RU2527453C1 - Полимерный материал для проппанта и способ его получения - Google Patents

Полимерный материал для проппанта и способ его получения Download PDF

Info

Publication number
RU2527453C1
RU2527453C1 RU2013122087/04A RU2013122087A RU2527453C1 RU 2527453 C1 RU2527453 C1 RU 2527453C1 RU 2013122087/04 A RU2013122087/04 A RU 2013122087/04A RU 2013122087 A RU2013122087 A RU 2013122087A RU 2527453 C1 RU2527453 C1 RU 2527453C1
Authority
RU
Russia
Prior art keywords
tri
mass
temperature
minutes
mixture
Prior art date
Application number
RU2013122087/04A
Other languages
English (en)
Inventor
Владимир Владимирович Афанасьев
Сергей Анатольевич Алхимов
Наталья Борисовна БЕСПАЛОВА
Игорь Алексеевич Киселев
Ольга Васильевна Маслобойщикова
Егор Владимирович Шутко
Татьяна Модестовна Юмашева
Original Assignee
Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нефтяная компания "Роснефть" filed Critical Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority to RU2013122087/04A priority Critical patent/RU2527453C1/ru
Priority to CA2907862A priority patent/CA2907862C/en
Priority to US14/786,598 priority patent/US10113103B2/en
Priority to CN201480022896.1A priority patent/CN105492573B/zh
Priority to PCT/RU2014/000337 priority patent/WO2014185821A1/ru
Application granted granted Critical
Publication of RU2527453C1 publication Critical patent/RU2527453C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Sealing Material Composition (AREA)

Abstract

Настоящее изобретение относится к полимерному материалу для проппанта, представляющему собой метатезис-радикально сшитую смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена. Также описан способ получения такого материала, включающий получение смеси олигоциклопентадиенов и эфиров метилкарбоксинорборнена путем смешивания дициклопентадиена с метакриловыми эфирами и полимерными стабилизаторами, представленными в п.2 формулы изобретения, нагрева этой смеси до температуры 150-220°C и выдержки при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°С. В полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена последовательно вводят радикальный инициатор и катализатор, представленные в п.2 формулы изобретения. Далее в полученную полимерную матрицу нагревают до температуры 50-340°С и выдерживают при данной температуре в течение 1-360 мин, после чего охлаждают до комнатной температуры. Технический результат заключается в повышении термопрочности материала проппанта, обеспечивающего прочность на сжатие не менее 150 МПа при температуре не ниже 100°С. 2 н. и 2 з.п. ф-лы, 36 пр.

