выделяют, используя стандартные технологии разделения и очистки веществ, такие как дистилляция, кристаллизация и хроматография.
В типичной реакции фторидного замещения получают смесь продуктов, включающую значительное количество полностью фторированного побочного продукта, а именно 3,4,5,6-тетрафторпиколинонитрила (формула H).
Figure 00000015
Конечный выход желательного 3-хлор-4,5,6-трифторпиколинонитрила можно повышать, выделяя полностью фторированный побочный продукт 3,4,5,6-тетрафторпиколинонитрил и возвращая его для получения промежуточных продуктов, которые можно вводить в реакцию фторидного замещения. Это можно осуществлять несколькими способами. Реакция 3,4,5,6-тетрафторпиколинонитрила с LiCl или реакция 3,4,5,6-тетрафторпиколинонитрила с избытком 3,4,5,6-тетрахлорпиколинонитрила или сочетание обеих реакций с использованием или без использования растворителей приводит к образованию смесей хлорфторпиколинонитрилов, где 3-хлор изомеры можно использовать в качестве исходного материала для получения желательного продукта. Таким образом, 3,4,5,6-тетрафторпиколинонитрил можно нагревать с избытком LiCl для получения смеси, содержащей преимущественно 3,4,5-трихлор-6-фторпиколинонитрил и тетрахлорпиколинонитрил. Согласно другой методике в реакции выделенного 3,4,5,6-тетрафторпиколинонитрила с избытком 3,4,5,6-тетрахлорпиколинонитрила в присутствии катализатора межфазного переноса получают смесь, которую составляют преимущественно монофтортрихлорпиколинонитрилы и дифтордихлорпиколинонитрилы. Наконец, эквивалентные смеси выделенного 3,4,5,6-тетрафторпиколинонитрила и 3,4,5,6-тетрахлорпиколинонитрила в присутствии катализатора межфазного переноса и от 1 до 3 эквивалентов LiCl образуют смесь, содержащую преимущественно 3,4,5-трихлор-6-фторпиколинонитрил и 3,4,5,6-тетрахлорпиколинонитрил. Эти смеси, которые составляют преимущественно монофтортрихлорпиколинонитрилы и/или дифтордихлорпиколинонитрилы, можно использовать в реакции фторирования, применяя фторид щелочного металла, чтобы получить 3-хлор-4,5,6-трифторпиколинонитрил из 3,4,5,6-тетрафторпиколинонитрила.
В обратной реакции галогенидного замещения нагревают 3,4,5,6-тетрафторпиколинонитрил и от 5 до 10 эквивалентов, предпочтительно 6 эквивалентов LiCl, чтобы получить смесь, содержащую 4,5-дихлор-3,6-дифторпиколинонитрил (3,6-F2-PN), 6-фтор-3,4,5-трихлорпиколинонитрил (6-F-PN) и 3,4,5,6-тетрахлорпиколинонитрил (Cl4-PN). Данную реакцию можно осуществлять без растворителя или в полярном апротонном растворителе или реакционной среде, такой как DMSO, NMP, DMF, HMPA или сульфолан. Часто оказывается удобным проведение реакции в растворителе. Температура, при которой проводят реакцию, не имеет решающего значения, но эта температура составляет обычно от 80°C до 200°C и предпочтительно от 100°C до 150°C.
Figure 00000016
Можно использовать 90% или большую часть смеси для получения 3-хлор-4,5,6-трифторпиколинонитрила путем рециркуляции смеси через реакцию фторидного замещения.
В реакции замещения, в которой замещаются группы фтора и хлора, реагируют 3,4,5,6-тетрафторпиколинонитрил и от 1 до 3 эквивалентов 3,4,5,6-тетрахлорпиколинонитрила, предпочтительно 2 эквивалента 3,4,5,6-тетрахлорпиколинонитрила. Данную реакцию можно осуществлять без растворителя или в полярном апротонном растворителе или реакционной среде, такой как DMSO, NMP, DMF, HMPA или сульфолан. Часто оказывается удобным проведение реакции без растворителя. Реакцию замещения проводят в присутствии добавки. Добавки включают (a) соли четвертичного фосфония, содержащие 10 или более атомов углерода и (b) макроциклические простые полиэфиры, общеизвестные как краун-эфиры. Подходящие в качестве катализаторов краун-эфиры включают, но не ограничиваются этим, 18-краун-6; дициклогексано-18-краун-6; дибензо-18-краун-6; 15-краун-5. Подходящие соли четвертичного фосфония включают соли тетра-н-алкилфосфония, которые являются особенно предпочтительными. Температура, при которой проводят реакцию, не имеет решающего значения, но эта температура обычно составляет от 80°C до 200°C и предпочтительно от 150°C до 180°C.
В типичной реакции замещения, например, в которой реагируют 1 эквивалент 3,4,5,6-тетрафторпиколинонитрила и 2 эквивалента 3,4,5,6-тетрахлорпиколинонитрила, можно получить следующую смесь изомеров: 3,4,5,6-тетра-хлорпиколинонитрил (C14-PN), 3,5-дихлор-4,6-дифторпиколинонитрил (4,6-F2-PN), 3,4-дихлор-5,6-дифторпиколинонитрил (5,6-F2-PN), 4,5-дихлор-3,6-дифторпиколинонитрил (3,6-F2-PN), 6-фтор-3,4,5-трихлорпиколинонитрил (6-F-PN) и 4-фтор-3,5,6-трихлорпиколинонитрил (4-F-PN).
Figure 00000017
Figure 00000018
Можно использовать 80% этой смеси для получения 3-хлор-4,5,6-трифторпиколинонитрила путем рециркуляции смеси через реакцию фторидного замещения.
В комбинации обратной реакции галогенидного замещения и реакций замещения реагируют 3,4,5,6-тетрафторпиколинонитрил и от 1 до 3 эквивалентов 3,4,5,6-тетрахлорпиколинонитрила, предпочтительно 1 эквивалент 3,4,5,6-тетрахлорпиколинонитрила и от 1 до 4 эквивалентов, предпочтительно от 1,5 до 2,5 эквивалентов LiCl. Данную реакцию можно осуществлять без растворителя или в полярном апротонном растворителе или реакционной среде, такой как DMSO, NMP, DMF, HMPA или сульфолан. Часто оказывается удобным проведение реакции без растворителя. Реакцию замещения проводят в присутствии добавки. Добавки включают (a) соли четвертичного фосфония, содержащие 10 или более атомов углерода и (b) макроциклические простые полиэфиры, общеизвестные как краун-эфиры. Подходящие в качестве катализаторов краун-эфиры включают, но не ограничиваются этим, 18-краун-6; дициклогексано-18-краун-6; дибензо-18-краун-6; 15-краун-5. Подходящие соли четвертичного фосфония включают соли тетра-н-алкилфосфония, которые являются особенно предпочтительными. Температура, при которой проводят реакцию, не имеет решающего значения, но эта температура обычно составляет от 80°C до 200°C и предпочтительно от 150°C до 180°C.
В типичном сочетании реакций галогенидного замещения и реакций замещения реагируют, например, 1 эквивалент 3,4,5,6-тетрафторпиколинонитрила, 1 эквивалент 3,4,5,6-тетрахлорпиколинонитрила и 1,5 эквивалента LiCl и можно получить следующую смесь изомеров:
