RU2596192C1 - Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал - Google Patents

Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал Download PDF

Info

Publication number
RU2596192C1
RU2596192C1 RU2015110944/04A RU2015110944A RU2596192C1 RU 2596192 C1 RU2596192 C1 RU 2596192C1 RU 2015110944/04 A RU2015110944/04 A RU 2015110944/04A RU 2015110944 A RU2015110944 A RU 2015110944A RU 2596192 C1 RU2596192 C1 RU 2596192C1
Authority
RU
Russia
Prior art keywords
mixture
temperature
minutes
composite material
glass microspheres
Prior art date
Application number
RU2015110944/04A
Other languages
English (en)
Inventor
Сергей Сергеевич Ловков
Наталья Борисовна БЕСПАЛОВА
Татьяна Модестовна Юмашева
Владимир Владимирович Афанасьев
Ольга Васильевна Маслобойщикова
Егор Владимирович Шутко
Игорь Алексеевич Киселев
Иван Владимирович Сапрунов
Original Assignee
Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нефтяная компания "Роснефть" filed Critical Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority to RU2015110944/04A priority Critical patent/RU2596192C1/ru
Application granted granted Critical
Publication of RU2596192C1 publication Critical patent/RU2596192C1/ru

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к способу получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер. Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер включает смешивание дициклопентадиена по крайней мере с одним из органосиланов, выбранных из группы по крайней мере с одним из полимерных стабилизаторов, выбранных из группы, и стеклянными микросферами, полученную смесь нагревают в инертной атмосфере до температуры 50-220°C, выдерживают при данной температуре в течение 15-360 мин, а затем охлаждают до комнатной температуры, после чего в смесь вносят по крайней мере один из радикальных инициаторов, выбранных из группы, и катализатор, в качестве которого используют соединение общей структурной формулы как определено в формуле изобретения, катализатор предварительно растворен в по крайней мере одном из метакрилатов, выбранных из группы: глицидилметакрилат, этилендиметакрилат, диэтиленгликольдиметакрилат, бутиленгликольдиметакрилат, 2-гидроксиэтилметакрилат, 2-гидроксипропилметакрилат, трициклодекандиметанолдиметакрилат, этоксилированный бисфенол А, диметакрилат, триметилолпропантриметакрилат, причем компоненты смеси находятся в следующем соотношении, мас.%: органосиланы 0,2-3; полимерные стабилизаторы 0,1-3; радикальные инициаторы 0,1-4; метакрилаты 0,3-25; катализатор 0,001-0,02; дициклопентадиен 1-60; стеклянные микросферы остальное. Заявлен также композиционный материал. Технический результат- получение материала, обеспечивающего прочность на сжатие не менее 50 МПа, прочность при изгибе не менее 25 МПа, прочность при растяжении не менее 25 МПа, ударную прочность по Изоду без надреза не менее 3,5 кДж/м2 при температуре стеклования не менее 150°C и плотности материала 0,8-0,6 г/см3 . 2 н. и 1 з.п. ф-лы, 32 пр.

Description

Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения композиционных материалов на основе полиолигоциклопентадиена и стеклянных микросфер.
Известен способ получения композиционных материалов из полидициклопентадиена с использованием стеклоткани, обработанной замасливателями на основе кремнийорганических соединений. Метатезисная полимеризация осуществляется с использованием рутениевых катализатора первого поколения. (Патент США №6436476). Недостатком данного способа является использование малоэффективного рутениевого катализатора первого поколения.
Известен способ получения композиционных материалов из полидициклопентадиена с использованием стеклоткани обработанной кремнийорганическим замасливателем. Для полимеризации используется катализатор Граббса второго поколения, обладающий высокой скоростью активации (Международная публикация WO 2004009507).
Недостатком способа является использование дорогостоящего катализатора Граббса второго поколения, высокая скорость активации которого существенно снижает временной интервал использования полимеризационной смеси. При производстве крупных изделий с армированием и наполнителями возможно возникновение дефектов: пузырей, непропитанных областей и трещин.
Известен способ производства композиционных материалов с использованием термоактивируемых катализаторов (Патент РФ №2465286). Недостатком данного метода является использование полимерного связующего с низкой адгезией к наполнителю в следствие чего существенно ухудшаются прочностные характеристики изделий.