Description

Изобретение относится к химии высокомолекулярных соединений, а именно к полимерным материалам с повышенными требованиями к физико-механическим свойствам, в частности для производства проппантов - расклинивающих гранул, применяемых при добыче нефти и газа методом гидравлического разрыва пласта.
Гидравлический разрыв пласта (ГРП) заключается в закачивании под большим давлением жидкости в нефте- и газоносные пласты, в результате чего в пласте образуются трещины, через которые поступает нефть или газ. Для предотвращения смыкания трещин в закачиваемую жидкость добавляют твердые частицы, как правило, сферические гранулы, называемые проппантами, заполняющие вместе с несущей жидкостью образовавшиеся трещины. Проппанты должны выдерживать высокие пластовые давления, быть устойчивыми к агрессивным средам и сохранять физико-механические свойства при высоких температурах. При этом проппант должен иметь плотность, близкую к плотности к несущей жидкости, с тем, чтобы он находился в жидкости во взвешенном состоянии и был доставлен до самых отдаленных участков трещин. Учитывая, что наиболее широко в качестве жидкости для гидроразрыва применяется вода, то и плотность проппанта должна быть близка к плотности воды.
Для производства проппантов часто используют в качестве исходного материала минеральные материалы природного происхождения - бокситы, каолины, пески (Патенты США №4068718 и №4668645).
Известно использование различных материалов, таких как боросиликатное или кальцинированное стекло, черные и цветные металлы или их сплавы, оксиды металлов, оксиды, нитриды и карбиды кремния, для производства проппантов, имеющих форму полых гранул (Заявка США №2012/0145390).
Недостатком таких материалов является высокая технологическая сложность изготовления из них полых гранул, их недостаточная прочность на сжатие из-за полой структуры и хрупкости материала, высокая степень разрушения проппанта в трещинах и обратный вынос частиц и их осколков.
На устранение подобных недостатков направлены технические решения изготовления проппантов с полимерным покрытием. Оболочка служит компенсатором точечных напряжений, более равномерно распределяя давление по поверхности и объему проппанта и, кроме того, снижает среднюю плотность проппанта. Широко известно использование различных органических полимерных и неорганических покрытий проппантов в виде эпоксидных и фенольных смол (заявки США №2012/0205101, 2012/247335).
Недостатком таких технических решений выступает сложность изготовления таких проппантов, недостаточная термостойкость покрытий, низкие показатели округлости и сферичности, обусловленные формой минерального ядра проппанта, высокий разброс показателей физико-механических характеристик.
Известно применение широкого спектра термореактивных полимеров с поперечными связями, таких как эпоксидные, виниловые и фенольные соединения, полиуретан, полиэстер, меламин и пр., в качестве материала для изготовления проппантов (Заявка США №2013/0045901).
Известно использование в качестве материала для проппанта полиамида (патент США №7931087).
Недостатком известных материалов является несоответствие физико-механических характеристик данных материалов одновременно всей совокупности требований к материалу для проппантов. В частности, это недостаточная стойкость к агрессивным средам, недостаточная термостойкость и термопрочность, степень набухания в среде жидких углеводородов, прочность на сжатие.
Наиболее близким техническим решением к предлагаемому является применение полидициклопентадиена как материала для проппанта (патент РФ №2386025).
Недостатком применения полидициклопентадиена является недостаточная температурная стойкость и прочность на сжатие.
Задачей данного изобретения является получение материала, обладающего комплексом свойств, предъявляемых к проппантам, работающим в тяжелых условиях.
Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении термопрочности материала проппанта, обеспечивающего прочность на сжатие не менее 150 МПа при температуре не ниже 100°C.
Технический результат достигается тем, что материал для проппанта представляет собой метатезис-радикально сшитую смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена.
Технический результат достигается также способом получения указанного материала, включающего получение смеси олигоциклопентадиенов и эфиров метилкарбоксинорборнена путем смешивания дициклопентадиена с метакриловыми эфирами и полимерными стабилизаторами, в качестве которых используют соединения (в круглых скобках после каждого наименования указано сокращенное обозначение): тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (1010), 2,6-ди-трет-бутил-4-(диметиламино)фенол (703), 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол (330), трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат (14), 3,5-ди-трет-бутил-4-гидроксианизол (354), 4,4'-метиленбис(2,6-ди-трет-бутилфенол) (702), дифениламин (ДФА), пара-ди-трет-бутилфенилендиамин (5057), N,N'-дифенил-1,4-фенилендиамин (ДППД), трис(2,4-ди-трет-бутилфенил)фосфит (168), трис(нонилфенил)фосфит (ТНРР), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (770), бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат (123), бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат (292), 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол (327), 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол (234), нагрева исходной смеси до температуры 150-220°C и выдержки при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена радикального инициатора, в качестве которого используют соединения или их смеси (после каждого наименования в круглых скобках указано сокращенное обозначение): ди-трет-бутилпероксид (Б), дикумилпероксид (БЦ-ФФ), 2,3-диметил-2,3-дифенил-бутан (30), трифенилметан (ТФМ), и катализатора, в качестве которого используют соединение общей формулы:
Figure 00000001
где заместитель L выбран из группы:
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000005
,
Figure 00000006
,
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
,
полученную полимерную матрицу нагревают до температуры 50-340°C и выдерживают при данной температуре в течение 1-360 мин, после чего охлаждают до комнатной температуры.