Figure 00000019
Можно использовать 92% этой смеси для получения 3-хлор-4,5,6-трифторпиколинонитрила путем рециркуляции смеси через реакцию фторидного замещения.
В реакции аминирования 4-фторпиколинонитрил реагирует с аммиаком для замещения атома фтора аминогруппой.
Figure 00000020
Хотя требуется только стехиометрическое количество аммиака, часто оказывается удобным использование большого избытка аммиака. Часто оказывается удобным использование аммиака, действующего одновременно как реагент и основание, чтобы нейтрализовать фтороводород (HF), образующийся в реакции. В качестве альтернативы, аммиак может присутствовать в форме раствора, такого как водный раствор гидроксида аммония. Реакцию осуществляют без растворителя или в инертном растворителе. Если используют растворитель, то инертные растворители включают, но не ограничиваются этим, спирты, простые эфиры, сложные эфиры, кетоны, DMSO и ароматические растворители. Температура, при которой проводят реакцию, не имеет решающего значения, но эта температура составляет обычно от 0°C до 45°C и предпочтительно от 10°C до 30°C.
Для типичной реакции требуется, как правило, от 0,5 до 5 часов и ее обычно проводят при атмосферном давлении окружающей среды. Желательный продукт выделяют, используя стандартные методики разделения и очистки.
В реакции с гидразином 6-фторпиколинонитрил реагирует с гидразином, замещая атом фтора гидразиновой группой.
Figure 00000021
Хотя требуется только стехиометрическое количество гидразина, часто оказывается удобным использование избытка гидразина, действующего одновременно в качестве реагента и в качестве основания для нейтрализации фтороводорода, выделяющегося в реакции. Гидразин предпочтительно представляет собой моногидрат. Реакцию осуществляют в инертном полярном растворителе, таком как DMSO, DMF, NMP, ацетонитрил, хлорированный растворитель, простой эфир, тетрагидрофуран (THF) или спирт. Предпочтительной является смесь DMSO и THF. Температура, при которой проводят реакцию, не имеет решающего значения, но она составляет обычно от температуры окружающей среды до 150°C и предпочтительно от 35°C до 70°C.
При проведении реакции с гидразином гидразин растворяют в растворителе и 6-фторпиколинонитрил добавляют в реакционную смесь. Для типичной реакции требуется, как правило, от 0,5 до 5 часов и ее обычно проводят при атмосферном давлении. Желательный продукт выделяют, используя стандартные методики разделения и очистки. Соединения можно легко выделять, разбавляя реакционную смесь ацетонитрилом, после чего следует фильтрование.
В реакции галогенирования 6-галопиколинонитрил получают посредством взаимодействия соответствующего 6-гидразинопиколинонитрила и по меньшей мере одного эквивалента бромирующего, хлорирующего или йодирующего реагента.
Figure 00000022
Подходящие йодирующие, хлорирующие и бромирующие реагенты включают, но не ограничиваются этим, йод, монохлорид йода, хлор, бром, сульфурилхлорид и сульфурилбромид. Хотя требуется только стехиометрическое количество галогенирующего реагента, часто оказывается удобным использование избытка галогенирующего реагента. Реакцию осуществляют в инертном апротонном растворителе. Можно использовать разнообразные растворители, такие как хлорированные растворители, ацетонитрил, DMSO, диоксан, DMF и вода. Часто оказывается предпочтительным использование хлорированного растворителя. Температура, при которой проводят реакцию, не имеет решающего значения, но она составляет обычно от температуры окружающей среды до 100°C и предпочтительно от температуры окружающей среды до 50°C.
При проведении реакции галогенирования 6-гидразинопиколинонитрил растворяют или суспендируют в растворителе и галогенирующий реагент добавляют в реакционную смесь. Для типичной реакции требуется, как правило, от 0,5 до 24 часов. Желательный продукт выделяют, используя стандартные методики разделения и очистки.
В реакциях гидролиза и этерификации пиколинонитрил реагирует со спиртом (R1OH) в присутствии кислоты Бренстеда (Brønsted) или кислоты Льюиса (Lewis).
Figure 00000023
Кислоты Бренстеда включают, но не ограничиваются этим, такие кислоты, как хлористоводородная кислота, серная кислота и фосфорная кислота. Кислоты Льюиса включают трифторид бора, тетрагалогениды титана, тетраалкоксиды титана, галогениды цинка, галогенид олова, а также пентафториды фосфора и сурьмы. Кислоты, такие как серная кислота или фосфорная кислота, как правило, используют в стехиометрических количествах. Реакцию осуществляют в (C1-C12)алкиловом спирте или незамещенном или замещенном (C7-C11)арилалкиловом спирте, соответствующем желательному сложному эфиру. Реакцию можно удобно проводить в герметичном реакторе, если температура реакции находится выше температуры кипения спиртового растворителя. При проведении этерификации пиколинонитрил или промежуточный продукт гидролиза пиколинамида добавляют к смеси спирта и кислоты. Хотя температура реакции не имеет решающего значения, часто осуществляют нагревание при температуре от 80°C до 140°C в течение от 2 до 24 часов, предпочтительно при температуре от 100°C до 120°C в течение от 6 до 8 часов. Желательный продукт выделяют, используя стандартные методики разделения и очистки.
В реакции сочетания 6-галопиколинат реагирует с арил-, алкил- или алкенилметаллоорганическим соединением, где металл представляет собой Zn-галогенид, Zn-R, три-(C1-C4алкил)олово, медь, или B(OR2)(OR3), где R2 и R3 независимо друг от друга представляют собой водород, (C1-C4)алкил или совместно образуют этиленовую или пропиленовую группу в присутствии содержащего переходный металл катализатора.
Figure 00000024
Термин «катализатор» означает содержащий переходный металл катализатор, в частности палладиевый катализатор, такой как диацетат палладия(II) или дихлорбис(трифенилфосфин)палладий(II), или никелевый катализатор, такой как ацетилацетонат никеля(II) или дихлорбис(трифенилфосфин)никель(II). Кроме того, катализаторы можно получать на месте применения in situ, используя соли металлов и лиганды, такие как ацетат палладия(II) и трифенилфосфин или хлорид никеля(II) и трифенилфосфин. Данные получаемые на месте применения катализаторы можно получать посредством предварительной реакции соли металла и лиганда, после чего следует введение в реакционную смесь, или посредством раздельного введения соли металла и лиганда непосредственно в реакционную смесь.
