RU2535343C2 - Гидропиролиз биомассы для получения высококачественного жидкого горючего - Google Patents

Гидропиролиз биомассы для получения высококачественного жидкого горючего Download PDF

Info

Publication number
RU2535343C2
RU2535343C2 RU2011144858/04A RU2011144858A RU2535343C2 RU 2535343 C2 RU2535343 C2 RU 2535343C2 RU 2011144858/04 A RU2011144858/04 A RU 2011144858/04A RU 2011144858 A RU2011144858 A RU 2011144858A RU 2535343 C2 RU2535343 C2 RU 2535343C2
Authority
RU
Russia
Prior art keywords
hydroconversion
biomass
aforementioned
liquid
pyrolytic
Prior art date
Application number
RU2011144858/04A
Other languages
English (en)
Other versions
RU2011144858A (ru
Inventor
Терри Л. МАРКЕР
Ларри Дж. ФЕЛИКС
Мартин Б. ЛИНК
Original Assignee
Гэз Текнолоджи Инститьют
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Гэз Текнолоджи Инститьют filed Critical Гэз Текнолоджи Инститьют
Publication of RU2011144858A publication Critical patent/RU2011144858A/ru
Application granted granted Critical
Publication of RU2535343C2 publication Critical patent/RU2535343C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/60Controlling or regulating the processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к вариантам способа получения жидких продуктов из биомассы. Способ включает стадии: a) гидропиролиз биомассы в гидропиролитическом реакторном сосуде, содержащем молекулярный водород и катализатор деоксигенирования, с образованием выходных продуктов, содержащих CO, СО и С-Сгазы, частично восстановленный пиролитический продукт, каменный уголь, и нагрев первой стадии; b) удаление каменного угля из частично восстановленного пиролитического продукта; c) гидроконверсию частично восстановленного пиролитического продукта в гидроконверсионном реакторном сосуде с использованием катализатора гидроконверсии в присутствии СО, СО и С-Сгазов, образованных на стадии а), с образованием практически полностью восстановленной пиролитической жидкости, газовой смеси, содержащей СО, СО, и легколетучих углеводородных газов (С-С) и нагрев второй стадии; d) паровой реформинг по меньшей мере части газовой смеси с образованием реформированного молекулярного водорода; и e) введение указанного реформированного молекулярного водорода в реакторный сосуд для гидропиролиза указанной биомассы. Причем стадии а) и с) проводят при условиях, в которых около 40-60% кислорода в биомассе переводят в НО и около 40-60% кислорода переводят в СО и CO. Способ обеспечивает самоподдерживающийся сбалансированный процесс для конверсии биомассы в жидкий продукт, используя гидропиролиз, который при однократном инициировании не требует введения дополнительных реактантов, нагревания или энергии от внешних источников. 2 н. и 18 з.п. ф-лы, 1 ил., 1 табл.