Известен способ получения композитных изделий, заключающийся в том, что смесь полых стеклянных микросфер и раствора термопластичного связующего разливают на подложку полуфабриката, затем удаляют растворитель и накрывают вторым полуфабрикатом, после чего методом горячего прессования в формах получают многослойную сэндвич-конструкцию (Патент США №4013810).
Недостатком способа является использование термопластичных смол, что не может обеспечивать высоких физико-механических характеристик композитного материала.
Известен способ получения композитного материала на основе термореактивных смол и полых стеклянных микросфер, заключающийся в том, что компаунд, представляющий смесь термореактивного связующего и полых стеклянных микросфер, в виде гранул распределяют между двумя антиадгезионными подложками и раскатывают в лист требуемой толщины (Патент США №4323623). Из такого формовочного материала в комбинации со стеклянными, углеродными, арамидными и другими волокнами формуют многослойные изделия.
Известен также способ получения и композитный материал, содержащий эпоксидную смолу и наполнители - стеклянные микросферы и двуокись титана (Патент РФ №2307432).
Недостатками известных способов и композитных материалов являются низкие показатели физико-механических характеристик, в частности, таких как ударопрочность при низких или высоких температурах, прочность при изгибе и растяжении и пр.
Задачей данного изобретения является получение материала низкой плотности формуемого литьем, обладающего низкой плотностью, повышенной прочностью при сжатии и термической стойкостью.
Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении термопрочности литьевого материала с наполнителем из полых микросфер, обеспечивающего прочность на сжатие не менее 50 МПа, прочность при изгибе не менее 25 МПа, прочность при растяжении не менее 25 МПа, ударную вязкость по Изоду без надреза не менее 3,5 кДж/м2; при температуре стеклования не менее 150°C и плотности материала 0,8-0,6 г/см3. При этом литьевая смесь обладает высокой текучестью и не расслаивается в процессе отверждения.
Технический результат достигается тем, что композиционный материал представляет собой метатезис-радикально сшитую смесь олигоциклопентадиенов, метакрилатов и стеклянных микросфер, которые могут быть полыми. Технический результат достигается также способом, включающим смешивание дициклопентадиена с по крайней мере одним из органосиланов, выбранным из группы (в круглых скобках после каждого наименования указано сокращенное обозначение соединения): винилтриметоксисилан (Si1), винил-трис(2-метоксиэтокси)силан (Si2), 3-метакрилоксипропилтриметоксисилан (Si3), 5-триалкоксисилил-2-норборнен (Si4), по крайней мере с одним из полимерных стабилизаторов, выбранным из группы: тетракис [метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (1010), 2,6-ди-трет-бутил-4-(диметиламино)фенол (703), 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол (330), трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат (14), 3,5-ди-трет-бутил-4-гидроксианизол (354), 4,4′-метиленбис(2,6-ди-трет-бутилфенол) (702), дифениламин (ДФА), пара-ди-трет-бутилфенилендиамин (5057), N,N′-дифенил-1,4-фенилендиамин (ДППД), трис(2,4-ди-трет-бутилфенил)фосфит (168), трис(нонилфенил)фосфит (ТНРР), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (770), бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат (123), бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат (292), 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол (327), 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол (234) и стеклянными микросферами, полученную смесь нагревают в инертной атмосфере до температуры 50-220°C, выдерживают при данной температуре в течение 15-360 мин, а затем охлаждают до комнатной температуры, после чего в смесь вносят по крайней мере один из радикальных инициаторов, выбранный из группы: ди-трет-бутилпероксид (Б), дикумилпероксид (БЦ-ФФ), 2,3-диметил-2,3-дифенил-бутан (30), трифенилметан (ТФМ) и катализатор, в качестве которого используют соединение общей формулы
Figure 00000001
где заместитель L выбран из группы
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
предварительно растворенный в по крайней мере одном из метакрилатов, выбранных из группы: глицидилметакрилат (ГМА), этилендиметакрилат (ДМЭГ), диэтиленгликольдиметакрилат (ДГДМА), бутиленгликольдиметакрилат (БГДМА), 2-гидроксиэтилметакрилат (ГЭМА), 2-гидроксипропилметакрилат (ГПМА), трициклодекандиметанолдиметакрилат (ТЦДДМА), этоксилированный бисфенол А диметакрилат (E2BADMA), триметилолпропантриметакрилат (ТМПТМА), причем компоненты смеси находятся в следующем соотношении, мас.%:
- органосиланы 0,2-3;
- полимерные стабилизаторы 0,1-3;
- радикальные инициаторы 0,1-4;
- метакрилаты 0,3-25;
- катализатор 0,001-0,02;
- дициклопентадиен 1-60;
- стеклянные микросферы остальное.