Как правило, реакции сочетания осуществляют при отсутствии кислорода, используя инертный газ, такой как азот или аргон. Методики, используемые для исключения кислорода из реакционных смесей в реакциях сочетания, такие как вытеснение инертным газом, хорошо известны специалистам в данной области техники. Примеры таких методик описывает книга «Обращение с чувствительными к воздуху соединениями», второе издание под редакцией D. F. Shriver и M.A. Drezdzon, издательство Wiley-Interscience, 1986 г. Катализатор используют в субстехиометрических количествах, составляющих, как правило, от 0,0001 эквивалента до 0,1 эквивалента. Можно необязательно вводить дополнительные количества лиганда для повышения устойчивости и активности катализатора. Кроме того, в реакцию сочетания, как правило, вводят добавки, такие как карбонат натрия, карбонат калия, фторид калия, фторид цезия и фторид натрия. Для реакции сочетания требуется, как правило, от 1 до 5 эквивалентов, предпочтительно от 1 до 2 эквивалентов такой добавки. Воду можно необязательно вводить в реакцию сочетания для повышения растворимости этих добавок. Для реакции сочетания требуется, как правило, от 1 до 3 эквивалентов, предпочтительно от 1 до 1,5 эквивалентов арил-, алкил- или алкенилметаллоорганического соединения. Реакцию осуществляют в инертном растворителе, таком как толуол, THF, диоксан или ацетонитрил. Температура, при которой проводят реакцию, не имеет решающего значения, но эта температура составляет обычно от 25°C до 150°C и предпочтительно от 50°C до 125°C. Для типичной реакции требуется, как правило, от 0,5 до 24 часов. Никакой определенный порядок введения реагентов, как правило, не требуется. Часто оказывается технологически более простым объединение всех реагентов за исключением катализатора и последующее удаление кислорода из реакционного раствора. После удаления кислорода катализатор можно вводить для начала реакции сочетания.
Когда металлоорганическая часть арил-, алкил- или алкенилметаллоорганического соединения представляет собой Zn-галогенид, Zn-R или медь, может оказаться необходимой защита реакционно-способных функциональных групп. Например, если присутствует аминный заместитель (-NHR или-NH2), может потребоваться защита этих реакционно-способных групп. В технике известны разнообразные группы для защиты аминогрупп от реакции с металлоорганическими реагентами. Примеры таких защитных групп описывает книга «Защитные группы в органическом синтезе», третье издание под редакцией T. W. Greene и P.G.M. Wuts, издательство Wiley-Interscience, 1999 г. На выбор металла для использования в металлоорганическом соединении R-Met влияет множество факторов, таких как стоимость, устойчивость, реакционная способность и необходимость защиты реакционно-способных функциональных групп.
Продукты, полученные любым из этих способов, можно выделять традиционными средствами, такими как испарение или экстракция, и их можно очищать стандартными процедурами, такими как перекристаллизация или хроматография.
Следующие примеры представлены, чтобы проиллюстрировать настоящее изобретение.
Примеры
Фторидное замещение
Пример 1a. 3-Хлор-4,5,6-трифторпиколинонитрил
Figure 00000025
В пятилитровую колбу с механической мешалкой в атмосфере азота загружали DMSO (3820 мл), порошкообразный карбонат калия K2CO3 (42 г) и тонкоизмельченный фторид цезия CsF (1510 г). DMSO (приблизительно 1 л) удаляли путем дистилляции при 75-80°C и 3,5 мм рт. ст. (0,46 кПа). Суспензию охлаждали до 55°C в атмосфере азота перед введением тонкоизмельченного 3,4,5,6-тетрахлорпиколинонитрила (685 г). Введение осуществляли в течение 15-минутного периода при охлаждении для поддержания температуры реакционной смеси ниже 74°C. Температуру выдерживали на уровне от 65 до 70°C при медленном потоке азота в течение 4 часов. Реакционную смесь охлаждали до 40-50°C и выливали в смесь ледяной воды H2O (15 л) и диэтилового эфира Et2O (3 л). После отделения органической фазы водную фазу экстрагировали Et2O (2×2 л). Органические экстракты объединяли, сушили над сульфатом магния (MgSO4), фильтровали и концентрировали путем дистилляции при атмосферном давлении, получая смесь неочищенных продуктов (469 г) в форме светло-коричневого масла. Это масло объединяли с дополнительным материалом, полученным аналогичным образом, получая в сумме 1669 г неочищенного продукта. Это масло дистиллировали в вакууме, используя 30-тарелочную колонку Олдершоу (Oldershaw) в температурном интервале от 80 до 90°C, собирая фракции при 63, 13 и 2 мм рт. ст. (8,4, 1,7 и 0,27 кПа). Из материала, собранного при 13 мм рт. ст. (1,7 кПа), получали 457 г (выход 22%) твердого вещества, которое представляло собой смесь двух хлортрифторпиколинонитрилов в соотношении 93/7. Это твердое вещество перекристаллизовывали при 5°C из смеси гексана (420 г) и Et2O, получая 3-хлор-4,5,6-трифторпиколинонитрил (354 г, чистота 98%) в форме тонких белых игольчатых кристаллов. Небольшой образец перекристаллизовывали второй раз, получая чистоту 99,7% согласно газовой хроматографии (GC); температура плавления 41,5-43°C; спектр ЯМР 19F (376 МГц, CDCl3) δ -78,1 (т, JF-F=23,1 Гц, F6), -114,2 (дд, JF-F=18,5, 22,5 Гц, F4), -149,3 (дд, JF-F=18,2, 22,6 Гц, F5); спектр ЯМР 13C {1Н} (101 МГц, CDCl3) δ 154,5 (ддд, JF-C=270, 11, 7 Гц, C4), 151,3 (ддд, JF-C=247, 13, 5 Гц, C6), 138,0 (ддд, JF-C=279, 31, 13 Гц, C5), 124,7 (ддд, JF-C=16, 6, 2 Гц, C3), 124,4 (ддд, JF-C=16, 7, 2 Гц, C2), 112,2 (c, CN); электронно-стимулированная масс-спектрометрия (EIMS) m/z 192 ([M]+). Элементный анализ. Вычислено для C6ClF3N2 (%): C, 37,43; N, 14,55. Найдено (%): C, 36,91; N, 14,25.