Description

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к интегрированному процессу для термохимической трансформации биомассы в высококачественное жидкое горючее. В одном аспекте настоящее изобретение, главным образом, относится к самоподдерживающемуся процессу для создания высококачественного жидкого горючего из биомассы. В другом аспекте настоящее изобретение относится к многостадийному гидропиролитическому процессу для создания высококачественного жидкого горючего из биомассы. В другом аспекте настоящее изобретение относится к гидропиролитическому процессу для перевода биомассы в высококачественное жидкое горючее, в котором все жидкости процесса обеспечиваются биомассой. В другом аспекте настоящее изобретение относится к гидролитическому процессу для перевода биомассы в высококачественное жидкое горючее, в котором результатами процесса являются только жидкие продукты и CO2.
ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
Традиционный пиролиз биомассы, как правило, быстрый пиролиз, не использует или не требует H2 или катализаторов и дает плотный кислый, активный жидкий продукт, который содержит воду, нефтепродукты и древесный уголь, образующийся в течение процесса. Поскольку быстрый пиролиз наиболее типично проводят в инертной атмосфере, большая часть кислорода, присутствующая в биомассе, переходит в нефтепродукты, получаемые в процессе пиролиза, который приводит к увеличению их химической активности. Нестабильные жидкости, получаемые посредством традиционного пиролиза, склонны к уплотнению со временем и могут также взаимодействовать до точки, в которой образуются гидрофильные и гидрофобные фазы. Растворение пиролитических жидкостей в метаноле или других спиртах демонстрирует уменьшение активности и вязкости нефтепродуктов, но данный подход не предполагает практической или экономической выгоды вследствие того, что большие количества спирта необратимо будут требоваться для получения и транспортирования больших количеств пиролитических жидкостей.
В традиционном пиролизе, проводимом в инертной атмосфере, смешивающийся с водой жидкий продукт является высокоокисленным и активным, с общим кислотным числом (TAN) в диапазоне 100-200, имеет низкую химическую стабильность для полимеризации, что является несовместимым с петролейными углеводородами ввиду способности смешиваться с водой и высоким содержанием кислорода около 40% по весу, и имеет низкое значение теплоемкости. В результате транспорт и утилизация данного продукта являются проблематичными; и представляется сложной модернизация данного продукта в жидкое топливо в силу реакций деградации, которые, как правило, протекают в традиционном пиролизе и в традиционном быстром пиролизе. В добавление, удаление каменного угля, образующегося посредством традиционного пиролиза, из жидкого пиролитического продукта представляет собой технически сложную задачу в силу большого количества кислорода и свободных радикалов в пиролитических парах, которые остаются высокоактивными и образуют подобный смоле материал, в котором они приходят в близкий контакт с частицами каменного угля на поверхности фильтра. Впоследствии фильтры, использующиеся для отделения каменного угля от горячих пиролитических паров, быстро забиваются в силу реакций каменного угля и нефтепродукта, которые проходят на и в общей массе слоя каменного угля на поверхности фильтра.
Модернизация пиролитических нефтепродуктов, достигаемая посредством традиционного быстрого пиролиза, через гидроконверсию дает слишком много H2, и экстремальные условия процесса делают его неэкономичным. Реакции, по сути, являются несбалансированными ввиду требующегося высокого давления, в связи с этим образуя слишком много воды и выпуская слишком много H2. К тому же гидроконверсионные реакторы часто закупориваются коксовыми прекурсорами, присутствующими в пиролитических нефтепродуктах или из коксового продукта в результате катализа.
Как правило, гидропиролиз является каталитическим пиролитическим процессом, проводимым в присутствии молекулярного водорода. Как правило, объектом традиционных гидропиролитических процессов является максимизация выхода жидкости на одной стадии и даже в одном известном случае, в котором добавляли вторую стадию реакции, целью являлась максимизация выхода посредством достижения высокой степени удаления кислорода. Однако даже данный подход содержит экономическую выгоду, создает систему, которая требует внешний источник H2 и должен подвергаться чрезвычайно высоким внутренним давлениям. В добавление к требованиям продолжительного введения водорода такой традиционный гидропиролитический процесс дает чрезвычайно большое количество H2O, которое необходимо выводить.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Таким образом, одним объектом настоящего изобретения является обеспечение самоподдерживающегося сбалансированного процесса для конверсии биомассы в жидкий продукт, используя гидропиролиз. Под «самоподдерживающимся» мы подразумевали, что однажды инициированный процесс не требует введения дополнительных реактантов, нагревания или энергии от внешних источников.
Другим объектом настоящего изобретения является обеспечение процесса для конверсии биомассы в жидкий продукт, используя гидропиролиз, в котором общим выходом всего процесса является в основном только жидкий продукт и CO2. Использующийся здесь термин «жидкий продукт» относится к углеводородным продуктам, как правило, -C5+жидкости, получаемые процессом настоящего изобретения.
Эти и другие объекты настоящего изобретения относятся к многостадийному, самоподдерживающемуся процессу для получения жидких продуктов из биомассы, в котором биомассу подвергают гидропиролизу в реакторном сосуде, содержащем молекулярный водород и катализатор восстановления, с образованием частично восстановленной пиролитической жидкости, каменного угля с нагревом одностадийного процесса. Частично восстановленную пиролитическую жидкость восстанавливают, используя гидроконверсионный катализатор, с образованием почти полностью восстановленной пиролитической жидкости, газовой смеси, содержащей CO и легколетучие углеводородные газы (C1-C4), и нагрева второй стадии процесса. Газовую смесь далее преобразовывают в паровом преобразователе с образованием реформированного молекулярного водорода. Реформированный молекулярный водород затем вводят в реакторный сосуд для гидропиролиза дополнительной биомассы.
Для обеспечения самоподдерживающегося, полностью сбалансированного процесса стадии гидропиролиза и гидроконверсии проводят при условиях, в которых около 40-60% кислорода в биомассе переводят в H2O и около 40-60% кислорода переводят в CO и CO2. Это значит, что соотношение кислорода в образующейся H2O к кислороду в CO и CO2, образующихся здесь, эквивалентно около 1 (т.е. H2O/(CO+CO2)~1). Предпочтительно, давление процесса для стадий гидропиролиза и гидроконверсии находится в диапазоне от около 300 фунт/кв. дюйм (2,1·105кг/м2) до около 800 фунт/кв. дюйм (5,6·105кг/м2) и приблизительно одинаково для обеих стадий. Давление выше, чем около 800 фунт/кв. дюйм (5,6·105кг/м2), дает более высокий выход жидкого продукта, который является движущей силой оперативных параметров, использующихся в традиционных процессах для максимизации выхода жидкого продукта; однако такие более высокие давления также дают более высокое содержание воды, в результате чего процесс в сумме выходит из баланса, требуя, например, введения дополнительного водорода в сосуд гидропиролитического реактора из внешнего источника для завершения процесса. В добавление, избыток воды, образующейся под высокими давлениями, должен затем быть отделен и выведен. Предпочтительно, температура для стадий гидропиролиза и гидроконверсии находится в диапазоне от около 650°Ф (616 К) до около 900°Ф (755 К).
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие объекты и особенности настоящего изобретения будет легче понять из следующего детального описания, взятого в сочетании с чертежами, где:
Фиг.1 представляет схематическую блок-схему сапоподдерживающегося процесса для получения жидкого топлива из биомассы в соответствии с одним вариантом выполнения настоящего изобретения.
ДЕТАЛЬНОЕ ОПИСАНИЕ НАСТОЯЩИХ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ
Процесс настоящего изобретения, показанный на Фиг.1, является компактным, сбалансированным, интегрированным, многостадийным способом для термохимической трансформации биомассы в газолиновый плюс дизельный жидкий продукт, пригодный для использования в качестве транспортного топлива без необходимости для внешнего обеспечения H2, CH4 или воды. Первая стадия реакции данного процесса предполагает использование герметизированного, каталитически активированного, гидропиролитического реакторного сосуда 10 для образования древесного угля с низким выходом, частичного восстановления, гидропиролиза жидкого продукта, из которого удаляют древесный уголь. Вторая стадия реакции (последовательное удаление древесного угля) предполагает использование реакторного сосуда 11 для гидроконверсии, в котором процесс гидроконверсии проводят практически при том же самом давлении, как и первую стадию реакции. Продукт из второй стадии реакции затем охлаждают и разделяют на жидкие и газообразные фракции, используя сепараторы высокого давления 12,13 и сепаратор низкого давления 14. CO плюс C1-C4 легколетучие газы, образующиеся на двух стадиях, затем подвергают паровому реформингу в паровом трансформаторе 15 с образованием H2, используя воду, которую также получают в процессе. Ключевым аспектом настоящего изобретения является то, что тепловую энергию, требующуюся в процессе, подводят посредством нагрева реакции восстановления, которая является экзотермической, происходящей в обеих первой и второй стадиях. Другим ключевым аспектом настоящего изобретения является то, что подача биомассы не требует нескольких сушек и, в действительности, добавления воды либо при вводе, либо отдельным вводом, что модернизирует процесс, поскольку это повышает образование in-situ H2 посредством реакции конверсии вода-газ.
Интегрированный, сбалансированный процесс настоящего изобретения проводят в условиях, в которых баланс уровней декарбоксилирования, декарбонилирования и гидровосстановления поддерживается так, что 40-60% кислорода, находящегося в биомассе, выводится в качестве CO и CO2, и оставшиеся 40-60% кислорода в биомассе выводятся в качестве H2O в конце процесса, где ее легко отделяют из гидрофильных жидких продуктов, полученных посредством процесса во время использования процесса реформирования. В общем, после преобразования легколетучих газов, образующихся на первых двух стадиях процесса, и воды, образующейся после процесса, более 95% кислорода в процессе выводится в качестве CO2.
Уникальный баланс реакций является критичным для данного процесса настоящего изобретения и достигается посредством разделения соответствующих катализаторов и условий процесса на каждой стадии. Хотя каждая стадия процесса по настоящему изобретению может обеспечивать выход различных продуктов, в зависимости от катализатора, давления, температуры и времени пребывания газа только в результате совмещения конкретных стадий и условий процессов по настоящему изобретению, что, возможно, обеспечивает сбалансированный процесс, где H2, CH4 и вода требуют полного процесса, обеспечиваемого биомассой, которая является критичной для создания однородного топлива, которое можно продать за небольшую плату.
На первой стадии процесса по настоящему изобретению, показанного на Фиг.1, биомассу и молекулярный водород вводят в реакционный сосуд 10, содержащий катализатор восстановления, в каждом сосуде биомассу подвергают гидропиролизу с образованием выходных продуктов, содержащих небольшое количество древесного угля, частично восстановленного гидропиролитического продукта, газообразных продуктов пиролиза (C1-C4 газов), H2O, CO, CO2 и H2. Хотя любой реакционный сосуд, пригодный для гидропиролиза, может быть использован, предпочтительным реакторным сосудом является реактор с псевдоожиженным слоем катализатора. Гидропиролитический процесс предполагает использование быстрого нагревания топлива биомассы так, что время удерживания пиролитических газов в корпусе реактора составляет менее 5 минут. В противоположность этому, время удерживания каменного угля относительно долгое, поскольку его не удаляют со дна корпуса реактора, и, таким образом, размер частиц должен быть уменьшен до частиц достаточно маленьких, способных выводиться с газами, непосредственно исходящими со дна корпуса реактора.
Гидропиролиз проводят в корпусе реактора при температуре, находящейся в диапазоне от около 800°Ф (700 К) до около 950°Ф (783 К), и давлении в диапазоне от около 300 фунт/кв. дюйм (2,1·105кг/м2) до около 800 фунт/кв. дюйм (5,6·105кг/м2). В традиционном гидропиролитическом процессе, как отмечалось ранее, объектом является максимизация выхода жидкого продукта, которая требует работы при, главным образом, более высоких давлениях, т.е. 2000 фунт/кв. дюйм (14,1·105кг/м2). Данное имеет место, поскольку декарбоксилирование является предпочтительным при более низких давлениях, при которых гидродеоксигенирование является предпочтительным при более высоких рабочих давлениях. Достижением давлений в процессе настоящего изобретения в диапазоне от 300 до 800 фунт/кв. дюйм (2,1-5,6·105кг/м2), наиболее предпочтительно от около 500 фунт/кв. дюйм (3,5·105кг/м2), декарбоксилирование и дегидродеоксигенирование балансируют, при этом выход жидкого продукта уменьшается. При более высоких давлениях гидровосстановление является предпочтительным и реакции становятся несбалансированными.
Как было раскрыто ранее, в гидропиролитическом процессе по настоящему изобретению подаваемую твердую биомассу быстро нагревают, предпочтительно в горячем псевдоожиженном слое с получением выходов жидкого продукта, сравнимых и, возможно, более высоких, чем выходы, получаемые традиционным быстрым пиролизом. Однако пиролиз газов в настоящее время проводят в присутствии катализатора и высокого парциального давления H2 в псевдоожиженном слое, который обеспечивает гидрирующую активность, а также некоторую восстановительную активность. Гидрирующая активность является требуемой для предохранения активных олефинов от полимеризации уменьшением формирования нестабильных свободных радикалов. Подобным образом, восстановительная активность является важной, так что нагревание реакции пиролизом достигается посредством экзотермической реакции восстановления, таким образом, избегая необходимости внешнего нагрева. Преимущества гидропиролиза перед существующими пиролитическими процессами заключается в том, что гидропиролиз позволяет избежать реакций деградаций во время пиролиза, который обычно проводят в инертной атмосфере, более предпочтительно в отсутствие H2 и обычно в отсутствие катализатора, посредством прохождения нежелательного образования полиядерной ароматики, свободных радикалов и олефиновых соединений, которые не присутствуют в исходной биомассе.
Первую стадию гидропиролитического процесса настоящего изобретения проводят при температуре более высокой, чем обычный процесс гидроконверсии, в результате которого биомассу быстро дегазируют. Таким образом, процесс требует активного катализатора для стабилизации гидропиролитических газов, при этом не таких активных, как при быстром коксовании. Хотя любой катализатор деоксигенирования является пригодным для использования при температурах в диапазоне настоящего процесса, которые можно использовать в гидропиролитическом процессе, катализаторы, в соответствии с предпочтительным вариантом выполнения настоящего изобретения, являются следующими.
Стеклокерамические катализаторы являются экстремально сильными и износостойкими и могут быть изготовлены посредством термального пропитывания (т.е. нанесения) или в качестве насыпных катализаторов. При использовании сульфидированных NiMo, Ni/NiO или стеклокерамического катализатора на основе Co получаемый катализатор является износостойким вариантом, достаточно доступным, но мягким, чем традиционные NiMo, Ni/NiO или катализатор на основе Co. Стеклокерамические сульфидированные NiMo, Ni/NiO или катализатор на основе Co являются частично пригодными для использования в горячем псевдоожиженном слое, поскольку данные материалы могут обеспечивать эффект традиционного нанесенного катализатора, но в значительно более грубой, износостойкой форме. В добавление, в силу износостойкости катализатора биомассу и каменный уголь в форме более мелких частиц одновременно загружают в корпус реактора и проводят реакцию гидропиролиза. Таким образом, каменный уголь, который, главным образом, возвращают, является практически свободным от каталитических ядов, обусловленных особо высокой прочностью и износостойкостью катализатора. Скорость изнашивания катализатора будет, как правило, менее около 2 вес.% в час, предпочтительно менее 1 вес.% в час, определяемой посредством стандартного теста на износостойкость с помощью цилиндра с большой скоростью потоков.
