RU2524722C1 - Полимерный проппант повышенной термопрочности и способ его получения - Google Patents

Полимерный проппант повышенной термопрочности и способ его получения Download PDF

Info

Publication number
RU2524722C1
RU2524722C1 RU2013122088/03A RU2013122088A RU2524722C1 RU 2524722 C1 RU2524722 C1 RU 2524722C1 RU 2013122088/03 A RU2013122088/03 A RU 2013122088/03A RU 2013122088 A RU2013122088 A RU 2013122088A RU 2524722 C1 RU2524722 C1 RU 2524722C1
Authority
RU
Russia
Prior art keywords
mass
minutes
water
temperature
heated
Prior art date
Application number
RU2013122088/03A
Other languages
English (en)
Inventor
Владимир Владимирович Афанасьев
Сергей Анатольевич Алхимов
Наталья Борисовна БЕСПАЛОВА
Игорь Алексеевич Киселев
Ольга Васильевна Маслобойщикова
Егор Владимирович Шутко
Татьяна Модестовна Юмашева
Original Assignee
Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нефтяная компания "Роснефть" filed Critical Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority to RU2013122088/03A priority Critical patent/RU2524722C1/ru
Priority to CN201480022919.9A priority patent/CN105473683B/zh
Priority to US14/786,607 priority patent/US9926487B2/en
Priority to CA2907811A priority patent/CA2907811C/en
Priority to PCT/RU2014/000338 priority patent/WO2014185822A1/ru
Application granted granted Critical
Publication of RU2524722C1 publication Critical patent/RU2524722C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/06Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Группа изобретений относится к нефте-, газодобыче с использованием проппантов из полимерных материалов. Способ получения полимерного проппанта повышенной термопрочности, включающий смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из приведенной группы, и, по крайней мере, одним из полимерных стабилизаторов, выбранных из приведенной группы, нагрев исходной смеси до температуры 150-220°C и выдержку при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена, по крайней мере, одного из радикальных инициаторов, выбранных из приведенной группы, и катализатора - соединения приведенной общей формулы, где заместитель выбран из приведенной группы, компоненты полимерной матрицы находятся в следующих количествах, мас.%: полимерные стабилизаторы 0,1-3, радикальные инициаторы 0,1-4, катализатор 0,002-0,02, смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена - остальное, затем полученную жидкую полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, вводят ее в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду при ее постоянном перемешивании, содержащую ПАВ, выбранное из приведенной группы, причем смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°C, продолжая перемешивать в течение 1-60 мин, затем образовавшиеся микросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают в этой среде и при данной температуре в течение 1-360 мин. Полимерный проппант повышенной термопрочности, характеризующийся тем, что он получен указанным выше способом. Технический результат - повышение температурной стойкости, прочности и маслостойкости. 2 н.п. ф-лы, 35 пр.