Из второй фракции при дистилляции (63 мм рт. ст., 8,4 кПа) получали чистый 3,4,5,6-тетрафторпиколинонитрил (525 г, 24%) в форме бесцветного масла; спектр ЯМР 19F (376 МГц, CDCl3) δ -77,6 (т, JF-F=23,8 Гц, F6), -133,7 (кв., JF-F=18,8 Гц, F4), -134,2 (ддд, JF-F=24,2, 18,6, 10,1 Гц, F3), -145,3 (ддд, JF-F=24,1, 18,2, 10,2 Гц, F5); спектр ЯМР 13C {1Н} (101 МГц, CDCl3) δ 150,4 (дм, JF-C=272 Гц, C3), 148,5 (ддд, JF-C=245, 12, 4 Гц, C6), 147,3 (дм, JF-C=270 Гц, C4), 138,6 (ддд, JF-C=280, 33, 11 Гц, C5), 113,4 (м, C2), 110,20 (c, CN).
Из третьей фракции при дистилляции (2 мм рт. ст., 0,27 кПа) получали 3,5-дихлор-4,6-дифторпиколинонитрил (48 г, чистота 98%) в форме белого твердого вещества; температура плавления 78-79°C; спектр ЯМР 19F (376 МГц, CDCl3) δ -63,65 (д, JF-F=18,7 Гц, F6), -92,52 (д, JF-F=18,5 Гц, F4); спектр ЯМР 13C {1Н} (101 МГц, CDCl3) δ 162,6 (дд, JF-C=269, 6 Гц, C4), 157,8 (дд, JF-C=245, 5 Гц, C6), 127,6 (дд, JF-C=17, 3 Гц, C3), 123,5 (дд, JF-C=18, 6 Гц, C2), 112,4 (дд, JF-C=36, 21 Гц, C5), 112,3 (CN).
Пример 1b. Обратная реакция галогенидного замещения 3,4,5,6-тетрафторпиколинонитрила с хлоридом лития
Figure 00000026
Смесь 3,4,5,6-тетрафторпиколинонитрила (17 г, 0,1 моль) и сухого LiCl (25,4 г, 0,6 моль) нагревали в сухом DMSO (200 мл). За реакцией наблюдали, проводя анализ методом газовой хроматографии аликвот, экстрагированных Et2O из H2O. Сначала реакционную смесь нагревали до 120°C и весь LiCl растворялся. В течение пятиминутного выдерживания при 120°C весь исходный материал и изомеры хлортрифторпиколинонитрила реагировали, образуя смесь 3,6-F2-PN (83%) и 6-F-PN (14%). Температуру реакционной смеси повышали до 135°C и через 75 минут после начала реакции проводили анализ методом газовой хроматографии. Определяли, что смесь представляла собой 3,6-F2-PN/6-F-PN/Cl4-PN смесь в соотношении 8:80:12.
Пример 1ca. Обмен 3,4,5,6-тетрафторпиколинонитрила
Figure 00000027
Смесь 3,4,5,6-тетрахлорпиколинонитрила (16,1 г, 66 ммоль) и 3,4,5,6-тетрафторпиколинонитрила (5,9 г, 33 ммоль) нагревали до 160°C в атмосфере азота, получая раствор. В данный раствор при перемешивании вводили хлорид тетрабутилфосфония Bu4PCl (0,36 г, 1,2 ммоль) и раствор выдерживали при 160°C в течение 1 часа. Аликвоту растворяли в метиленхлориде (CH2Cl2) и пропускали через тонкий слой силикагеля перед анализом методом газовой хроматографии. Галогенированные пиколинонитрилы имели следующий состав: 11,2% Cl4-PN; 11,3% 4,6-F2-PN; 2,3% 5,6-F2-PN; 19% 3,6-F2-PN; 52,6% 6-F-PN и 3,6% 4-F-PN. Можно использовать 80% данной смеси в реакции галогенидного замещения, чтобы получать 3-хлор-4,5,6-трифторпиколинонитрил.
Пример 1cb. Выделение после обмена 3,4,5,6-тетрафторпиколинонитрила
В реакционную колбу, снабженную коротким дефлегматором, загружали тонкоизмельченный CsF (35,1 г, 0,23 моль) и сухой DMSO (175 мл). Реакционную смесь перемешивали и нагревали до 70-75°C в вакууме (0,1 мм рт. ст., 13,33 Па) до тех пор, пока DMSO (75 мл) не был удален путем дистилляции. Данную суспензию охлаждали до 50°C в атмосфере азота и вводили полученную ранее расплавленную реакционную смесь (21,7 г). Реакционную смесь нагревали при 70°C в течение 2,5 ч при интенсивном перемешивании. Экстракт диэтилового эфира вводили в воду и анализировали методом газовой хроматографии, обнаруживая, что она содержала: 61% 3,4,5,6-тетрафторпиколинонитрила; 31% 3-хлор-4,5,6-трифторпиколинонитрила; 3,4% 5-хлор-3,5,6-трифторпиколинонитрила и 4,8% 3,5-дихлор-4,6-дифторпиколинонитрила. Этот результат являлся благоприятным по сравнению с типичной чистотой от 38 до 42%, полученной методом газовой хроматографии для неочищенного образца, когда аналогичную реакцию проводили, используя в качестве исходного материала чистый 3,4,5,6-тетрахлорпиколинонитрил.
Пример 1d. Обмен 3,4,5,6-тетрафторпиколинонитрила под действием LiCl
Figure 00000028
Смесь 3,4,5,6-тетрахлорпиколинонитрила (12,2 г, 50 ммоль) и 3,4,5,6-тетрафторпиколинонитрил (8,8 г, 50 ммоль) нагревали до 160°C в атмосфере азота, получая прозрачный раствор. В него вводили Bu4PCl (0,36 г, 1,2 ммоль). Реакционный раствор выдерживали при 160°C в течение 15 минут перед введением сухого LiCl (4,2 г, 0,1 моль). Через 60 минут вводили дополнительное количество LiCl (2,2 г, 50 ммоль) и реакционную смесь перемешивали в течение 11 часов. Газохроматографический анализ эфирного экстракта из воды определил смесь 3,6-F2-PN/6-F-PN/Cl4-PN в соотношении 8:75:17.
Аминирование
Пример 2. 4-Амино-3-хлор-5,6-дифторпиколинонитрил
Figure 00000029
Раствор 3-хлор-4,5,6-трифторпиколинонитрила (200 г) в этилацетате (EtOAc) (3 л) охлаждали до 10°C. В этот раствор медленно вводили 14% водный раствор гидроксида аммония (NH4OH) (1296 г), выдерживая температуру в интервале от 18 до 23°C. Водный раствор отделяли от органического раствора. Органическую фазу промывали, используя последовательно разбавленный вдвое (50/50) насыщенный водный раствор NaCl и воду (500 мл) и насыщенный водный раствор NaCl (250 мл). Органическую фазу концентрировали в вакууме при 50°C до объема 500 мл для кристаллизации продукта. К данной суспензии добавляли гептан (1 л) и оставшийся EtOAc удаляли в вакууме, получая конечную суспензию. Твердое вещество отделяли путем фильтрования. Данное твердое вещество промывали пентаном и сушили в вакууме, получая 4-амино-3-хлор-5,6-дифторпиколинонитрил (173,8 г, 90%, чистота 99,6%) в форме белого кристаллического твердого вещества; температура плавления 190-191,5°C; спектр ЯМР 13C {lH} (101 МГц, DMSO-d6) δ 150,03 (дд, J=232,4, 12,5 Гц, C6), 144,29 (дд, J=11,4, 6,9 Гц, C4), 133,72 (дд, J=257,9, 30,8 Гц, C5), 122,14 (дд, J=19,6, 4,9 Гц, C2), 119,31 (c, C3), 114,25 (c, CN); спектр ЯМР 19F (376 МГц, DMSO-d6) δ -91,24 (д, J=24,2 Гц), -154,97 (д, J=24,2 Гц); электронно-стимулированная масс-спектрометрия (EIMS) m/z 189 ([M]+). Элементный анализ. Вычислено для C6H2ClF2N3 (%): C, 38,02; H, 1,06; N, 22,17. Найдено (%): C, 37,91; H, 1,00; N, 22,02.
Реакция c гидразином
Пример 3. 4-Амино-3-хлор-5-фтор-6-гидразинопиколинонитрил
Figure 00000030