Никельфосфидный катализатор не требует серы для работы и, таким образом, может быть активным не только в окружении, свободном от серы, также как и в окружении, содержащем H2S, COS и другие сульфосодержащие соединения. Таким образом, данный катализатор будет только активным для биомассы, которая имеет небольшое содержание серы, или она отсутствует, также как и для биомассы, которая содержит серу (например, кукурузная смола). Настоящий катализатор может быть нанесен на углерод в качестве разделителя катализатора или непосредственно насыщенного в само сырье биомассы.
Боксит является крайне дешевым материалом и, таким образом, может быть использован в качестве доступного катализатора. Боксит также может быть нанесен с другими материалами, такими как Ni, Mo, или может быть сульфидированным.
На маленького размера высушенный распылением кремне-алюминиевый катализатор наносят небольшие количества NiMo или CoMo и сульфидируют с образованием низкоактивного гидроконверсионного катализатора. Коммерчески доступные NiMo или CoMo катализаторы, как правило, большого размера 1/8-1/16 таблетки для использования в неподвижных или кипящих слоях. В рассматриваемом случае NiMo наносят на высушенный распылением кремне-алюминиевый катализатор и используют в кипящем слое. Данный катализатор показывает более низкую активность с более низкими загрузками NiMo, чем в традиционном NiMo катализаторе, но имеет более предпочтительный размер для использования в кипящем слое.
Между гидропиролитическими и гидроконверсионными процессами каменный уголь удаляют из пиролитического жидкого продукта. Удаление каменного угля является главным барьером в традиционном быстром пиролизе, поскольку каменный уголь склонен покрывать фильтр и взаимодействовать с окисляющими пиролитическими газами с образованием вязкого покрытия, которое способно забивать горячий процесс фильтрации. Каменный уголь может быть удален в соответствии с процессом настоящего изобретения посредством фильтрации из потока газов или посредством фильтрации от промывной стадии - кипящего слоя. Отталкивание может быть использовано для удаления каменного угля от фильтров, тогда как водород, использующийся в процессе настоящего изобретения, достаточно уменьшает активность пиролитических газов. Электростатическое осаждение или фактический импактор разделитель может также быть использован для разделения каменного угля и частиц золы из горячего потока газов перед охлаждением и конденсацией жидкого продукта.
В соответствии с одним из вариантов выполнения настоящего изобретения, горячая газовая фильтрация может быть использована для удаления каменного угля. В данном случае, поскольку водород стабилизируется свободными радикалами и насыщенными олефинами, отжатый осадок, собранный на фильтрах, должен быть более легко удаляемым, чем каменный уголь, удаляемый при горячей фильтрации аэрозолей, полученных в традиционном быстром пиролизе. В соответствии с другим вариантом выполнения настоящего изобретения, каменный уголь удаляют посредством барботирования газа на первой стадии образования продукта через рециркулирующую жидкость. Использующаяся рециркулирующая жидкость является высококипящей порцией конечного нефтепродукта данного процесса и, таким образом, является полностью насыщенным (восстановленным) стабилизированным нефтепродуктом, имеющим точку кипения около 650°Ф. Мелкие частицы каменного угля или катализатора из первой стадии реакции захватываются в данную жидкость. Фракция данной жидкости может быть фильтрована для удаления данных мелких частиц, и фракция может рециркулироваться назад в первую стадию гидропиролитического процесса. Одним из преимуществ использования рециркулирующей жидкости является то, что она дает возможность использовать более низкую температуру для газов процесса, насыщенных каменным углем, чем на первой стадии процесса, до температуры, необходимой для второй стадии процесса гидроконверсии, с параллельным удалением мелких частиц каменного угля и катализатора. Другим преимуществом использования фильтрации жидкости является то, что использование горячей газовой фильтрации с ее сопутствующими, хорошо документированными проблемами очистки фильтра удается полностью избежать.
В соответствии с одним вариантом выполнения настоящего изобретения, большой размер NiMo или CoMo катализаторов, работающих в кипящем слое, используют для удаления каменного угля для обеспечения дальнейшего синхронного восстановления с удалением мелких частиц. Частицы данного катализатора должны быть большими, предпочтительно около 1/8-1/16 дюймов (3,18-1,59·10-3) в размере за счет легкого отделения от мелких частиц каменного угля, выводящихся из первой стадии реакции, которые, как правило, составляют менее 200 меш (~70 микрометров).
После удаления каменного угля пиролитическую жидкость вместе с H2, CO, CO2, H2O и C1-C4 газами из первой стадии реакции гидропиролиза вводят в гидроконверсионный корпус реактора 11, в котором ее подвергают второй стадии гидроконверсии, которую предпочтительно проводят при более низкой температуре (600-800°Ф) - (589-700 К), чем первую стадию гидропиролиза, для повышения времени жизни катализатора, и практически при том же давлении (300-800 фунт/кв. дюйм) (2,1-5,6·105кг/м2) что и первая стадия гидропиролиза. Часовая объемная скорость жидкости (LHSV) данной стадии находится в диапазоне от около 0,3 до около 0,7. Катализатор, использующийся на данной стадии, должен быть защищен от Na, K, Ca, P и других металлов, присутствующих в биомассе, которые могут отравлять катализатор, что приведет к увеличению жизни катализатора. Данный катализатор также должен быть защищен от олефинов и свободных радикалов посредством модернизации катализатора, использующегося на первой стадии реакции данного процесса. Катализаторы, типично выбранные для данной стадии, являются высокоактивными катализаторами гидроконверсии, т.е. сульфидированным NiMo и сульфидированным CoMo катализаторами. На данной стадии реакции данный катализатор используется для катализа реакции водогазовой конверсии CO+H2O с образованием CO2+H2, посредством чего удается получить in-situ водород в реакторе 11 для второй стадии реакции, который, как оказалось, уменьшает требующееся количество водорода для гидроконверсии. NiMo и CoMo катализаторы - оба катализируют реакцию водогазовой конверсии. Объектом второй стадии реакции повторно является баланс реакций восстановления. Данный баланс осуществляется посредством использования низких давлений (300-800 фунт/кв. дюйм) (2,1-5,6·105 кг/м2) наряду с правильным выбором катализатора. В традиционных процессах гидровосстановления обычно используется давление в диапазоне от около 2000 фунт/кв. дюйм (14,1·105кг/м2) до около 3000 фунт/кв. дюйм (21,1·105кг/м2). Это происходит ввиду процессов, склонных превращать пиролитические нефтепродукты, которые экстремально нестабильны и сложны для процесса при более низком давлении H2.
На последующей гидроконверсионной стадии нефтепродукт в основном полностью восстанавливают так, что он может быть непосредственно использован в качестве транспортного топлива после его разделения посредством разделителей высокого давления 12,13 и разделителя низкого давления 14 разгонкой на газолин и дизельные фракции. Ключевым аспектом настоящей процедуры является достижение температуры и давления и объемной скорости для баланса уровня декарбонилирования, декарбоксилирования и гидродеоксигенирования, так что весь требующийся для процесса H2 может быть получен посредством реформинга легколетучих газов, которые образуются во время процесса. Если происходит слишком много гидродеоксигенирования, то слишком много H2 будет требоваться для процесса, и система будет выходить из баланса. Таким же образом, если происходит слишком много декарбоксилирования или декарбонилирования, то слишком много углерода будет потеряно с CO2 и CO, вместо того, чтобы превращаться в жидкий продукт, в результате чего выходы жидкости будут уменьшаться.