В качестве метакриловых эфиров используют следующие соединения или их смеси (после каждого наименования в круглых скобках указано сокращенное обозначение): аллилметакрилат (АлМАК), глицидилметакрилат (ГМА), этилендиметакрилат (ДМЭГ), диэтиленгликольдиметакрилат (ДГДМА), бутиленгликольдиметакрилат (БГДМА), 2-гидроксиэтилметакрилат (ГЭМА), 2-гидроксипропилметакрилат (ГПМА), трициклодекандиметанолдиметакрилат (ТЦДДМА), этоксилированный бисфенол А диметакрилат (E2BADMA), триметилолпропантриметакрилат (ТМПТМА).
При этом компоненты полимерной матрицы находятся в следующих количествах, масс.%:
полимерные стабилизаторы 0,1-3;
радикальные инициаторы 0,1-4;
катализатор 0,002-0,02;
смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена - остальное. Указанные отличительные признаки существенны.
Полимерный материал из метатезис-радикально сшитой смеси олигоциклопентадиенов и эфиров метилкарбоксинорборнена, полученный с использованием одновременно катализаторов метатезиса и радикальных инициаторов, имеет существенно большую температуру стеклования, превышающую 340°C и лучшие механические характеристики по сравнению с полидициклопентадиеном, имеющим температуру стеклования не выше 170°C, прочность при сжатии не более 80МПа, набухание в нефти 10-40%. Для ряда метатезис-радикально сшитых образцов температура стеклования превышает 350°C и не может быть определена, поскольку приближается к температуре начала деструкции полимера, прочность при сжатии возрастает до 260 МПа. Уменьшается значение коэффициента линейного термического расширения. Крайне важным свойством является стойкость к органическим растворителям и для некоторых образцов предлагаемого материала процент набухания в нефти не превышает 1% после выдержки в течение недели при 100°C. По сравнению с полидициклопентадиеном, данный материал обладает значительно большей прочностью при сжатии при высоких температурах, что особенно важно при производстве проппантов.
Способ осуществляют следующим образом.
Смешивают дициклопентадиен (ДЦПД) с метакриловыми эфирами и полимерными стабилизаторами, осуществляют олигомеризацию дициклопентадиена в присутствии метакриловых эфиров (1-30% масс) и полимерных стабилизаторов (0,1-3% масс), при температуре 150-220°C в течение 5-360 мин. В качестве метакриловых эфиров используют следующие соединения или их смеси: аллилметакрилат (АлМАК), глицидилметакрилат (ГМА), этилендиметакрилат (ДМЭГ), диэтиленгликольдиметакрилат (ДГДМА), бутиленгликольдиметакрилат (БГДМА), 2-гидроксиэтилметакрилат (ГЭМА), 2-гидроксипропилметакрилат (ГПМА), трициклодекандиметанолдиметакрилат (ТЦДДМА), этоксилированный бисфенол А диметакрилат (E2BADMA),
триметилолпропантриметакрилат (ТМПТМА). Процесс протекает по двум ветвям -олигомеризации дициклопентадиена (ДЦПД) и взаимодействия метакрилата с циклопентадиеном (ЦП):
Figure 00000034
Figure 00000035
В результате получают смесь олигоциклопентадиенов (ОЦПД), содержащих тримеры и тетрамеры циклопентадиена, и эфиров метилкарбоксинорборнена, полученных в результате соединения дициклопентадиена с метакриловыми эфирами.
В данную смесь последовательно вносят радикальные инициаторы (0,1-4% масс) и катализатор (0,002-0,02% масс) от общей массы матрицы. Процесс метатезис-радикальной сшивки матрицы осуществляют при температуре 50-340°C в течение 5-360 мин. Метатезисная (МП) и радикальная (РП) сшивка смеси олигоциклопентадиенов с эфирами метилкарбоксинорборнена проходит по следующей схеме:
Figure 00000036
Figure 00000037
В результате получают материал, классифицируемый по следующим характеристикам:
Температура стеклования (Tg)
- А более 250°C
- Б от 201 до 250°C
- Вот 170 до 200°C
- Г менее 170°C
Прочность при сжатии, МПа
- А более 250
- Б от 170 до 249
- В от 120 до 169
- Г менее 120
Набухание в нефти (100°C /1 неделя)
- А менее 1%
- Б от 1,1 до 3%
- В 3,1 до 5%
- Г более 5%
Способ иллюстрируют следующие примеры.
Пример 1
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,30% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилаты ГМА (2,00% масс) и ДМЭГ (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (2,0% масс). Катализатор N2a (0,0160% масс) вносят при 30°C и перемешивают 20 мин, нагревают до температуры 250°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(Б), прочность при сжатии (А), набухание (Б).
Пример 2
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 702 (0,50% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилат ДМЭГ (2,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс). Катализатор N (0,0093% масс), вносят при 35°C. Полученную смесь перемешивают 40 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (А), набухание (В).
Пример 3
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 330 (0,50% масс) и 168 (0,50% масс), метакрилаты ГЭМА (2,0% масс) и ГМА (3,0% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,5% масс). Катализатор N7a (0,0070% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 150°С и выдерживают при данной температуре в течение 120 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (Б).
Пример 4
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,02% масс), 168 (0,04% масс), 770 (0,04% масс), метакрилаты ДМЭГ (2,00% масс) и ТМПТМА (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс). Катализатор N1 (0,0094% масс) вносят при 50°C. Полученную смесь перемешивают 5 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 360 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (Б).
Пример 5
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,40% масс), 168 (0,40% масс), метакрилат ТМПТМА (2,00% масс). Смесь нагревают в автоклаве до 170°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (2,0% масс). Катализатор N2 (0,0121% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 270°C и выдерживают при данной температуре в течение 45 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (А), набухание (А).
Пример 6
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,40% масс), 168 (0,80% масс), 770 (0,40% масс), метакрилат ТМПТМА (2,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,5% масс), 30 (2,5% масс). Катализатор N14a (0,0086% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 260°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (А), набухание (А).