В раствор гидрата гидразина (3,9 г, 78 ммоль) в THF (15 мл) и DMSO (10 мл) вводили 4-амино-3-хлор-5,6-дифторпиколинонитрил (5 г, 26 ммоль) в форме раствора в DMSO (5 мл). Полученный раствор нагревали при 65°C в течение 45 минут, охлаждали и разбавляли ацетонитрилом (30 мл), осаждая продукт в форме светлого желто-коричневого твердого вещества. Данное твердое вещество сушили в вакууме при 40°C в течение 3 часов, получая 4-амино-3-хлор-5-фтор-6-гидразинопиколинонитрил (5,1 г, 98%); температура плавления 215-220°C (разложение); спектр 1H ЯМР (400 МГц, DMSO-d6) 7,9 (широкий сигнал, 1H), 6,5 (широкий сигнал, 2H), 4,0 (широкий сигнал, 2H); спектр ЯМР 13C {1H} (101 МГц, DMSO-d6) δ 149,34 (д, J=10,5 Гц, C6), 138,28 (д, J=11,6 Гц, C4), 133,81 (д, J=251,6 Гц, C5), 123,74 (д, J=5,3 Гц, C2), 115,87 (c, C3), 112,57 (c, CN); спектр ЯМР 19F (376 МГц, DMSO-d6) δ -154,6; электронно-стимулированная масс-спектрометрия (EIMS) m/z 203 ([M+H]+). Элементный анализ. Вычислено для C6H5ClFN5 (%): C, 35,75; H, 2,50; N, 34,74. Найдено (%): C, 35,97; H, 2,70: N, 35,01.
Галогенирование
Пример 4. 4-Амино-3,6-дихлор-5-фторпиколинонитрил
Figure 00000031
В суспензию 4-амино-3-хлор-5-фтор-6-гидразинилпиколинонитрила (9,04 г, 44,8 ммоль) в CH2Cl2 (150 мл) вводили сульфурилхлорид (7,20 мл, 89 ммоль). Смесь перемешивали при комнатной температуре в течение 40 часов. Растворитель удаляли при пониженном давлении и остаток разбавляли насыщенным водным раствором бикарбоната натрия (NaHCO3) и EtOAc. Органическую фазу отделяли, сушили над Na2SO4 и фильтровали. Раствор концентрировали и остаток очищали методом хроматографии с силикагелем, получая продукт (7,01 г, 76%) в форме беловатого твердого вещества; спектр ЯМР 1H (300 МГц, DMSO-d6) δ 7,55 (c, 2H); спектр ЯМР 13C (101 МГц, DMSO-d6) δ 143,26 (д, J=259,2 Гц, C5), 142,69 (д, J=14,0 Гц, C4), 135,53 (д, J=17,6 Гц. C6), 126,07 (д, J=4,4 Гц, C2), 120,14 (д, J=4,3 Гц, C3), 114,36 (c, CN); спектр ЯМР 19F (376 МГц, DMSO-d6) δ -132,30 (с); электронно-стимулированная масс-спектрометрия (ESIMS) m/z 203 ([M+H]+), 206.
Гидролиз и этерификация
Пример 5. Метил-4-амино-3,6-дихлор-5-фторпиколинат
Figure 00000032
Концентрированную серную кислоту (2,0 мл, 37,5 ммоль) медленно вводили в метиловый спирт (8 мл) при охлаждении. Затем в раствор вводили 4-амино-3,6-дихлор-5-фторпиколинонитрил (0,20 г, 0,97 ммоль) и смесь перемешивали с обратным холодильником в течение 29 часов. Растворитель удаляли в вакууме, остаток выливали на лед и перемешивали в течение 15 минут. Продукт экстрагировали EtOAc (3 раза). Органические экстракты объединяли, промывали концентрированным раствором NaCl, сушили над MgSO4, фильтровали и очищали на колонке с силикагелем, получая метил-4-амино-3,6-дихлор-5-фторпиколинат (0,085 г, 37%) в форме белого твердого вещества: спектр ЯМР 1H (400 МГц, CDCl3) δ 5,08 (c, 2H), 3,97 (c, 3H); спектр ЯМР 13C (101 МГц, CDCl3) δ 163,57 (c, C=0), 143,29 (д, J=258,1 Гц, C5), 141,73 (д, J=5,1 Гц, C2), 141,05 (д, J=12,7 Гц, C4), 135,32 (д, J=16,8 Гц, C6), 116,26 (c, C3), 53,24 (c, OMe); спектр ЯМР 19F (376 МГц, CDCl3) δ -135,63 (с).
Сочетание
Пример 6a. Метил-4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метокси-фенил)пиколинат
Figure 00000033
В трехгорлую колбу объемом 250 мл, снабженную обратным холодильником, впуском азота и термопарой, загружали метил-4-амино-3,6-дихлор-5-фторпиколинат (9,965 г, 41,7 ммоль), 2-(4-хлор-2-фтор-3-метоксифенил)-1,3,2-диоксаборинан (12,74 г, 52,1 ммоль) и KF (4,84 г, 83 ммоль). Добавляли ацетонитрил (78 мл) и воду (26 мл). Реакционную смесь продували азотом. Вводили дихлорбис(трифенилфосфин)палладий(II) Pd(PPh3)2Cl2 (1,477 г, 2,10 ммоль, 5 мол.%) и раствор нагревали при 70°C в атмосфере азота в течение 2 часов. После охлаждения до комнатной температуры образовавшийся осадок отфильтровывали и промывали водой. Осадок растворяли в EtOAc (приблизительно 500 мл) и промывали водой и затем концентрированным раствором NaCl. Органический слой сушили над MgSO4 и растворитель удаляли с помощью роторного испарителя, получая оранжевое твердое вещество, которое сушили в вакуумной печи при 50°C (11,46 г, 76% выход); температура плавления 169-170,5°C; спектр ЯМР 1H (400 МГц, DMSO-d6) δ 7,48 (д, J=8,4 Гц, 1H), 7,32 (т, J=7,7 Гц, 1H), 7,15 (c, 2H), 3,96 (c, 3H), 3,90 (c, 3H); спектр ЯМР 13C {1Н}(101 МГц, DMSO-d6) δ 164,85 (с), 153,11 (д, J=252,5 Гц), 146,29 (с), 144,52 (д, J=4,3 Гц), 143,74 (с), 142,75 (дд, J=227,1, 14,0 Гц), 136,38 (д, J=13,4 Гц), 128,58 (д, J=3,2 Гц), 125,87 (с), 125,54 (д, J=3,5 Гц), 122,89 (дд, J=13,8, 4,0 Гц), 113,01 (д, J=3,0 Гц), 61,61 (д, J=4,2 Гц), 52,70 (с); электронно-стимулированная масс-спектрометрия (ESIMS) m/z 364 ([M+H]+). Элементный анализ. Вычислено для C14H10Cl2F2N2O3 (%): C, 46,30; H, 2,78; N, 7,71. Найдено (%): C, 46,60; H, 2,68; N, 7,51.
Пример 6b. 4-Амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил)пиколинонитрил
Figure 00000034
Смесь 4-амино-3,6-дихлор-5-фторпиколинонитрила (0,37 г, 1,80 ммоль), 2-(4-хлор-2-фтор-3-метоксифенил)-1,3,2-диоксаборинана (0,549 г, 2,24 ммоль) и KF (0,209 г, 3,59 ммоль) вводили в ацетонитрил (6,75 мл) и воду (2,25 мл). Смесь перемешивали и продували азотом. Вводили Pd(PPh3)2Cl2 (63 мг, 0,1 ммоль) и смесь снова продували азотом. Затем раствор нагревали при 75°C в атмосфере азота в течение 2 часов. После охлаждения образовывался осадок, который выделяли путем фильтрования, промывали водой и сушили в вакууме, получая продукт (0,34 г) в форме беловатого твердого вещества. Водную фазу экстрагировали EtOAc (3 раза) и объединенные органические экстракты промывали концентрированным раствором NaCl, сушили и концентрировали. Методом хроматографической очистки с силикагелем получали дополнительный продукт (0,12 г) в форме белого твердого вещества. Суммарный выход 78%. Спектр ЯМР 1H (400 МГц, DMSO-d6) δ 7,50 (дд, J=8,5, 1,4 Гц, 1H), 7,45 (c, 2H), 7,33 (дд, J=8,5, 7,2 Гц, 1H), 3,94 (c, 3H); спектр ЯМР 13C {1H} (101 МГц, DMSO-d6) δ 152,97 (д, J=253,2 Гц), 145,73 (д, J=260,8 Гц), 143,82 (д, J=13,7 Гц), 141,83 (д, J=14,7 Гц), 138,45 (д, J=14,8 Гц), 133,93-132,79 (м), 128,93 (д, J=3,3 Гц), 127,74 (с), 126,37-125,10 (м), 122,08 (дд, J=13,6, 3,9 Гц), 119,34 (д, J=4,5 Гц), 114,99 (с), 61,61 (с); спектр ЯМР 19F (376 МГц, DMSO-d6) δ -129,00 (дд, J=28,2, 7,0 Гц, 1F), -133,76 (д, J=28,2 Гц, 1F); электронно-стимулированная масс-спектрометрия (ESIMS) m/z 330,1 ([M+H]+).