После стадии гидроконверсии выходящие фракции на основании вышесказанного охлаждают в основном так, что газолин и дизельные кипящие материалы конденсируются, и только легколетучие газы остаются в летучей фазе. Эти газы (содержащие CO, CO2, CH4, этан, пропан, бутаны, гептаны и т.д.) направляют к реформатору потока 15 вместе с водой от процесса для конверсии в H2 и CO2. Фракцию этих газов сжигают в печи или в другой камере сгорания для нагрева остающейся фракции газов до рабочей температуры преобразователя потока, около 1700°Ф (1199,8 К). Паровые реформаторы имеют соотношение поток-гидрокарбонат 3/1 в подаче для смещения равновесия реакции, но это составляет гораздо более требуемого количества для этой реакции. Поток восстанавливают и рециклизуют внутрь первого реформатора потока. CO2 удаляют из процесса посредством процесса короткоцикловой абсорбции (PSA), и H2 рециклируют в первую стадию (гидропиролиз) процесса. Жидкость продукта разделяют на дизельную и газолиновую фракции, которые пригодны для использования в качестве транспортного топлива.
К тому же данный процесс также балансируют посредством воды так, что в процессе образуется достаточно воды для обеспечения всей воды, требующейся на стадии парового реформинга. В соответствии с одним из вариантов выполнения настоящего изобретения, использующееся количество воды является таким, что выход полного процесса в основном состоит только из CO2 и жидких продуктов, позволяя избежать дополнительной стадии процесса для удаления избытка воды. Специалистам данной области техники будет ясно, что использование реформирования потока в комбинации с гидропиролизом и стадиями гидроконверсии, излагаемыми в данном процессе, имеют смысл только тогда, когда целью является обеспечение самоподдерживающегося процесса, в котором соотношение O2 в H2O к O2 в CO и CO2 поддерживается процессом около 1,0. В случае отсутствия данной цели нет необходимости реформирования потока, потому что H2, требующийся для гидропиролитического процесса, будет еще обеспечиваться внешними источниками. Если паровой реформинг будет использоваться при отсутствии оговоренной здесь цели, не будет достигаться самоподдерживающийся процесс по настоящему изобретению, в котором на выходе содержится в основном жидкий продукт и CO2.
В соответствии с одним из вариантов выполнения настоящего изобретения, генерированный нагрев на второй стадии реакции может быть использован для обеспечения полного или частичного нагрева, необходимого для проведения гидропиролитического процесса на первой стадии реакции. В соответствии с одним из вариантов выполнения настоящего изобретения, процесс также включает рециркуляцию тяжелых конечных продуктов, таких как промывная жидкость на второй стадии, при оговоренном здесь ранее процессе захвата мелких частиц на выходе реактора первой стадии и контроля реакционного нагрева. В соответствии с одним из вариантов выполнения изобретения, данное топливо также подвергают рециркулированию для гидроконверсии и, возможно, для первой стадии гидропиролиза для регулирования генерации тепла на каждой стадии. Скорость рециркуляции находится предпочтительно в диапазоне от около 3-5-кратной скорости подачи биомассы.
В соответствии с одним из вариантов выполнения настоящего изобретения, сырьем биомассы являются макромолекулярные липиды, входящие в состав биомассы, такие как водоросли, способные образовывать одинаковое дизельное топливо, которое будет произведено из липидов, экстрагируемых из водорослей, плюс дополнительного газолина и дизеля, которые могут быть получены из остатков биомассы водорослей. Это, в частности, привлекает внимание, так как экстракция липидов дорога. В противоположность этому, традиционный быстрый пиролиз биомассы водорослей не будет особо привлекать внимание ввиду бесконтрольных термальных реакций, характерных для быстрого пиролиза, которые будут разрушать данные липиды. Таким образом, данный интегрированный процесс настоящего изобретения является идеальным для конверсии водорослей, поскольку процесс может быть проведен на водорослях, которые обычно только частично дегидрированы и все еще дают высококачественный дизельный и газолиновый продукт.
Процесс по настоящему изобретению дает несколько очевидных преимуществ перед традиционным быстрым пиролизом, основанным на процессах, в которых образуется незначительное количество каменного угля, частично восстановленный, стабилизированный продукт, из которого остаточный каменный уголь может быть легко отделен посредством горячей газовой фильтрации или контактом с рециркулируемой жидкостью; чистые, горячие гидропиролитические топливные газы могут быть непосредственно модернизированы в конечный продукт в непосредственно связанном втором каталитически-достигаемом остаточном процессе, проводимом при почти том же давлении, как было использовано ранее; и модернизацию проводят быстро перед деградацией, которая может происходить в газах, образуемых на стадии гидропиролиза.
Жидкий продукт, получаемый посредством процесса, должен содержать менее 5% кислорода и предпочтительно менее 2% кислорода с низким общим кислотным числом (TAN) и демонстрировать хорошую химическую стабильность к полимеризации или уменьшенную тенденцию к реакционной активности. В предпочтительном варианте выполнения изобретения, в котором общее содержание кислорода в продукте снижают ниже 2%, водную и гидрокарбоновую фазы легко разделяют в любом традиционном разделительном сосуде, поскольку фаза гидрокарбонатов становится гидрофобной. Это является значительным преимуществом по сравнению с традиционным пиролизом, в котором вода способна смешиваться и содержаться в качестве примесей в высокооксигенированном пиролитическом топливе. Таблица 1 представляет измеренный материальный баланс для сбалансированного гидропиролитического+гидроконверсионного процесса, в соответствии с настоящим изобретением, используя в качестве сырья смесь древесины твердых пород. Поскольку однородное топливо, получаемое в представленном процессе, имеет низкое содержание кислорода, любой избыток воды, получаемый из данного процесса, является относительно свободным от нерастворимых гидрокарбонатов и будет склонен содержать менее 2000 м.д. нерастворимого общего количества органического углерода (TOC), оказывается пригодным для орошения в засушливых зонах. В дополнение, конечный углеводородный продукт в настоящее время является легко трансфортабельным, имеет низкое общее число кислотности (TAN) и превосходную химическую стабильность. В традиционном быстром пиролизе пиролитическое топливо содержит 50-60% кислорода в форме окисленных углеводородов и 25% нерастворимой воды. Таким образом, стоимость конечных продуктов трансформации для интегрированного гидропиролитического+гидроконверсионного процесса настоящего изобретения меньше, чем стоимость традиционного быстрого пиролиза. Более того, образующаяся вода в представленном процессе становится ценным побочным продуктом, особенно для засушливых регионов.
Таблица 1
Измеренный материальный баланс для сбалансированного гидропиролитического+гидроконверсионного процесса, использующего сырье из смешенных твердых пород дерева*
Баланс гидропиролиз+
гидроконверсия, вес.%
Баланс всей системы процесса, вес.%
Сырье биомассы 100 100
Источник H2 3,7 -
Газолин+дизельный продукт 29 29
Каменноугольный продукт 8 8
Вода 22,5 .7
CO2 27,5 59,4
Углеводородный газ 16,7 2,9
* Весь H2 образуется посредством образования легколетучих газов, и нет необходимости во внешнем природном газе.
Как и в вышеизложенной спецификации настоящего изобретения, описанной в соответствии с определенными предпочтительными вариантами выполнения изобретения и многими деталями, изложенными с целью иллюстрации, для специалистов данной области техники станет очевидным, что настоящее изобретение допускает добавления вариантов выполнения и что, определенно, описывающиеся здесь детали могут соответственно варьироваться без отклонения от основных принципов настоящего изобретения.