Description

Группа изобретений относится к технологии нефте-, газодобычи с использованием материалов из высокомолекулярных соединений, а именно к проппантам из полимерных материалов с повышенными требованиями к физико-механическим свойствам, применяемых при добыче нефти и газа методом гидравлического разрыва пласта в качестве расклинивающих гранул.
Гидравлический разрыв пласта (ГРП) заключается в закачивании под большим давлением жидкости в нефте- и газоносные пласты, в результате чего в пласте образуются трещины, через которые поступает нефть или газ. Для предотвращения смыкания трещин в закачиваемую жидкость добавляют твердые частицы, как правило, сферические гранулы, называемые проппантами, заполняющие вместе с несущей жидкостью образовавшиеся трещины. Проппанты должны выдерживать высокие пластовые давления, быть устойчивыми к агрессивным средам и сохранять физико-механические свойства при высоких температурах. При этом проппант должен иметь плотность, близкую к плотности к несущей жидкости, с тем, чтобы он находился в жидкости во взвешенном состоянии и был доставлен до самых отдаленных участков трещин. Учитывая, что наиболее широко в качестве жидкости для гидроразрыва применяется вода, то и плотность проппанта должна быть близка к плотности воды.
Для производства проппантов часто используют в качестве исходного материала минеральные материалы природного происхождения - бокситы, каолины, пески (Патенты США №4068718 и №4668645).
Известно использование различных материалов, таких как боросиликатное или кальцинированное стекло, черные и цветные металлы или их сплавы, оксиды металлов, оксиды, нитриды и карбиды кремния, для производства проппантов, имеющих форму полых гранул (Заявка США №2012/0145390).
Недостатком таких материалов является высокая технологическая сложность изготовления из них полых гранул, их недостаточная прочность на сжатие из-за полой структуры и хрупкости материала, высокая степень разрушения проппанта в трещинах и обратный вынос частиц и их осколков.
На устранение подобных недостатков направлены технические решения изготовления проппантов с полимерным покрытием. Оболочка служит компенсатором точечных напряжений, более равномерно распределяя давление по поверхности и объему проппанта, и, кроме того, снижает среднюю плотность проппанта. Широко известно использование различных органических полимерных и неорганических покрытий проппантов в виде эпоксидных и фенольных смол (заявки США №№2012/0205101, 2012/247335).
Недостатком таких технических решений выступает сложность изготовления таких проппантов, недостаточная термостойкость покрытий, низкие показатели округлости и сферичности, обусловленные формой минерального ядра проппанта, высокий разброс показателей физико-механических характеристик.
Известно применение широкого спектра термореактивных полимеров с поперечными связями, таких как эпоксидные, виниловые и фенольные соединения, полиуретан, полиэстер, меламин и пр., в качестве материала для изготовления проппантов (Заявка США №2013/0045901).
Известно использование в качестве материала для проппанта полиамида (патент США №7931087).
Недостатком известных материалов является несоответствие физико-механических характеристик данных материалов одновременно всей совокупности требований к материалу для проппантов. В частности, это недостаточная стойкость к агрессивным средам, недостаточная термостойкость и термопрочность, степень набухания в среде жидких углеводородов, прочность на сжатие.
Наиболее близким техническим решением к предлагаемому является применение полидициклопентадиена как материала для проппанта (патент РФ №2386025).
Недостатком применения полидициклопентадиена является недостаточная температурная стойкость, прочность на сжатие и недостаточная маслостойкость.
Задачей данного изобретения является получение материала, обладающего комплексом свойств, предъявляемых к проппантам, работающим в тяжелых условиях.
Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении термопрочности материала проппанта, обеспечивающего прочность на сжатие не менее 150 МПа при температуре не ниже 100°C, а также улучшении геометрических характеристик проппанта, выражаемых в сферичности гранул проппанта не менее 0,9 средний размер которых находится в диапазоне 0,25-1,1 мм, а также в объемной плотности в диапазоне 0,5-0,7 г/см3.
Технический результат достигается тем, что проппант представляет собой микросферы, выработанные способом, включающим смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из группы: аллилметакрилат (АлМАК), глицидилметакрилат (ГМА), этилендиметакрилат (ДМЭГ), диэтиленгликольдиметакрилат (ДГДМА), бутиленгликольдиметакрилат (БГДМА), 2-гидроксиэтилметакрилат (ГЭМА), 2-гидроксипропилметакрилат (ГПМА), трициклодекандиметанолдиметакрилат (ТЦДДМА), этоксилированный бисфенол А диметакрилат (E2BADMA), триметилолпропантриметакрилат (ТМПТМА) и, по крайней мере, одним из полимерных стабилизаторов, в качестве которых используют соединения (в круглых скобках после названия каждого соединения указано их сокращенное обозначение): тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (1010), 2,6-ди-трет-бутил-4-(диметиламино)фенол (703), 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол (330), трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат (14), 3,5-ди-трет-бутил-4-гидроксианизол (354), 4,4′-метиленбис(2,6-ди-трет-бутилфенол) (702), дифениламин (ДФА), пара-ди-трет-бутилфенилендиамин (5057), N,N′-дифенил-1,4-фенилендиамин (ДППД), трис(2,4-ди-трет-бутилфенил)фосфит (168), трис(нонилфенил)фосфит (ТНРР), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (770), бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат (123), бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат (292), 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол (327), 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол (234), нагрева исходной смеси до температуры 150-220°C и выдержки при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена, по крайней мере, одного из радикальных инициаторов, выбранных из группы (в круглых скобках после названия каждого соединения указано их сокращенное обозначение): ди-трет-бутилпероксид (Б), дикумилпероксид (БЦ-ФФ), 2,3-диметил-2,3-дифенил-бутан (30), трифенилметан (ТФМ), и катализатора, в качестве которого используют соединение общей формулы:
Figure 00000001
где заместитель L выбран из группы:
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
, при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%:
полимерные стабилизаторы 0,1-3;
радикальные инициаторы 0,1-4;
катализатор 0,002-0,02;
смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена - остальное, полученную жидкую полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую поверхностно-активное вещество при постоянном перемешивании. Смесь воды с поверхностно-активными веществами имеет вязкость ниже вязкости полимерной матрицы. Образовавшиеся микросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают в этой среде и при данной температуре в течение 1-360 мин.
В качестве поверхностно-активного вещества используют цетилтриметиламмоний хлорид или додецилсульфатнатрия или лаурилсульфат аммония или лаурилсаркозинат натрия или октенидина гидрохлорид или бензалкония хлорид.
Указанные отличительные признаки существенны.
Применение приведенных катализаторов обеспечивает полимеризацию заявленной смеси мономеров в жидкой среде при заданных режимах обработки, при которых достигается высокая равномерность получаемых микросфер и высокая прочность на сжатие, а применение обозначенных поверхностно-активных веществ при указанных температурах в сочетании с составом полимерной смеси обеспечивает высокий выход готового продукта и заданные характеристики сферичности и округлости. Полимерный проппант из метатезис-радикально сшитой смеси олигоциклопентадиенов и эфиров метилкарбоксинорборнена, полученный с использованием одновременно катализаторов метатезиса и радикальных инициаторов, имеет существенно большую температуру стеклования, превышающую 340°C, и лучшие механические характеристики по сравнению с полидициклопентадиеном, имеющим температуру стеклования не выше 170°C, прочность при сжатии не более 70 МПа, набухание в нефти 10-40%. Для ряда метатезис-радикально сшитых образцов температура стеклования превышает 350°C и не может быть определена, поскольку приближается к температуре начала деструкции полимера, прочность при сжатии возрастает до 260 МПа. Уменьшается значение коэффициента линейного термического расширения. Крайне важным свойством является стойкость к органическим растворителям и для некоторых образцов предлагаемого материала процент набухания в нефти не превышает 1% после выдержки в течение недели при 100°C. По сравнению с полидициклопентадиеном, данный материал обладает значительно большей прочностью при сжатии в условиях высоких температур, что особенно важно при применении проппантов.