Полученную смесь нагревают до температуры 50-340°C и выдерживают при данной температуре в течение 1-360 мин
Указанные отличительные признаки существенны.
Композитный материал из метатезис-радикально сшитой смеси олигоциклопентадиенов, метакрилатов и стеклянных микросфер, полученный с использованием одновременно катализаторов метатезиса и радикальных инициаторов имеет существенно большую температуру стеклования, которая находится в интервале 190-340°C, и лучшие механические характеристики по сравнению с полидициклопентадиеном или полиэфирными и эпоксидными смолами, имеющими температуру стеклования не выше 130°C. Для ряда образцов температура стеклования превышает 350°C и не может быть определена, поскольку приближается к температуре начала деструкции полимера, прочность при сжатии возрастает до 150 МПа и более. Уменьшается значение коэффициента линейного термического расширения. Крайне важным свойством является стойкость к органическим растворителям и для некоторых образцов полиолигоциклопентадиена с метакрилатами и микросферами процент набухания в толуоле не превышает 3% после выдержки в течение месяца. По сравнению с полидициклопентадиеном, предлагаемый материал обладает большей прочностью при растяжении и сжатии при низких и высоких температурах, что особенно важно для конструкционных материалов.
Получение композиционного материала осуществляют следующим образом.
Смешивают дициклопентадиен с органосиланами, полимерными стабилизаторами и стеклянными микросферами. Смесь нагревают в инертной атмосфере до температуры 50-220°C, выдерживают при данной температуре в течение 15-360 мин, а затем охлаждают до комнатной температуры. В результате образуется текучая композиция олигоциклопентадиенов и частично соединенных с ними через образованные химические связи стеклянных микросфер. В данную композицию вносят радикальные инициаторы и катализатор, предварительно растворенный в метакрилате. Компоненты смеси находятся в следующем соотношении, мас.%:
- органосиланы 0,2-3;
- полимерные стабилизаторы 0,1-3;
- радикальные инициаторы 0,1-4;
- метакрилаты 0,3-25;
- катализатор 0,001-0,02;
- дициклопентадиен 1-60;
- стеклянные микросферы остальное.
Окончательную смесь нагревают до температуры 50-340°C и выдерживают при данной температуре в течение 1-360 мин, после чего охлаждают до комнатной температуры. Происходит метатезисная (МП) и радикальная (РП) сшивка смеси олигоциклопентадиенов с метакриловыми эфирами и поверхностью микросфер через органосилан по следующей схеме:
Figure 00000008
В результате получают композиционный материал, характеризуемый следующими показателями:
Температура стеклования (Tg)
Figure 00000009
А более 250°C
Figure 00000009
Б от 201 до 250°C
Figure 00000009
Вот 170 до 200°C
Прочность при сжатии, МПа
Figure 00000009
А более 120
Figure 00000009
Б от 80 до 119
Figure 00000009
В от 50 до 79
Прочность при растяжении, МПа
Figure 00000009
А более 50
Figure 00000009
Б от 35 до 50
Figure 00000009
В от 25 до 35
Прочность при изгибе, МПа
Figure 00000009
А более 50
Figure 00000009
Б от 35 до 50
Figure 00000009
В от 25 до 35
Ударная вязкость по Изоду без надреза, кДж/м2
Figure 00000009
А более 12
Figure 00000009
Б от 6 до 12
Figure 00000009
В от 3,5 до 6
Способ иллюстрируют следующие примеры.