Claims (20)

1. Способ для получения жидких продуктов из биомассы, включающий стадии:
a) гидропиролиза биомассы в гидропиролитическом реакторном сосуде, содержащем молекулярный водород и катализатор деоксигенирования, с образованием выходных продуктов, содержащих CO2, СО и С13 газы, частично восстановленный пиролитический продукт, каменный уголь, и нагрев первой стадии;
b) удаления каменного угля из частично восстановленного пиролитического продукта;
c) гидроконверсии частично восстановленного пиролитического продукта в гидроконверсионном реакторном сосуде с использованием катализатора гидроконверсии в присутствии СО2, СО и С14 газов, образованных на стадии а), с образованием практически полностью восстановленной пиролитической жидкости, газовой смеси, содержащей СО, СО2, и легколетучих углеводородных газов (С14), и нагрев второй стадии;
d) парового реформинга по меньшей мере части газовой смеси с образованием реформированного молекулярного водорода; и
e) введения указанного реформированного молекулярного водорода в реакторный сосуд для гидропиролиза указанной биомассы, где стадии а) и с) проводят при условиях, в которых около 40-60% кислорода в биомассе переводят в Н2О и около 40-60% кислорода переводят в СО и CO2.
2. Способ по п.1, где гидроконверсионный катализатор катализирует обе реакции перехода жидкость-газ и гидроконверсию.
3. Способ по п.1, где все стадии а) и с) проводят при практически одинаковом давлении.
4. Способ по п.3, где вышеупомянутое давление находится в диапазоне от около 300 (2,1·105 кг/м2) до около 800 фунт/кв. дюйм (5,6·105 кг/м2).
5. Способ по п.4, где вышеупомянутый гидропиролиз проводят при температуре в диапазоне от около 800°Ф (700 К) до около 950°Ф (783 К) и вышеупомянутую гидроконверсию проводят при температуре в диапазоне от около 600°Ф (589 К) до около 800°Ф (700 К).
6. Способ по п.1, где вышеупомянутую гидроконверсию проводят с часовой объемной скоростью в диапазоне от около 0.3 до около 0.7.
7. Способ по п.1, где вышеупомянутую, практически полностью восстановленную пиролитическую жидкость разделяют на дизельную и газолиновую фракции, пригодные для использования в качестве транспортного топлива.
8. Способ по п.1, где вышеупомянутый гидропиролитический реакторный сосуд является реактором с псевдоожиженным слоем, содержащим псевдоожиженный слой, и продолжительность пребывания газа в вышеупомянутом гидропиролитическом реакторном сосуде составляет менее около одной минуты.
9. Способ по п.8, в котором вышеупомянутый каменный уголь из вышеупомянутого реактора с псевдоожиженным слоем практически из вышеупомянутого псевдоожиженного слоя.
10. Способ по п.1, где каменный уголь удаляют из вышеупомянутого, частично восстановленного пиролитического продукта посредством барботирования выходящих газов вышеупомянутым гидропиролизом через рециркулирующую жидкость, используя высококипящую фракцию вышеупомянутой, практически полностью восстановленной пиролитической жидкости.
11. Способ по п.1, где выходящий состав из процесса содержит фактически жидкий продукт и CO2.
12. Способ по п.8, где катализатор восстановления является гранулированным и довольно резистентным к износу, так что он перетирает каменный уголь, давая возможность удалять вышеупомянутый каменный уголь из реактора с псевдоожиженным слоем практически из вышеупомянутого псевдоожиженного слоя.
13. Способ для получения жидких продуктов из биомассы, включающий стадии:
гидропиролиза вышеупомянутой биомассы в реакторном сосуде в присутствии Н2 и катализатора восстановления, давая выходной состав пиролитического процесса, содержащий частично восстановленный пиролитический продукт, каменный уголь, и нагрев первой стадии;
отделения каменного угля от выходного состава пиролитического процесса;
гидроконверсию вышеупомянутого, частично восстановленного пиролитического продукта в присутствии катализатора гидроконверсии с образованием практически полностью восстановленной пиролитической жидкости, газовой смеси, включающей СО и C13 легколетучие углеводородные газы, и вторую порцию нагрева;
парового реформинга по меньшей мере части газовой смеси с образованием реформированного Н2; и
рециркуляции указанного реформированного Н2 в реакторный сосуд для пиролиза указанной биомассы, где в диапазоне от около 40-60% кислорода в биомассе переводят в H2O и около 40-60% кислорода переводят в СО и CO2.
14. Способ по п.13, где катализатор гидроконверсии катализирует обе реакции перехода жидкость-газ и гидроконверсию.
15. Способ по п.13, где гидропиролиз и гидроконверсию проводят при практически одинаковом давлении.
16. Способ по п.15, где давление находится в диапазоне от около 300 фунт/кв. дюйм (2,1·105 кг/м2) до около 800 фунт/кв. дюйм (5,6·105 кг/м2).
17. Способ по п.13, где гидропиролиз проводят при температуре гидропиролиза в диапазоне от около 800°Ф (700 К) до около 950°Ф (783 К) и гидроконверсию проводят при температуре гидроконверсии в диапазоне от около 600°Ф (589 К) до около 800°Ф (700 К).
18. Способ по п.13, где полностью восстановленную пиролитическую жидкость разделяют на дизельную и газолиновую фракции, пригодные для использования в качестве транспортного топлива.
19. Способ по п.13, где реакторный сосуд является реактором с псевдоожиженным слоем, содержащим псевдоожиженный слой.
20. Способ по п.13, где выходящий поток из способа содержит жидкий продукт и CO2.
RU2011144858/04A 2009-04-07 2010-04-05 Гидропиролиз биомассы для получения высококачественного жидкого горючего RU2535343C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/419,535 US20100251600A1 (en) 2009-04-07 2009-04-07 Hydropyrolysis of biomass for producing high quality liquid fuels
US12/419,535 2009-04-07
PCT/US2010/001019 WO2010117436A1 (en) 2009-04-07 2010-04-05 Hydropyrolysis of biomass for producing high quality liquid fuels