Claims (4)

1. Способ получения 4-амино-3-хлор-5-фтор-6-(замещенного)пиколината формулы I
Figure 00000001

в которой
R представляет собой (C1-C4)алкил, циклопропил, (C2-C4)алкенил или фенил, содержащий от 1 до 4 заместителей, в качестве которых независимо выбирают галоген, (C1-C4)алкил, (C1-C4)галоалкил, (C1-C4)алкокси или (C1-C4)галоалкокси; и
R1 представляет собой (C1-C12)алкил или незамещенный или замещенный (C7-C11)арилалкил;
который включает следующие стадии:
a) фторирование 3,4,5,6-тетрахлорпиколинонитрила (формула A)
Figure 00000002

источником фторид-ионов для получения 3-хлор-4,5,6-трифторпиколинонитрила (формула B)
Figure 00000035

b) аминирование 3-хлор-4,5,6-трифтор-2-пиколинонитрила (формула B) аммиаком для получения 4-амино-3-хлор-5,6-дифторпиколинонитрила (формула C)
Figure 00000036

c) реакцию фторзаместителя в положении 6 4-амино-3-хлор-5,6-дифторпиколинонитрила (формула C) с гидразином для получения 4-амино-3-хлор-5-фтор-6-гидразинопиколинонитрила (формула D)
Figure 00000037

d) галогенирование 4-амино-3-хлор-5-фтор-6-гидразинопиколинонитрила (формула D) источником хлора, брома или йода для получения 4-амино-3-хлор-5-фтор-6-галогенпиколинонитрила формулы E
Figure 00000006