Способ осуществляют следующим образом.
Смешивают дициклопентадиен (ДЦПД) с метакриловыми эфирами и полимерными стабилизаторами, осуществляют олигомеризацию дициклопентадиена в присутствии метакриловых эфиров и стабилизаторов, при температуре 150-220°C в течение 5-360 мин. В качестве метакриловых эфиров используют следующие соединения или их смеси (в круглых скобках после каждого наименования соединения указано их краткое обозначение): аллилметакрилат (АлМАК), глицидилметакрилат (ГМА), этилендиметакрилат (ДМЭГ), диэтиленгликольдиметакрилат (ДГДМА), бутиленгликольдиметакрилат (БГДМА), 2-гидроксиэтилметакрилат (ГЭМА), 2-гидроксипропилметакрилат (ГПМА), трициклодекандиметанолдиметакрилат (ТЦДДМА), этоксилированный бисфенол А диметакрилат (E2BADMA), триметилолпропантриметакрилат (ТМПТМА). Процесс протекает по двум ветвям - олигомеризации дициклопентадиена и взаимодействия метакрилата с циклопентадиеном:
Figure 00000008
В результате получают смесь олигоциклопентадиенов (ОЦПД), содержащих, в том числе, тримеры и тетрамеры циклопентадиена, и эфиров метилкарбоксинорборнена, полученных вследствие реакции дициклопентадиена с метакриловыми эфирами. В полученную смесь последовательно вносят радикальные инициаторы (0,1-4% масс) и катализатор (0,002-0,02% масс) от общей массы матрицы. Данную полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду при постоянном перемешивании, причем вода содержит поверхностно-активное вещество. Смесь воды с поверхностно-активными веществами имеет вязкость 0,5-0,8 сПуаз, в зависимости от температуры, что ниже вязкости полимерной матрицы при той же температуре, которая может колебаться в широких пределах от 1 до 300 сПуаз в зависимости от состава и температуры.
Процесс метатезисной сшивки матрицы осуществляют при постоянном перемешивании и нагреве воды до 50-100°C, продолжая перемешивать в течение 1-60 мин. Происходит метазис-радикальная сшивка ОЦПД с эфирами метилкарбоксинорборнена по следующей схеме:
Figure 00000009
Образовавшиеся микросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают при данной температуре в течение 1-360 мин. Использование инертного газа при нагреве гранул проппанта в виде микросфер предотвращает их окисление и деструкцию.
В процессе перемешивания образуется эмульсия из капель полимерной матрицы, которые в процессе полимеризации и под влиянием поверхностно-активного вещества формуются в гранулы проппанта в форме микросфер.
В результате получают проппант, имеющий округлость и сферичность не менее 0,9 для, не менее чем, 80% по массе, средний размер которых находится в диапазоне 0,25-1,1 мм, а объемная плотность находится в диапазоне 0,5-0,7 г/см3.
Свойства материала проппанта классифицируются по следующим характеристикам:
Температура стеклования (Tg)
- А более 250°C
- Б от 201 до 250°C
- В от 170 до 200°C
- Г менее 170°C
Прочность при сжатии, МПа
- А более 250
- Б от 170 до 249
- В от 120 до 169
Целевая фракция (0,25-1,1 мм), %
- А более 75
- Б от 70 до 74
- В мене 70 Набухание в нефти (100°C/1 неделя), %
- А менее 1
- Б от 1,1 до 3
- В 3,1 до 5
Способ иллюстрируют следующие примеры.
Пример 1
В отдельной емкости готовят раствор, содержащий дициклопентадиен (93,9% масс), полимерные стабилизаторы 1010 (0,30% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилаты ГМА (2,00% масс) и ДМЭГ (3,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (2,0% масс). Катализатор N2a (0,0158% масс) вносят при 30°C. Полученную смесь перемешивают 20 минут, после чего вводят в виде ламинарного потока в нагретую до 40°C воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс). Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 250°C в атмосфере азота и выдерживают при данной температуре в указанной атмосфере в течение 30 мин. Получают микросферы 98%, средний размер (A), Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 2
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,5% масс), полимерные стабилизаторы 702 (0,50% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилат ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс). Катализатор N (0,0094% масс) вносят при 35°C. Полученную смесь перемешивают 40 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,2% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 10 минут. Образовавшиеся микросферы отделяют от раствора, нагревают в среде азота до температуры 200°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 97%, средний размер (А), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 3
В отдельной емкости готовят раствор, содержащий дициклопентадиен (91,5% масс), полимерные стабилизаторы 330 (0,50% масс), 168 (0,50% масс), метакрилаты ГЭМА (3,00% масс) и ГМА (4,5% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,5% масс). Катализатор N7a (0,0067% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,05), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. Микросферы отделяют от воды и нагревают в среде азота до 150°C, выдерживают при данной температуре в этой среде в течение 20 мин. Получают микросферы 97%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 4
В отдельной емкости готовят раствор, содержащий дициклопентадиен (94,4% масс), полимерные стабилизаторы 1010 (0,02% масс), 168 (0,04% масс), 770 (0,04% масс), метакрилат ДМЭГ (0,50% масс), ТМПТМА (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,5% масс). Катализатор N1 (0,0094% масс) вносят при 50°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 55°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,512 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°C и выдерживают 45 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают при данной температуре в этой среде в течение 360 мин. Получают микросферы 89%, средний размер (А), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 5
В отдельной емкости готовят раствор, содержащий дициклопентадиен (98,7% масс), полимерные стабилизаторы 1010 (0,40% масс), 168 (0,40% масс), метакрилат ТМПТМА (0,50% масс). Смесь нагревают в автоклаве до 170°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N2 (0,0123% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,15), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,2% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 270°C и выдерживают при данной температуре в этой среде в течение 45 мин. Получают микросферы 96%, средний размер (A), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 6
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,4% масс), полимерные стабилизаторы 1010 (0,40% масс), 168 (0,80% масс), 770 (0,40% масс), метакрилат ТМПТМА (1,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,5% масс), 30 (2,5% масс). Катализатор N14a (0,0086% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,05% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 250°C и выдерживают при данной температуре в этой среде в течение 45 мин. Получают микросферы 98%, средний размер (А), Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 7
В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,2% масс), полимерные стабилизаторы 702 (0,30% масс), 168 (0,50% масс), метакрилат ДМЭГ (3,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,5% масс). Катализатор N4 (0,0165% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,2), содержащую поверхностно-активное вещество лаурилсульфат аммония (0,25% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°C и выдерживают 30 минут. Микросферы отделяют, нагревают в среде азота до 150°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 95%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 8