Пример 7
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 702 (0,30% масс), 168 (0,50% масс), метакрилат ДМЭГ (3,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,5% масс). Катализатор N4 (0,0165% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 150°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (В).
Пример 8
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 330 (0,20% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилаты ДМЭГ (4,50% масс) и ГМА (3,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N5 (0,0118% масс) вносят при 10°C. Полученную смесь перемешивают 5 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (Б).
Пример 9
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 702 (0,20% масс), 168 (0,50% масс), 123 (0,50% масс), метакрилат ТЦДДМА (30,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N15a (0,0104% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 170°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (А), набухание (В).
Пример 10
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 702 (0,10% масс), метакрилат БГДМА (5,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,1% масс), 30 (1,5% масс). Катализатор N1a (0,0032% масс) вносят при 30°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 280°C и выдерживают при данной температуре в течение 1 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 11
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (1,50% масс), ТНРР (1,00% масс), 123 (1,50% масс), метакрилат ТЦДДМА (12,00% масс). Смесь нагревают в автоклаве до 170°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (2,0% масс), 30 (2,0% масс). Катализатор N3a (0,0236% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 260°C и выдерживают при данной температуре в течение 40 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 12
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы ДФА (0,40% масс), 168 (0,50% масс), 234 (0,20% масс), метакрилат E2BADMA (0,75% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс). Катализатор N5a (0,0130% масс) вносят при 10°C. Полученную смесь перемешивают 2 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (А), набухание (В).
Пример 13
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,20% масс), 168 (0,50% масс), 292 (0,50% масс), метакрилат ТМПТМА (6,00% масс). Смесь нагревают в автоклаве до 180°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор 30 (3,0% масс). Катализатор N19a (0,0235% масс) вносят при 0°C. Полученную смесь перемешивают 1 мин, нагревают до температуры 275°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg (А), прочность при сжатии (Б), набухание (А).
Пример 14
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,50% масс), 168 (0,50% масс), метакрилаты ГМА (2,50% масс) и ГПМА (3,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс), 30 (1,0% масс). Катализатор N6a (0,0058% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 300°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 15
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,40% масс), ТНРР (0,40% масс), 770 (0,40% масс), метакрилат ДМЭГ (0,50% масс). Смесь нагревают в автоклаве до 200°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N8a (0,0103%) масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 170°C и выдерживают при данной температуре в течение 240 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (А), набухание (Б).
Пример 16
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 168 (0,40% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилат E2BADMA (12,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), ТФМ 1,0% масс). Катализатор N10a (0,0063% масс) вносят при 5°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 270°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (А), набухание (Б).
Пример 17
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,45% масс), 168 (0,45% масс), метакрилаты ТЦДДМА (8,00% масс) и ТМПТМА (5,0% масс). Смесь нагревают в автоклаве до 180°C, выдерживают при заданной температуре в течение 360 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (2,5% масс). Катализатор N9a (0,0023% масс) вносят при 15°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 170°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (Б).
Пример 18
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 702 (0,45% масс), 168 (0,45% масс), метакрилат ДМЭГ (2,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,5% масс). Катализатор N11a (0,0100% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (В).
Пример 19
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 168 (0,36% масс), 168 (0,72% масс), 123 (0,45% масс), метакрилат ДМЭГ (2,50% масс). Смесь нагревают в автоклаве до 190°C, выдерживают при заданной температуре в течение 50 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор 30 (2,0% масс). Катализатор N3b (0,0071% масс) вносят при 30°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 255°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 20
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,35% масс), 327 (0,20% масс), 770 (0,50% масс), метакрилаты ДМЭГ (2,20% масс) и E2BADMA (15,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс), 30 (2,0% масс). Катализатор N12a (0,0081% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 270°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 21
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,50% масс), 168 (0,50% масс), метакрилат ДМЭГ (4,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс). Катализатор N3 (0,0094% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 180°C и выдерживают при данной температуре в течение 120 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (В).
Пример 22
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 330 (0,45% масс), ТНРР (0,45% масс), 292 (0,45% масс), метакрилат БГДМА (10,0% масс). Смесь нагревают в автоклаве до 175°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс). Катализатор N13a (0,0104% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 220°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(Б), прочность при сжатии (А), набухание (Б).
Пример 23