Publications (2)

Publication Number Publication Date
RU2011144858A RU2011144858A (ru) 2013-05-20
RU2535343C2 true RU2535343C2 (ru) 2014-12-10

Family

ID=42824996

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011144858/04A RU2535343C2 (ru) 2009-04-07 2010-04-05 Гидропиролиз биомассы для получения высококачественного жидкого горючего

Country Status (13)

Country Link
US (1) US20100251600A1 (ru)
JP (1) JP5789596B2 (ru)
CN (2) CN102378748B (ru)
AU (1) AU2010235214C1 (ru)
BR (1) BRPI1015303B1 (ru)
CA (1) CA2756819A1 (ru)
EC (1) ECSP11011432A (ru)
MX (2) MX2011010501A (ru)
MY (1) MY175354A (ru)
PE (1) PE20121004A1 (ru)
RU (1) RU2535343C2 (ru)
UA (2) UA109635C2 (ru)
WO (1) WO2010117436A1 (ru)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2781204C (en) * 2009-11-18 2018-05-01 G4 Insights Inc. Sorption enhanced methanation of biomass
WO2011138356A1 (de) * 2010-05-07 2011-11-10 Basf Se Verfahren zur herstellung von synthesegas und wenigstens eines organischen flüssigen oder verflüssigbaren wertstoffs
US8853475B2 (en) * 2010-12-15 2014-10-07 Uop Llc Process for producing a renewable hydrocarbon fuel
US8841495B2 (en) 2011-04-18 2014-09-23 Gas Technology Institute Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor
US8859831B2 (en) * 2011-08-02 2014-10-14 Gas Technology Institute Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors
IN2014CN02820A (ru) 2011-11-14 2015-07-03 Shell Int Research
EP2751224A4 (en) * 2011-11-14 2015-10-14 Shell Int Research PROCESS FOR PRODUCING HYDROCARBONS
US9068126B2 (en) * 2011-12-14 2015-06-30 Uop Llc Methods for deoxygenating biomass-derived pyrolysis oil
US9163181B2 (en) 2012-06-20 2015-10-20 Uop Llc Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil
US8816144B2 (en) * 2012-10-04 2014-08-26 Gas Technology Institute Direct production of fractionated and upgraded hydrocarbon fuels from biomass
CN103265968A (zh) * 2013-06-04 2013-08-28 北京林业大学 一种基于综合热解的高值生物油制备方法
US20150152336A1 (en) * 2013-12-04 2015-06-04 Lummus Technology Inc. Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks
FI20136345L (fi) * 2013-12-31 2015-07-01 Upm Kymmene Corp Integroitu prosessi hiilivetyjen tuottamiseksi
US9650574B2 (en) 2014-07-01 2017-05-16 Gas Technology Institute Hydropyrolysis of biomass-containing feedstocks
US10563130B2 (en) 2014-07-17 2020-02-18 Sabic Global Technologies B.V. Upgrading hydrogen deficient streams using hydrogen donor streams in a hydropyrolysis process
US9938466B2 (en) * 2014-09-05 2018-04-10 Gas Technology Institute Use of carbon dioxide generated by hydropyrolysis for process inertization
US10392566B2 (en) 2015-04-27 2019-08-27 Gas Technology Institute Co-processing for control of hydropyrolysis processes and products thereof
CN105170032A (zh) * 2015-10-09 2015-12-23 中国科学院过程工程研究所 一种用于热解炉外针对高温热解蒸汽催化调质的反应装置
PL3380585T3 (pl) * 2015-11-23 2021-01-11 Shell Internationale Research Maatschappij B.V. Konwersja biomasy w ciekły materiał węglowodorowy
CA3004679A1 (en) * 2015-11-23 2017-06-01 Shell Internationale Research Maatschappij B.V. Conversion of biomass into a liquid hydrocarbon material
WO2018089520A1 (en) * 2016-11-09 2018-05-17 Phillips 66 Company Fluidized upgrading/hydrostabilizing of pyrolysis vapors
CN108079910B (zh) * 2016-11-21 2020-01-17 北京华石联合能源科技发展有限公司 一种上流差速控制裂化加氢的反应器及其应用
US10787610B2 (en) * 2017-04-11 2020-09-29 Terrapower, Llc Flexible pyrolysis system and method
CN110208451B (zh) * 2019-04-26 2022-05-24 合肥工业大学 双极微型固定床反应器结合光电离质谱在线检测系统及方法
KR102478550B1 (ko) * 2020-11-19 2022-12-19 한화토탈에너지스 주식회사 바이오매스로부터 고순도 노말파라핀의 제조방법
CN113648937A (zh) * 2021-08-27 2021-11-16 浙江大学 生物质集成加氢加压催化热解耦合在线提质直接制取液体燃料系统
CN114854453B (zh) * 2022-03-22 2023-03-28 北京科技大学 用于高炉喷吹的生物质富氢微粉及合成气的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260473A (en) * 1979-05-03 1981-04-07 Occidental Research Corporation Removal of particulates from pyrolytic oil
US4808289A (en) * 1987-07-09 1989-02-28 Amoco Corporation Resid hydrotreating with high temperature flash drum recycle oil
RU2124547C1 (ru) * 1997-10-24 1999-01-10 Антоненко Владимир Федорович Способ термической переработки биомассы
US20080053870A1 (en) * 2006-08-31 2008-03-06 Marker Terry L Gasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste
WO2009029660A2 (en) * 2007-08-27 2009-03-05 Purdue Research Foundation Novel process for producing liquid hydrocarbon by pyrolysis of biomass in presence of hydrogen from a carbon-free energy source
US20090084666A1 (en) * 2007-08-27 2009-04-02 Purdue Research Foundation Novel integrated gasification - pyrolysis process