В отдельной емкости готовят раствор, содержащий дициклопентадиен (91,5% масс), полимерные стабилизаторы 330 (0,50% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилаты ДМЭГ (2,00% масс) и ГМА (5,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N5 (0,0117% масс) вносят при 10°C. Полученную смесь перемешивают 5 минуту, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,804 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 97%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 9
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,6% масс), полимерные стабилизаторы 702 (0,20% масс), 168 (0,50% масс), 123 (0,50% масс), метакрилат ТЦДДМА (1,20% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N15a (0,0104% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 60 минут. Микросферы отделяют, нагревают в среде азота до 170°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (А), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 10
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,4% масс), полимерные стабилизаторы 702 (0,10% масс), метакрилат БГДМА (2,50% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,1% масс), 30 (1,5% масс). Катализатор N1а (0,0032% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 280°C и выдерживают в этой среде при данной температуре в течение 1 мин. Получают микросферы 90%, средний размер (В), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 11
В отдельной емкости готовят раствор, содержащий дициклопентадиен (76% масс), полимерные стабилизаторы 1010 (1,50% масс), ТНРР (1,00% масс), 123 (1,50% масс), метакрилат ТЦДДМА (20,00% масс). Смесь нагревают в автоклаве до 170°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (2,0% масс), 30 (2,0% масс). Катализатор N3a (0,0211% масс) вносят при 25°C. Полученную смесь перемешивают 4 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,3% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 260°C и выдерживают в этой среде при данной температуре в течение 40 мин. Получают микросферы 91%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 12
В отдельной емкости готовят раствор, содержащий дициклопентадиен (92,9% масс), полимерные стабилизаторы ДФА (0,40% масс), 168 (0,50% масс), 234 (0,20% масс), метакрилат E2BADMA (6,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс). Катализатор N5a (0,0123% масс) вносят при 10°C. Полученную смесь перемешивают 2 минуты, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество лаурилсаркозинат натрия (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 1 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 94%, средний размер (A), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 13
В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,3% масс), полимерные стабилизаторы 1010 (0,20% масс), 168 (0,50% масс), 292 (0,50% масс), метакрилат ТМПТМА (2,50% масс). Смесь нагревают в автоклаве до 180°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальные инициаторы Б (1,0% масс) и 30 (3,0% масс). Катализатор N19a (0,0243% масс) вносят при 0°C. Полученную смесь перемешивают 1 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,803 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°C и выдерживают 40 минут. Микросферы отделяют, нагревают в среде азота до 265°C и выдерживают в этой среде при данной температуре в течение 60 мин. Получают микросферы 93%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 14
В отдельной емкости готовят раствор, содержащий дициклопентадиен (94,5% масс), полимерные стабилизаторы 1010 (0,50% масс), 168 (0,50% масс), метакрилаты ГМА (1,50% масс), ГПМА (3,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс), 30 (1,0% масс). Катализатор N6a (0,0058% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 300°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (Б), Tg (А), прочность при сжатии (В), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 15
В отдельной емкости готовят раствор, содержащий дициклопентадиен (98,3% масс), полимерные стабилизаторы 1010 (0,40% масс), ТНРР (0,40% масс), 770 (0,40% масс), метакрилат ДМЭГ (0,50% масс). Смесь нагревают в автоклаве до 200°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N8a (0,0103% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,15), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,2% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 170°C и выдерживают в этой среде при данной температуре в течение 240 мин. Получают микросферы 98%, средний размер (В), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 16
В отдельной емкости готовят раствор, содержащий дициклопентадиен (80,8% масс), полимерные стабилизаторы 168 (0,40% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилат E2BADMA (18,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), ТФМ 1,0% масс). Катализатор N9a (0,0019% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,01), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 90°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 270°C и выдерживают в этой среде при данной температуре в течение 145 мин. Получают микросферы 97%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 17
В отдельной емкости готовят раствор, содержащий дициклопентадиен (93,3% масс), полимерные стабилизаторы 1010 (0,45% масс), 168 (0,45% масс), метакрилаты ТЦДДМА (0,80% масс) и ТМПТМА (5,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 360 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,5% масс). Катализатор N10a (0,0068% масс) вносят при 5°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,3), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,2% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 5 минут. Микросферы отделяют, нагревают в среде азота до 170°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 98%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 18
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,1% масс), полимерные стабилизаторы 702 (0,45% масс), 168 (0,45% масс), метакрилат ДМЭГ (2,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,5% масс). Катализатор N11а (0,0100% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают в этой среде при данной температуре в течение 60 мин. Получают микросферы 99%, средний размер (А), Tg (Г), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 19
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,47% масс), полимерные стабилизаторы 168 (0,36% масс), 168 (0,72% масс), 123 (0,45% масс), метакрилат ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 190°C, выдерживают при заданной температуре в течение 50 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,75% масс), 30 (2,0% масс). Катализатор N3b (0,0072% масс) вносят при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,804 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс) при 40°C. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 250°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (Б), Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 20
В отдельной емкости готовят раствор, содержащий дициклопентадиен (93,95% масс), полимерные стабилизаторы 1010 (0,35% масс), 327 (0,20% масс), 770 (0,50% масс), метакрилат ДМЭГ (2,00% масс), E2BADMA (3,0% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс), 30 (2,0% масс). Катализатор N12a (0,0081% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,2), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде аргона до 270°C и выдерживают при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 21
В отдельной емкости готовят раствор, содержащий дициклопентадиен (94% масс), полимерные стабилизаторы 1010 (0,50% масс), 168 (0,50% масс), метакрилаты ДМЭГ (2,50% масс), БГДМА (2,50% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (0,1% масс). Катализатор N3 (0,0095% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°C и выдерживают 20 минут. Микросферы отделяют, нагревают в среде азота до 180°C и выдерживают в этой среде при данной температуре в течение 120 мин. Получают микросферы 97%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 22
В отдельной емкости готовят раствор, содержащий дициклопентадиен (95,45% масс), полимерные стабилизаторы 330 (0,45% масс), ТНРР (0,45% масс), 292 (0,45% масс), метакрилаты БГДМА (3,20% масс), Смесь нагревают в автоклаве до 175°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,5% масс). Катализатор N13a (0,0103% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,1% масс) при 35°. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 220°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (А), Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 23