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,20% масс), ТНРР (0,50% масс), метакрилаты ДГДМА (1,50% масс) и E2BADMA (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (2,0% масс). Катализатор N16a (0,0081%) масс) вносят при 30°C. Полученную смесь перемешивают 1 мин, нагревают до температуры 260°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (А), набухание (А).
Пример 24
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,20% масс), 168 (0,50% масс), 292 (0,50% масс), метакрилаты ДМЭГ (1,00% масс) и БГДМА (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс), 30 (2,0% масс). Катализатор N17a (0,0083% масс) вносят при 20°C. Полученную смесь перемешивают 5 мин, нагревают до температуры 340°C и выдерживают при данной температуре в течение 10 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 25
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 14 (0,40% масс), 168 (0,80% масс), 770 (0,40% масс), метакрилаты БГДМА (2,00% масс) и ГПМА (1,0% масс). Смесь нагревают в автоклаве до 220°C, выдерживают при заданной температуре в течение 15 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N18a (0,0133% масс) вносят при 10°C. Полученную смесь перемешивают 5 мин, нагревают до температуры 200°С и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (В).
Пример 26
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 702 (0,40% масс), 327 (0,20% масс), метакрилат ДМЭГ (5,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N4a (0,0123% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (В).
Пример 27
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 330 (0,40% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилат E2BADMA (3,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N20a (0,0051% масс) вносят при 15°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 255°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 28
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 5057 (0,40% масс), ТНРР (0,80% масс), метакрилат БГДМА (1,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (2,0% масс). Катализатор N1b (0,0068% масс) вносят при 30°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 120 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (Б).
Пример 29
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 354 (1,00% масс), 770 (0,50% масс), метакрилат БГДМА (8,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N2b (0,0064% масс) вносят при 45°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 275°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(Б), прочность при сжатии (Б), набухание (А).
Пример 30
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 702 (0,37% масс), 168 (0,73% масс), 770 (0,37% масс), метакрилат ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 165°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N4b (0,0093% масс) вносят при 30°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 210°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (В).
Пример 31
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 703 (0,45% масс), 770 (0,45% масс), метакрилат ТМПТМА (1,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,5% масс). Катализатор N5b (0,0130% масс) вносят при 30°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 260°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 32
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,37% масс), 168 (0,10% масс), 770 (0,47% масс), метакрилаты ГЭМА (2,50% масс) и ГМА (5,0% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N1c (0,0106% масс) вносят при 20°C. Полученную смесь перемешивают 5 мин, нагревают до температуры 310°C и выдерживают при данной температуре в течение 5 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 33
В отдельной емкости готовят раствор, содержащий дициклопентадиен, и метакрилаты ТЦДДМА (5,00% масс) и ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициаторы БЦ-ФФ (1,0% масс) и 30 (1,0% масс) и полимерные стабилизаторы 330 (0,20% масс), 168 (0,50% масс), 770 (0,50% масс). Катализатор N2 (0,0121% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 270°C и выдерживают при данной температуре в течение 40 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 34
В отдельной емкости готовят раствор, содержащий дициклопентадиен, метакрилаты ТЦДДМА (8,00% масс) и ТМПТМА (2,0% масс). Смесь нагревают в автоклаве до 180°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (2,5% масс) и полимерные стабилизаторы 1010 (0,3% масс), 168 (0,45% масс). Катализатор (0,0165% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 170°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (Б), набухание (Б).
Пример 35
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (1,50% масс), ТНРР (1,00% масс), 123 (1,50% масс), метакрилаты АлМАК (0,50% масс) и ТЦДДМА (12,00% масс). Смесь нагревают в автоклаве до 170°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (2,0% масс), 30 (2,0% масс). Катализатор N3a (0,0236% масс) вносят при 25°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 260°C и выдерживают при данной температуре в течение 40 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(А), прочность при сжатии (Б), набухание (А).
Пример 36
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,20% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилат E2BADMA (12,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), ТФМ 1,0% масс). Катализатор N10a (0,0063% масс) вносят при 5°C. Полученную смесь перемешивают 10 мин, нагревают до температуры 270°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg(В), прочность при сжатии (А), набухание (Б).
Пример сравнения
В отдельной емкости готовят раствор, содержащий дициклопентадиен, полимерные стабилизаторы 1010 (0,4% масс), 168 (0,4% масс), 770 (0,4% масс). Катализатор N1 (0,0106% масс) вносят при 35°C. Полученную смесь перемешивают 5 мин, нагревают до температуры 200°C и выдерживают при данной температуре в течение 35 мин, после чего охлаждают до комнатной температуры. Получают твердый материал, характеризующийся следующими показателями: Tg 161°C (Г), прочность при сжатии 65МПа (Г), набухание 20% (Г).
Как видно из примеров, предлагаемый материал существенно превосходит полидициклопентадиен по всем основным физико-механическим характеристикам.