Пример 1
В отдельной емкости готовят смесь, содержащую дициклопентадиен (50,51 мас.%), полимерные стабилизаторы 1010 (0,45 мас.%), 168 (0,45 мас.%), 770 (0,45 мас.%), и органосилан Si3 (1,00 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (45,098 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах ДМЭГ (0,50 мас.%) и ГМА (0,44 мас.%) растворяют катализатор N9a (0,002 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (0,1 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 260°C и выдерживают при данной температуре в течение 40 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (Б).
Пример 2
В отдельной емкости готовят смесь, содержащую дициклопентадиен (54,4 мас.%), полимерные стабилизаторы 1010 (0,50 мас.%), 168 (0,50 мас.%), 292 (0,20 мас.%), и органосиланы Si3 (1,00 мас.%), Si4 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (38,391 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах E2BADMA (1,00 мас.%) и ТМПТМА (1,50 мас.%) растворяют катализатор N18a (0,009 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (1,0 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 10°C. Данную смесь перемешивают 5 мин, после чего полученную полимерную матрицу нагревают до температуры 265°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (А), ударная вязкость (А).
Пример 3
В отдельной емкости готовят смесь, содержащую дициклопентадиен (50,6 мас.%), полимерные стабилизаторы 702 (0,37 мас.%), 168 (0,73 мас.%), 770 (0,37 мас.%), и органосилан Si2 (1,00 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (45,12 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 170°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ДМЭГ (0,30 мас.%) растворяют катализатор N4b (0,01 мас.%) и вносят полученный раствор и радикальный инициатор Б (1,5 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 250°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (А), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (Б).
Пример 4
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 702 (0,40 мас.%), 770 (0,40 мас.%), и органосилан Si2 (1,00 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки МС-Б1 (32,595 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилате ДМЭГ (3,60 мас.%) растворяют катализатор N10a (0,005 мас.%) и вносят полученный раствор и радикальные инициаторы Б (1,0 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 170°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (В), прочность при растяжении (В), ударная вязкость (В).
Пример 5
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 14 (0,20 мас.%), 168 (0,50 мас.%), 770 (0,50 мас.%), и органосиланы Si3 (0,50 мас.%), Si1 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки К25 (33,988 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 180°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ТМПТМА (1,8 мас.%) растворяют катализатор N1b (0,012 мас.%) и вносят полученный раствор и радикальные инициаторы Б (1,0 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 150°C и выдерживают при данной температуре в течение 20 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (В).
Пример 6
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 703 (0,10 мас.%), 770 (0,10 мас.%), и органосиланы Si2 (0,10 мас.%), Si3 (0,10 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки К25 (27,091 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилатах ГЭМА (8,00 мас.%), ГМА (0,50 мас.%) растворяют катализатор N1c (0,009 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (1,5 мас.%), 30 (2,5 мас.%) в композицию олигоциклопентадиенов и микросфер при 30°C. Данную смесь перемешивают 5 мин, после чего полученную полимерную матрицу нагревают до температуры 340°C и выдерживают при данной температуре в течение 10 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (Б), прочность при изгибе (В), прочность при растяжении (В), ударная вязкость (В).
Пример 7
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (0,30 мас.%), ТНРР (0,50 мас.%), 770 (0,40 мас.%), и органосиланы Si4 (0,50 мас.%), Si3 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки К25 (35,791 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах ГЭМА (0,50 мас.%) и ГМА (0,50 мас.%) растворяют катализатор N20a (0,009 мас.%) и вносят полученный раствор и радикальный инициатор Б (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 20°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 300°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (Б), прочность при изгибе (В), прочность при растяжении (В), ударная вязкость (В).
Пример 8
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (0,20 мас.%), 168 (0,50 мас.%), и органосиланы Si4 (0,50 мас.%), Si2 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (36,392 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 190°C, выдерживают при заданной температуре в течение 50 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ДМЭГ (0,70 мас.%) растворяют катализатор N13a (0,008 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (0,5 мас.%), 30 (0,7 мас.%) в композицию олигоциклопентадиенов и микросфер при 50°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (А), ударная вязкость (А).