В отдельной емкости готовят раствор, содержащий дициклопентадиен (86,3% масс), полимерные стабилизаторы 1010 (0,20% масс), ТНРР (0,50% масс), метакрилат ДГДМА (8,00% масс), E2BADMA (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (2,0% масс). Катализатор N16a (0,0075% масс) вносят при 30°C. Полученную смесь перемешивают 1 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,4), содержащую поверхностно-активное вещество бензалкония хлорид (0,2% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 260°C и выдерживают при данной температуре в этой среде в течение 30 мин. Получают микросферы 95%, средний размер (В), Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 24
В отдельной емкости готовят раствор, содержащий дициклопентадиен (92,8% масс), полимерные стабилизаторы 1010 (0,20% масс), 168 (0,50% масс), 292 (0,50% масс), метакрилаты ДМЭГ (1,00% масс), БГДМА (5,0% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (1,0% масс), 30 (2,0% масс). Катализатор N17a (0,0083% масс) вносят при 20°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,804 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°C и выдерживают 10 минут. Микросферы отделяют, нагревают в среде азота до 340°C и выдерживают в этой среде при данной температуре в течение 10 мин. Получают микросферы 97%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 25
В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,4% масс), полимерные стабилизаторы 14 (0,40% масс), 168 (0,80% масс), 770 (0,40% масс), метакрилаты БГДМА (1,00% масс) и ГПМА (1,0% масс). Смесь нагревают в автоклаве до 220°C, выдерживают при заданной температуре в течение 15 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N18a (0,0134% масс) вносят при 10°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс) при 30°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,803 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 200°C в атмосфере аргона и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 98%, средний размер (A), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 26
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,4% масс), полимерные стабилизаторы 702 (0,40% масс), 327 (0,20% масс), метакрилат ДМЭГ (2,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N4a (0,0127% масс) вносят при 25°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 200°C в среде азота и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 92%, средний размер (А), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 27
В отдельной емкости готовят раствор, содержащий дициклопентадиен (73,6% масс), полимерные стабилизаторы 330 (0,40% масс), 168 (0,50% масс), 770 (0,50% масс), метакрилат E2BADMA (25,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N20a (0,0039% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 255°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 97%, средний размер (Б), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 28
В отдельной емкости готовят раствор, содержащий дициклопентадиен (95,8% масс), полимерные стабилизаторы 5057 (0,40% масс), ТНРР (0,80% масс), метакрилат БГДМА (3,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор Б (2,0% масс). Катализатор N1b (0,0066% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 200°C и выдерживают в этой среде при данной температуре в течение 120 мин. Получают микросферы 96%, средний размер (В), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).
Пример 29
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,5% масс), полимерные стабилизаторы 354 (1,00% масс), 770 (0,50% масс), метакрилат БГДМА (1,00% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N2b (0,0069% масс) вносят при 45°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,5), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,5% масс) при 50°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,553 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 275°C и выдерживают в этой среде при данной температуре в течение 30 мин. Получают микросферы 92%, средний размер (В), Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 30
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,53% масс), полимерные стабилизаторы 702 (0,37% масс), 168 (0,73% масс), 770 (0,37% масс), метакрилат ДМЭГ (1,00% масс). Смесь нагревают в автоклаве до 165°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс). Катализатор N4b (0,0093% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество додецилсульфатнатрия (0,5% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 200°C в среде азота и выдерживают в этой среде при данной температуре в течение 60 мин. Получают микросферы 96%, средний размер (В), Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 31
В отдельной емкости готовят раствор, содержащий дициклопентадиен (97,6% масс), полимерные стабилизаторы 703 (0,45% масс), 770 (0,45% масс), метакрилат ТМПТМА (1,50% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,5% масс). Катализатор N5b (0,0129% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 260°C в среде азота и выдерживают при данной температуре и среде в течение 30 мин. Получают микросферы 97%, средний размер (Б), TG (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 32
В отдельной емкости готовят раствор, содержащий дициклопентадиен (91,56% масс), полимерные стабилизаторы 1010 (0,37% масс), 168 (0,10% масс), 770 (0,47% масс), метакрилаты ГЭМА (2,50% масс), ГМА (5,0% масс). Смесь нагревают в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N1c (0,0106% масс) вносят при 20°C. Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,2), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде азота до 310°C и выдерживают при данной температуре и среде в течение 5 мин. Получают микросферы 93%, средний размер (В), Tg (А), прочность при сжатии (В), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 33
В отдельной емкости готовят раствор, содержащий дициклопентадиен (96,9% масс), полимерные стабилизаторы 702 (0,10% масс), метакрилаты АлМАК (0,50% масс) и БГДМА (2,50% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (0,1% масс), 30 (1,5% масс). Катализатор N1a (0,0032% масс) вносят при 30°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,1), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 40°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°C и выдерживают 15 минут. Микросферы отделяют, нагревают в среде аргона до 280°C и выдерживают в указанной среде и при данной температуре в течение 1 мин. Получают микросферы 90%, средний размер (В), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).
Пример 34
В отдельной емкости готовят раствор, содержащий дициклопентадиен (80,8% масс), полимерные стабилизаторы 702 (0,40% масс), 168 (0,40% масс), 770 (0,40% масс), метакрилат E2BADMA (18,00% масс). Смесь нагревают в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), ТФМ (1,0% масс). Катализатор N9a (0,0019% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,01), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 90°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 270°C в среде азота и выдерживают в этой среде и при данной температуре в течение 145 мин. Получают микросферы 97%, средний размер (Б), Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).
Пример 35
В отдельной емкости готовят раствор, содержащий дициклопентадиен (83,53% масс) полимерные стабилизаторы ДППД (0,37% масс), 168 (0,73% масс), 770 (0,37% масс), метакрилат БГДМА (15,00% масс). Смесь нагревают в автоклаве до 160°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят радикальный инициатор БЦ-ФФ (1,0% масс), 30 (1,0% масс). Катализатор N2 (0,0020% масс) вносят при 15°C. Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода 0,01), содержащую поверхностно-активное вещество цетилтриметиламмоний хлорид (0,1% масс) при 35°C. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 сПуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°C и выдерживают 15 минут. Микросферы отделяют, нагревают до 270°C в среде азота и выдерживают в этой среде и при данной температуре в течение 145 мин. Получают микросферы 96%, средний размер (Б), Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Claims (2)