Claims (4)

1. Полимерный материал для проппанта, представляющий собой метатезисрадикально сшитую смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена.
2. Способ получения полимерного материала для проппанта по п.1, включающий получение смеси олигоциклопентадиенов и эфиров метилкарбоксинорборнена путем смешивания дициклопентадиена с метакриловыми эфирами и полимерными стабилизаторами, в качестве которых используют соединения или их смеси: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан, 2,6-ди-трет-бутил-4-(диметиламино)фенол, 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол, трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат, 3,5-ди-трет-бутил-4-гидроксианизол, 4,4'-метиленбис(2,6-ди-трет-бутилфенол), дифениламин, пара-ди-трет-бутилфенилендиамин, N,N'-дифенил-1,4-фенилендиамин, трис(2,4-ди-трет-бутилфенил)фосфит, трис(нонилфенил)фосфит, бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат, 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол, 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол, нагрева исходной смеси до температуры 150-220°C и выдержки при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена радикального инициатора, в качестве которого используют соединения или их смеси: ди-трет-бутилпероксид, дикумилпероксид, 2,3-диметил-2,3-дифенил-бутан, трифенилметан, и катализатора, в качестве которого используют соединение общей формулы:
Figure 00000038
где заместитель L выбран из группы:
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000005
,
Figure 00000006
,
Figure 00000007

Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012

Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018

Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023

Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028

Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
,
полученную полимерную матрицу нагревают до температуры 50-340°C и выдерживают при данной температуре в течение 1-360 мин, после чего охлаждают до комнатной температуры.
3. Способ по п.2, отличающийся тем, что компоненты полимерной матрицы находятся в следующих количествах, масс.%:
Полимерные стабилизаторы 0,1-3;
радикальные инициаторы 0,1-4;
катализатор 0,002-0,02;
смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена - остальное.
4. Способ по п.2, отличающийся тем, что в качестве метакриловых эфиров используют следующие соединения или их смеси: аллилметакрилат, глицидилметакрилат, этилендиметакрилат, диэтиленгликольдиметакрилат, бутиленгликольдиметакрилат, 2-гидроксиэтилметакрилат, 2-гидроксипропилметакрилат, трициклодекандиметанолдиметакрилат, этоксилированный бисфенол А диметакрилат, триметилолпропантриметакрилат.
RU2013122087/04A 2013-05-15 2013-05-15 Полимерный материал для проппанта и способ его получения RU2527453C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2013122087/04A RU2527453C1 (ru) 2013-05-15 2013-05-15 Полимерный материал для проппанта и способ его получения
CA2907862A CA2907862C (en) 2013-05-15 2014-05-13 Polymer material for proppant and method for producing the same
US14/786,598 US10113103B2 (en) 2013-05-15 2014-05-13 Polymer proppant material and method for producing same
CN201480022896.1A CN105492573B (zh) 2013-05-15 2014-05-13 用于支撑剂的聚合物材料及其制备方法
PCT/RU2014/000337 WO2014185821A1 (ru) 2013-05-15 2014-05-13 Полимерный материал для проппанта и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013122087/04A RU2527453C1 (ru) 2013-05-15 2013-05-15 Полимерный материал для проппанта и способ его получения

Publications (1)

Publication Number Publication Date
RU2527453C1 true RU2527453C1 (ru) 2014-08-27

Family

ID=51456534

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013122087/04A RU2527453C1 (ru) 2013-05-15 2013-05-15 Полимерный материал для проппанта и способ его получения

Country Status (5)