в которой L представляет собой Br, Cl или I;
e) гидролиз и этерификацию 4-амино-3-хлор-5-фтор-6-галогенпиколинонитрила формулы E сильной кислотой и спиртом (R1OH) для получения 4-амино-3-хлор-5-фтор-6-галогенпиколината формулы F
Figure 00000007

в которой L и R1 являются такими, как определено выше; и
f) сочетание 4-амино-3-хлор-5-фтор-6-галогенпиколината формулы E с арил-, алкил- или алкенилметаллоорганическим соединением формулы G
Figure 00000008

в которой R является таким, как определено выше, и Met представляет собой Zn-галогенид, Zn-R, три-((C1-C4)алкил)олово, медь, или B(OR2)(OR3), где R2 и R3 независимо друг от друга представляют собой водород или (C1-C4)алкил, или совместно образуют этиленовую или пропиленовую группу в присутствии содержащего переходный металл катализатора, для получения 4-амино-3-хлор-5-фтор-6-(замещенного)пиколината формулы I.
2. Способ по п.1, в котором сочетание стадии (f) осуществляют перед гидролизом и этерификацией стадии (e).
3. Усовершенствованный способ увеличения количества выделяемого 3-хлор-4,5,6-трифторпиколинонитрила (формула B)
Figure 00000035

полученного фторированием 3,4,5,6-тетрахлорпиколинонитрила (формула A)
Figure 00000002

источником фторид-ионов, где усовершенствование включает следующие стадии:
i) выделение полностью фторированного 3,4,5,6-тетрафторпиколинонитрила (формула H)
Figure 00000012

в качестве побочного продукта фторирования 3,4,5,6-тетрахлорпиколинонитрила;
ii) реакция выделенного 3,4,5,6-тетрафторпиколинонитрила (H) (a) с хлоридом лития (LiCl), (b) с 3,4,5,6-тетрахлорпиколинонитрилом (формула A) в присутствии катализатора межфазного переноса или (c) с комбинацией LiCl и 3,4,5,6-тетрахлорпиколинонитрила для получения смеси, которую составляют преимущественно 3,4,5,6-тетрахлорпиколинонитрил, монофтортрихлорпиколинонитрил и дифтордихлорпиколинонитрил; и
iii) возвращение смеси, которую составляют преимущественно 3,4,5,6-тетрахлорпиколинонитрил, монофтортрихлорпиколинонитрил и дифтордихлорпиколинонитрилы в реакцию фторирования для получения 3-хлор-4,5,6-трифторпиколинонитрила (формула B).
4. Соединение формулы
Figure 00000013
RU2013139346/04A 2011-01-25 2012-01-24 Способ получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов RU2539578C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161435974P 2011-01-25 2011-01-25
US61/435,974 2011-01-25
PCT/US2012/022288 WO2012103044A1 (en) 2011-01-25 2012-01-24 Process for the preparation of 4-amino-3-chloro-5-fluoro-6-(substituted)picolinates

Publications (1)

Publication Number Publication Date
RU2539578C1 true RU2539578C1 (ru) 2015-01-20

Family

ID=46544649

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013139346/04A RU2539578C1 (ru) 2011-01-25 2012-01-24 Способ получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов

Country Status (20)

Country Link
US (2) US8609853B2 (ru)
EP (2) EP2901857B1 (ru)
JP (1) JP5739019B2 (ru)
KR (2) KR101517313B1 (ru)
CN (1) CN103429082B (ru)
AR (1) AR085023A1 (ru)
AU (1) AU2012209280B2 (ru)
BR (2) BR102012001638A8 (ru)
CA (1) CA2825389C (ru)
CO (1) CO6731128A2 (ru)
HK (2) HK1187493A1 (ru)
IL (1) IL227645B (ru)
MX (1) MX339636B (ru)
PL (2) PL2667713T3 (ru)
RU (1) RU2539578C1 (ru)
SG (2) SG192579A1 (ru)
TW (2) TWI547482B (ru)
UA (1) UA105610C2 (ru)
WO (1) WO2012103044A1 (ru)
ZA (1) ZA201305579B (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201609651A (zh) 2013-11-12 2016-03-16 陶氏農業科學公司 用於氟化化合物之過程(一)
BR102014028162A2 (pt) 2013-11-12 2015-09-08 Dow Agrosciences Llc processo para fluoração de compostos
TW201524956A (zh) * 2013-11-12 2015-07-01 Dow Agrosciences Llc 用於氟化化合物之過程(二)
TWI726900B (zh) 2015-08-04 2021-05-11 美商陶氏農業科學公司 用於氟化化合物之過程
JP2019502729A (ja) * 2016-01-22 2019-01-31 ダウ アグロサイエンシィズ エルエルシー 4−アルコキシ−3−ヒドロキシピコリン酸を製造する方法
CN109415319A (zh) * 2016-05-19 2019-03-01 美国陶氏益农公司 通过直接苏楚基偶联合成芳基羧酸酯
WO2020061146A1 (en) 2018-09-19 2020-03-26 Dow Agrosciences Llc Preparation of halogen analogs of picloram
EP4121414A1 (en) 2020-03-18 2023-01-25 Corteva Agriscience LLC Improved synthesis of 4-amino-6-(heterocyclic)picolinates
US20230174490A1 (en) 2020-03-18 2023-06-08 Corteva Agriscience Llc Improved synthesis of 6-aryl-4-aminopicolinates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755338A (en) * 1970-12-17 1973-08-28 Dow Chemical Co 4-amino-6-bromo-3,5-dichloropicolinic acid compounds
US3971799A (en) * 1974-12-27 1976-07-27 The Dow Chemical Company Preparation of 3,5,6-trichloropicolinic acid
US4087431A (en) * 1976-05-17 1978-05-02 The Dow Chemical Company Preparation of 3,6-dichloropicolinic acid