1. Способ получения полимерного проппанта повышенной термопрочности, включающий смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из группы: аллилметакрилат, глицидилметакрилат, этилендиметакрилат, диэтиленгликольдиметакрилат, бутиленгликольдиметакрилат, 2-гидроксиэтилметакрилат, 2-гидроксипропилметакрилат, трициклодекандиметанолдиметакрилат, этоксилированный бисфенол А диметакрилат, триметилолпропантриметакрилат и, по крайней мере, одним из полимерных стабилизаторов, в качестве которых используют соединения: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан, 2,6-ди-трет-бутил-4-(диметиламино)фенол, 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол, трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат, 3,5-ди-трет-бутил-4-гидроксианизол, 4,4′-метиленбис(2,6-ди-трет-бутилфенол), дифениламин, пара-ди-трет-бутилфенилендиамин, N,N′-дифeнил-1,4-фенилендиамин, трис(2,4-ди-трет-бутилфенил)фосфит, трис(нонилфенил)фосфит, бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат, 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол, 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол, нагрев исходной смеси до температуры 150-220°C и выдержку при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена, по крайней мере, одного из радикальных инициаторов, выбранных из группы: ди-трет-бутилпероксид, дикумилпероксид, 2,3-диметил-2,3-дифенил-бутан, трифенилметан, и катализатора, в качестве которого используют соединение общей формулы:
Figure 00000001
где заместитель L выбран из группы:
Figure 00000010