Country Link
US (1) US10113103B2 (ru)
CN (1) CN105492573B (ru)
CA (1) CA2907862C (ru)
RU (1) RU2527453C1 (ru)
WO (1) WO2014185821A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2527453C1 (ru) 2013-05-15 2014-08-27 Открытое акционерное общество "Нефтяная компания "Роснефть" Полимерный материал для проппанта и способ его получения
CN115894869B (zh) * 2022-10-12 2024-05-31 四川大学 热固性交联树脂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656924A1 (en) * 2004-11-15 2006-05-17 Kerr Corporation Metathesis-curable composition
RU2386025C1 (ru) * 2008-09-30 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва нефтяного или газового пласта с использованием расклинивающего наполнителя
RU2462308C1 (ru) * 2011-10-04 2012-09-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Катализатор полимеризации дициклопентадиена и способ его получения
RU2465286C2 (ru) * 2011-01-27 2012-10-27 Закрытое акционерное общество "СИБУР Холдинг" (ЗАО "СИБУР Холдинг") Материал, содержащий полидициклопентадиен, и способ его получения (варианты)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1045027A (en) 1975-09-26 1978-12-26 Walter A. Hedden Hydraulic fracturing method using sintered bauxite propping agent
US4568660A (en) * 1982-01-25 1986-02-04 Hercules Incorporated Cycloolefin polymerization catalyst composition
US4668645A (en) 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
GB8904575D0 (en) 1989-02-28 1989-04-12 Shell Int Research Polymerization of bulky norbornene derivatives and polymers obtainable therewith
US8461087B2 (en) 2004-12-30 2013-06-11 Sun Drilling Products Corporation Method for the fracture stimulation of a subterranean formation having a wellbore by using impact-modified thermoset polymer nanocomposite particles as proppants
US7931087B2 (en) 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates
CN102585069B (zh) 2006-06-26 2014-10-22 Lg化学株式会社 制备降冰片烯单体组合物的方法、由其制备的降冰片烯聚合物、包含该降冰片烯聚合物的光学膜以及制备该降冰片烯聚合物的方法
US8133587B2 (en) 2006-07-12 2012-03-13 Georgia-Pacific Chemicals Llc Proppant materials comprising a coating of thermoplastic material, and methods of making and using
RU2402572C1 (ru) 2009-07-09 2010-10-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Способ получения полидициклопентадиена и материалов на его основе
EP2649147B1 (en) 2010-12-08 2016-06-08 Joseph Buford Parse Single component neutrally buoyant proppant
CA2728897A1 (en) 2011-01-19 2012-07-19 Ilem Research And Development Est. Method for making resin-coated proppants and a proppant
US20120247335A1 (en) 2011-03-10 2012-10-04 Stutzman Scott S Method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated sand, and apparatus therefor
RU2527453C1 (ru) 2013-05-15 2014-08-27 Открытое акционерное общество "Нефтяная компания "Роснефть" Полимерный материал для проппанта и способ его получения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656924A1 (en) * 2004-11-15 2006-05-17 Kerr Corporation Metathesis-curable composition
RU2386025C1 (ru) * 2008-09-30 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва нефтяного или газового пласта с использованием расклинивающего наполнителя
RU2465286C2 (ru) * 2011-01-27 2012-10-27 Закрытое акционерное общество "СИБУР Холдинг" (ЗАО "СИБУР Холдинг") Материал, содержащий полидициклопентадиен, и способ его получения (варианты)
RU2462308C1 (ru) * 2011-10-04 2012-09-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Катализатор полимеризации дициклопентадиена и способ его получения

Also Published As

Publication number Publication date
WO2014185821A1 (ru) 2014-11-20
CN105492573B (zh) 2017-08-18
US10113103B2 (en) 2018-10-30
CN105492573A (zh) 2016-04-13
CA2907862A1 (en) 2014-11-20
US20160075938A1 (en) 2016-03-17
CA2907862C (en) 2016-08-30

Similar Documents

Publication Publication Date Title
RU2523320C1 (ru) Полимерный проппант и способ его получения
CA2708403C (en) Proppants and uses thereof
RU2523321C1 (ru) Материал для проппанта и способ его получения
RU2527453C1 (ru) Полимерный материал для проппанта и способ его получения
WO2015100175A1 (en) Crosslinked epoxy particles and methods for making and using the same
RU2552750C1 (ru) Способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов
RU2524722C1 (ru) Полимерный проппант повышенной термопрочности и способ его получения
RU2018111705A (ru) Композиция эпоксидной смолы, препрег и композитный материал, армированный углеродным волокном
Kiskan et al. Benzoxazine resins as smart materials and future perspectives
EP3867290A1 (en) Composition for (meth) acrylic polymeric compositions and composites, its method of preparation and use
CA2806692A1 (en) Crosslinked epoxy vinyl ester particles and methods for making and using the same
KR101749262B1 (ko) 고접착성 및 속경화성을 갖는 방식 코팅용 조성물 및 이의 제조방법
RU2596192C1 (ru) Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал
RU2579118C1 (ru) Способ получения композиционного материала на основе полиолигоциклопентадиена и волластонита и композиционный материал
RU2528834C1 (ru) Микросферы из полидициклопентадиена и способ их получения
CN117164296B (zh) 一种应用于水下混凝土修复的快速修补材料及其制备方法和应用
CN117886999B (zh) 一种深层固井用苯并噁嗪-烯烃共聚物的制备方法及应用
WO2022025237A1 (ja) ジアリールホスフィンオキシド誘導体
Chursova et al. A cold-curing adhesive for the construction industry
WO2023152140A1 (en) (meth)acrylic composition, polymeric composite material obtained from such a composition, method for producing said composition and material, and uses thereof