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013543A (en) * 1975-10-20 1977-03-22 Cities Service Company Upgrading solid fuel-derived tars produced by low pressure hydropyrolysis
US3997423A (en) * 1975-10-20 1976-12-14 Cities Service Company Short residence time low pressure hydropyrolysis of carbonaceous materials
US4166786A (en) * 1976-06-25 1979-09-04 Occidental Petroleum Corporation Pyrolysis and hydrogenation process
GB2071132A (en) * 1979-10-19 1981-09-16 Coal Industry Patents Ltd Fuel oils from coal
US4326944A (en) * 1980-04-14 1982-04-27 Standard Oil Company (Indiana) Rapid hydropyrolysis of carbonaceous solids
US5055181A (en) * 1987-09-30 1991-10-08 Exxon Research And Engineering Company Hydropyrolysis-gasification of carbonaceous material
US5096569A (en) * 1990-02-27 1992-03-17 Exxon Research And Engineering Company Catalytic hydropyrolysis of carbonaceous material with char recycle
GB9224783D0 (en) * 1992-11-26 1993-01-13 Univ Waterloo An improved process for the thermal conversion of biomass to liquids
EP1184443A1 (en) * 2000-09-04 2002-03-06 Biofuel B.V. Process for the production of liquid fuels from biomass
US7575053B2 (en) * 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
JP4878824B2 (ja) * 2005-11-30 2012-02-15 Jx日鉱日石エネルギー株式会社 環境低負荷型燃料の製造方法および環境低負荷型燃料
US7511181B2 (en) * 2006-05-02 2009-03-31 Uop Llc Production of diesel fuel from biorenewable feedstocks
JP2007308564A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp 水素化精製方法
US20080006519A1 (en) * 2006-07-06 2008-01-10 Badger Phillip C Method and system for accomplishing flash or fast pyrolysis with carbonaceous materials
US7994375B2 (en) * 2006-09-26 2011-08-09 Uop Llc Production of gasoline, diesel, naphthenes and aromatics from lignin and cellulosic waste by one step hydrocracking
US8084655B2 (en) * 2007-06-15 2011-12-27 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
US7982076B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999142B2 (en) * 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US8003834B2 (en) * 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US8198492B2 (en) * 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8492600B2 (en) * 2009-04-07 2013-07-23 Gas Technology Institute Hydropyrolysis of biomass for producing high quality fuels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260473A (en) * 1979-05-03 1981-04-07 Occidental Research Corporation Removal of particulates from pyrolytic oil
US4808289A (en) * 1987-07-09 1989-02-28 Amoco Corporation Resid hydrotreating with high temperature flash drum recycle oil
RU2124547C1 (ru) * 1997-10-24 1999-01-10 Антоненко Владимир Федорович Способ термической переработки биомассы
US20080053870A1 (en) * 2006-08-31 2008-03-06 Marker Terry L Gasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste
WO2009029660A2 (en) * 2007-08-27 2009-03-05 Purdue Research Foundation Novel process for producing liquid hydrocarbon by pyrolysis of biomass in presence of hydrogen from a carbon-free energy source
US20090084666A1 (en) * 2007-08-27 2009-04-02 Purdue Research Foundation Novel integrated gasification - pyrolysis process

Also Published As

Publication number Publication date
AU2010235214C1 (en) 2013-09-12
MX341855B (es) 2016-09-05
CN102378748A (zh) 2012-03-14
CN102378748B (zh) 2015-05-13
US20100251600A1 (en) 2010-10-07
JP5789596B2 (ja) 2015-10-07
AU2010235214B2 (en) 2012-11-15
CA2756819A1 (en) 2010-10-14
UA106609C2 (uk) 2014-09-25
AU2010235214A1 (en) 2011-10-27
UA109635C2 (uk) 2015-09-25
MY175354A (en) 2020-06-22
BRPI1015303B1 (pt) 2018-08-07
PE20121004A1 (es) 2012-08-01
RU2011144858A (ru) 2013-05-20
CN104845654A (zh) 2015-08-19
MX2011010501A (es) 2011-10-19
ECSP11011432A (es) 2012-06-29
CN104845654B (zh) 2018-09-14
JP2012523473A (ja) 2012-10-04
BRPI1015303A2 (pt) 2016-10-04
WO2010117436A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
RU2535343C2 (ru) Гидропиролиз биомассы для получения высококачественного жидкого горючего
US8492600B2 (en) Hydropyrolysis of biomass for producing high quality fuels
US9447328B2 (en) Hydropyrolysis of biomass for producing high quality liquid fuels
EP2582778B1 (en) Method for producing methane from biomass
WO2010099626A1 (en) Process and system for thermochemical conversion of biomass
Burra et al. Thermochemical reforming of wastes to renewable fuels
US20150051427A1 (en) Integrated process for the production of renewable drop-in fuels
CN117616103A (zh) 使生物质原料经受加氢热解的方法
CN116601270A (zh) 流化床反应器和相关联的加氢热解方法
AU2015249079B2 (en) Hydropyrolysis of biomass for producing high quality liquid fuels
AU2013201165B2 (en) Hydropyrolysis of biomass for producing high quality liquid fuels