Figure 00000011

Figure 00000012

Figure 00000013

Figure 00000014

Figure 00000015
, при этом компоненты полимерной матрицы находятся в следующих количествах, мас.%:
полимерные стабилизаторы 0,1-3,
радикальные инициаторы 0,1-4,
катализатор 0,002-0,02,
смесь олигоциклопентадиенов и
эфиров метилкарбоксинорборнена - остальное,
затем полученную жидкую полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду при ее постоянном перемешивании, содержащую поверхностно-активное вещество, выбранное из группы: цетилтриметиламмоний хлорид, додецилсульфатнатрия, лаурилсульфат аммония, лаурилсаркозинат натрия, октенидина гидрохлорид или бензалкония хлорид, причем смесь воды с поверхностно-активными веществами имеет вязкость ниже вязкости полимерной матрицы, при этом в процессе постоянного перемешивания воду нагревают до 50-100°C, продолжая перемешивать в течение 1-60 мин, затем образовавшиеся икросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают в этой среде и при данной температуре в течение 1-360 мин.
2. Полимерный проппант повышенной термопрочности, характеризующийся тем, что он получен способом по п.1.
RU2013122088/03A 2013-05-15 2013-05-15 Полимерный проппант повышенной термопрочности и способ его получения RU2524722C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2013122088/03A RU2524722C1 (ru) 2013-05-15 2013-05-15 Полимерный проппант повышенной термопрочности и способ его получения
CN201480022919.9A CN105473683B (zh) 2013-05-15 2014-05-13 热强度增大的聚合物支撑剂及其制备方法
US14/786,607 US9926487B2 (en) 2013-05-15 2014-05-13 Polymer proppant with increased thermal resistance and method for producing same
CA2907811A CA2907811C (en) 2013-05-15 2014-05-13 Increased thermal strength polymer proppant and method for producing the same
PCT/RU2014/000338 WO2014185822A1 (ru) 2013-05-15 2014-05-13 Полимерный проппант повышенной термопрочности и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013122088/03A RU2524722C1 (ru) 2013-05-15 2013-05-15 Полимерный проппант повышенной термопрочности и способ его получения

Publications (1)

Publication Number Publication Date
RU2524722C1 true RU2524722C1 (ru) 2014-08-10

Family

ID=51355098

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013122088/03A RU2524722C1 (ru) 2013-05-15 2013-05-15 Полимерный проппант повышенной термопрочности и способ его получения

Country Status (5)

Country Link
US (1) US9926487B2 (ru)
CN (1) CN105473683B (ru)
CA (1) CA2907811C (ru)
RU (1) RU2524722C1 (ru)
WO (1) WO2014185822A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691226C1 (ru) * 2018-06-05 2019-06-11 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения микросфер полимерного проппанта
RU2723806C1 (ru) * 2019-06-05 2020-06-17 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ гидроразрыва нефтяного, газового или газоконденсатного пласта