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803159A (en) * 1967-12-26 1974-04-09 Dow Chemical Co Fluorine containing cyanopyridines
US3629424A (en) * 1967-12-26 1971-12-21 Dow Chemical Co Cyanofluoropyridines and fungicidal compositions and methods for using the same
US4814456A (en) * 1986-02-10 1989-03-21 The Dow Chemical Company Chlorinating waste streams to recover cyanopyridine contained therein
US4999432A (en) * 1989-08-28 1991-03-12 Dowelanco Fluorination with hydrogen fluoride
US5807804A (en) * 1996-02-22 1998-09-15 American Cyanamid Company Substituted pyridine herbicidal agents
JP3731982B2 (ja) * 1997-08-26 2006-01-05 株式会社日本触媒 有機フッ素化合物の製造方法
US6297197B1 (en) 2000-01-14 2001-10-02 Dow Agrosciences Llc 4-aminopicolinates and their use as herbicides
BRPI0107649B8 (pt) * 2000-01-14 2022-06-28 Dow Agrosciences Llc Composição herbicida compreendendo ácido 4-amino-3,6-dicloropiridina-2-carboxílico ou um derivado do mesmo e método para controlar vegetação indesejável.
AR037228A1 (es) 2001-07-30 2004-11-03 Dow Agrosciences Llc Compuestos del acido 6-(aril o heteroaril)-4-aminopicolinico, composicion herbicida que los comprende y metodo para controlar vegetacion no deseada
UA82358C2 (ru) * 2003-04-02 2008-04-10 Дау Агросайенсиз Ллс 6-алкил или фенил-4-аминопиколинаты, гербицидная композиция, способ борьбы с нежелательной растительностью
UA81177C2 (ru) * 2003-08-04 2007-12-10 Дау Агросайєнсіз Ллс 6-(1,1-дифторалкил)- 4-аминопиколинаты и их использование в качестве гербицидов
WO2006062979A1 (en) * 2004-12-06 2006-06-15 E.I. Dupont De Nemours And Company Herbicidal 6-cyclopropyl-substitute 4-aminopicolinic acid derivatives
KR101379625B1 (ko) * 2006-01-13 2014-03-31 다우 아그로사이언시즈 엘엘씨 6-(다-치환 아릴)-4-아미노피콜리네이트 및 그의제초제로서의 용도
WO2008020799A1 (en) 2006-08-18 2008-02-21 Astrazeneca Ab Thienopyrimidin-4-one and thienopyridazin-7-one derivatives as mch rl antagonists
DK2193120T3 (en) * 2007-10-02 2016-10-24 Dow Agrosciences Llc 2-substituted-6-amino-5-alkyl, -alkenyl or -alkynyl-4-pyrimidinecarboxylic acids and 6-substituted-4-amino-3-alkyl, alkenyl or -alkynyl picolic acids and their use as herbicides
AU2009314948A1 (en) * 2008-11-17 2010-05-20 Ishihara Sangyo Kaisha, Ltd. Pyridine derivative or its salt, pesticide containing it and process for its production
US8252938B2 (en) * 2009-06-08 2012-08-28 Dow Agrosciences, Llc. Process for the preparation of 6-(aryl)-4-aminopicolinates
GB0910766D0 (en) * 2009-06-22 2009-08-05 Syngenta Ltd Chemical compounds
DE102009054573A1 (de) 2009-11-13 2011-05-19 Tracoe Medical Gmbh Tracheostomiekanüle mit Fenster
UA103272C2 (ru) * 2009-12-11 2013-09-25 Ф. Хоффманн-Ля Рош Аг 2-амино-5,5-дифтор-5,6-дигидро-4h-оксазины как ингибиторы bace1 и/или bace2

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755338A (en) * 1970-12-17 1973-08-28 Dow Chemical Co 4-amino-6-bromo-3,5-dichloropicolinic acid compounds
US3971799A (en) * 1974-12-27 1976-07-27 The Dow Chemical Company Preparation of 3,5,6-trichloropicolinic acid
US4087431A (en) * 1976-05-17 1978-05-02 The Dow Chemical Company Preparation of 3,6-dichloropicolinic acid

Also Published As

Publication number Publication date
KR101542340B1 (ko) 2015-08-05
EP2901857A1 (en) 2015-08-05
WO2012103044A1 (en) 2012-08-02
ZA201305579B (en) 2014-09-25
AR085023A1 (es) 2013-08-07
CA2825389C (en) 2015-12-22
EP2901857B1 (en) 2017-03-01
PL2667713T3 (pl) 2017-08-31
SG192579A1 (en) 2013-09-30
IL227645A0 (en) 2013-09-30
CA2825389A1 (en) 2012-08-02
MX339636B (es) 2016-06-01
BR112013018942A2 (pt) 2018-05-22
EP2667713B1 (en) 2016-05-04
CO6731128A2 (es) 2013-08-15
JP2014511364A (ja) 2014-05-15
PL2901857T3 (pl) 2017-08-31
HK1206938A1 (en) 2016-01-22
KR20150006073A (ko) 2015-01-15
JP5739019B2 (ja) 2015-06-24
TW201307290A (zh) 2013-02-16
TW201600511A (zh) 2016-01-01
MX2013008604A (es) 2013-08-12
US8609853B2 (en) 2013-12-17
HK1187493A1 (en) 2014-04-11
BR112013018942A8 (pt) 2018-07-31
CN103429082B (zh) 2015-05-06
CN103429082A (zh) 2013-12-04
US20140046070A1 (en) 2014-02-13
US9598368B2 (en) 2017-03-21
TWI520943B (zh) 2016-02-11
KR20130121951A (ko) 2013-11-06
US20120190858A1 (en) 2012-07-26
IL227645B (en) 2018-01-31
AU2012209280A1 (en) 2013-08-15
EP2667713A1 (en) 2013-12-04
EP2667713A4 (en) 2014-09-10
SG10201503717PA (en) 2015-06-29
BR102012001638A8 (pt) 2018-07-31
BR102012001638A2 (pt) 2015-07-28
TWI547482B (zh) 2016-09-01
UA105610C2 (ru) 2014-05-26
KR101517313B1 (ko) 2015-05-04
AU2012209280B2 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
RU2545021C1 (ru) Способ получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов
RU2539578C1 (ru) Способ получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов
RU2542985C1 (ru) Способ получения 4-амино-5-фтор-3-галоген-6-(замещенных)пиколинатов
AU2012209277A1 (en) Process for the preparation of 4-amino-3-chloro-5-fluoro-6-(substituted) picolinates
AU2015204348A1 (en) Process for the preparation of 4-amino-3-chloro-5-fluoro-6-(substituted)picolinates

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170125