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668654A (en) * 1985-05-16 1987-05-26 Phillips Petroleum Company Nickel-cerium oxide-zirconium oxide-silica catalysts for hydrogenation of succinic anhydride to butyrolactone
RU2168518C2 (ru) * 1994-12-23 2001-06-10 Циба Спешиалти Чемикалс Холдинг Инк. Состав, способный к полимеризации
RU2386025C1 (ru) * 2008-09-30 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва нефтяного или газового пласта с использованием расклинивающего наполнителя
US7931087B2 (en) * 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1045027A (en) 1975-09-26 1978-12-26 Walter A. Hedden Hydraulic fracturing method using sintered bauxite propping agent
US4668645A (en) 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
GB8904575D0 (en) 1989-02-28 1989-04-12 Shell Int Research Polymerization of bulky norbornene derivatives and polymers obtainable therewith
TW350851B (en) 1995-01-31 1999-01-21 Ciba Sc Holding Ag Polymerizable composition and process for the preparation of network polymer
US8461087B2 (en) 2004-12-30 2013-06-11 Sun Drilling Products Corporation Method for the fracture stimulation of a subterranean formation having a wellbore by using impact-modified thermoset polymer nanocomposite particles as proppants
TWI403523B (zh) 2006-06-26 2013-08-01 Lg Chemical Ltd 包含極性官能基之富外式環合降冰片烯單體之製備方法,其所製成之聚合物及其製備方法
RU2351632C2 (ru) * 2007-03-22 2009-04-10 Шлюмбергер Текнолоджи Б.В. Проппант и способ его изготовления
RU2402572C1 (ru) 2009-07-09 2010-10-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Способ получения полидициклопентадиена и материалов на его основе
WO2012078847A2 (en) 2010-12-08 2012-06-14 Joseph Buford Parse Single component neutrally buoyant proppant
CA2728897A1 (en) 2011-01-19 2012-07-19 Ilem Research And Development Est. Method for making resin-coated proppants and a proppant
RU2465286C2 (ru) 2011-01-27 2012-10-27 Закрытое акционерное общество "СИБУР Холдинг" (ЗАО "СИБУР Холдинг") Материал, содержащий полидициклопентадиен, и способ его получения (варианты)
US20120247335A1 (en) 2011-03-10 2012-10-04 Stutzman Scott S Method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated sand, and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668654A (en) * 1985-05-16 1987-05-26 Phillips Petroleum Company Nickel-cerium oxide-zirconium oxide-silica catalysts for hydrogenation of succinic anhydride to butyrolactone
RU2168518C2 (ru) * 1994-12-23 2001-06-10 Циба Спешиалти Чемикалс Холдинг Инк. Состав, способный к полимеризации
US7931087B2 (en) * 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates
RU2386025C1 (ru) * 2008-09-30 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва нефтяного или газового пласта с использованием расклинивающего наполнителя

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691226C1 (ru) * 2018-06-05 2019-06-11 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения микросфер полимерного проппанта
RU2723806C1 (ru) * 2019-06-05 2020-06-17 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ гидроразрыва нефтяного, газового или газоконденсатного пласта

Also Published As

Publication number Publication date
US20160060510A1 (en) 2016-03-03
CN105473683B (zh) 2018-05-18
US9926487B2 (en) 2018-03-27
CA2907811C (en) 2017-05-09
CA2907811A1 (en) 2014-11-20
CN105473683A (zh) 2016-04-06
WO2014185822A1 (ru) 2014-11-20

Similar Documents

Publication Publication Date Title
RU2523320C1 (ru) Полимерный проппант и способ его получения
CA2708403C (en) Proppants and uses thereof
RU2552750C1 (ru) Способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов
RU2523321C1 (ru) Материал для проппанта и способ его получения
EP1130215A2 (en) Stimulating fluid production from unconsolidated formations
RU2524722C1 (ru) Полимерный проппант повышенной термопрочности и способ его получения
EP2794699A1 (en) High molecular weight low polydispersity polymers
EP3464504A1 (en) Re-assembling polymer particle package for conformance control and fluid loss control
CA2935185A1 (en) Crosslinked epoxy particles and methods for making and using the same
RU2527453C1 (ru) Полимерный материал для проппанта и способ его получения
Krishnan et al. Insight into thermo-mechanical enhancement of polymer nanocomposites coated microsand proppants for hydraulic fracturing
RU2528834C1 (ru) Микросферы из полидициклопентадиена и способ их получения
CA3021291A1 (en) Enhanced propped fracture conductivity in subterranean wells
JP2019510096A (ja) 改質反応性樹脂組成物、およびプロパント剤コーティング用のその使用
JP7217258B2 (ja) 樹脂組成物
US11549048B2 (en) Re-assembling polymer particle package for conformance control and fluid loss control
JP6794543B2 (ja) 変性反応性樹脂組成物、およびプロップ剤をコーティングするためのそれらの使用
KR20190018491A (ko) 프로판트의 코팅 방법