Пример 9
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 702 (0,35 мас.%), 168 (0,20 мас.%), 770 (0,50 мас.%), и органосилан Si3 (0,20 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки К25 (34,238 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилатах ТЦДЦМА (2,00 мас.%) и ТМПТМА (0,50 мас.%) растворяют катализатор N7a (0,012 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (2,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 45°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 120 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (Б), прочность при изгибе (В), прочность при растяжении (В), ударная вязкость (В).
Пример 10
В отдельной емкости готовят смесь, содержащую дициклопентадиен (1,0 мас.%), полимерные стабилизаторы 330 (0,45 мас.%), 168 (0,45 мас.%), 770 (0,45 мас.%), и органосилан Si4 (2,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (69,141 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах ТЦДДМА (5,00 мас.%) и E2BADMA (20,0 мас.%) растворяют катализатор N4a (0,009 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 0°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (В).
Пример 11
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (1,00 мас.%), ДППД (0,50 мас.%), и органосиланы Si3 (1,00 мас.%), Si4 (2,00 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки МС-В (30,24 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах ДМЭГ (0,90 мас.%) и БГДМА (1,35 мас.%) растворяют катализатор N (0,010 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (2,0 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 40 мин, после чего полученную полимерную матрицу нагревают до температуры 270°C и выдерживают при данной температуре в течение 360 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (Б), прочность при изгибе (В), прочность при растяжении (В), ударная вязкость (В).
Пример 12
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (0,36 мас.%), ТНРР (0,72 мас.%), 123 (0,45 мас.%), и органосиланы Si1 (0,75 мас.%), Si2 (0,75 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки МС-В (33,913 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ТМПТМА (0,35 мас.%) растворяют катализатор N2a (0,007 мас.%) и вносят полученный раствор и радикальные инициаторы Б (2,0 мас.%), 30 (0,7 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 20 мин, после чего полученную полимерную матрицу нагревают до температуры 270°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (Б), прочность при изгибе (В), прочность при растяжении (В), ударная вязкость (В).
Пример 13
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (0,40 мас.%), 168 (0,80 мас.%), 770 (0,40 мас.%), и органосилан Si3 (1,00 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (34,89 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 155°C, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ТМПТМА (1,50 мас.%) растворяют катализатор N14a (0,010 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 30°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (Б), ударная вязкость (Б).
Пример 14
В отдельной емкости готовят смесь, содержащую дициклопентадиен (57,31 мас.%), полимерные стабилизаторы 330 (0,10 мас.%), ТНРР (0,10 мас.%), 292 (0,40 мас.%), и органосилан Si1 (1,00 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки МС-Б1 (38,61 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ТМПТМА (1,36 мас.%) растворяют катализатор N3a (0,020 мас.%) и вносят полученный раствор и радикальные инициаторы Б (0,1 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 30°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 260°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (Б), прочность при изгибе (В), прочность при растяжении (В), ударная вязкость (В).
Пример 15
В отдельной емкости готовят смесь, содержащую дициклопентадиен (50,72 мас.%), полимерные стабилизаторы 354 (0,45 мас.%), 770 (0,45 мас.%), и органосилан Si3 (0,45 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (45,22 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 155°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилатах ДМЭГ (0,20 мас.%) и ТМПТМА (1,50 мас.%) растворяют катализатор N2b (0,010 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (А), ударная вязкость (А).
Пример 16
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (0,45 мас.%), 168 (0,45 мас.%), 292 (0,50 мас.%), и органосиланы Si1 (0,45 мас.%), Si4 (0,45 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки МС-А9 (31,199 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате E2BADMA (5,50 мас.%) растворяют катализатор N11a (0,001 мас.%) и вносят полученный раствор и радикальные инициаторы Б (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 15°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 265°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (А), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (В).
Пример 17
В отдельной емкости готовят смесь, содержащую дициклопентадиен (57,82 мас.%), полимерные стабилизаторы 702 (0,40 мас.%), 327 (0,80 мас.%), и органосиланы Si2 (0,80 мас.%), Si4 (0,80 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (25,774 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах БГДМА (12,60 мас.%) и ГПМА (0,50 мас.%) растворяют катализатор N3b (0,006 мас.%) и вносят полученный раствор и радикальный инициатор Б (0,5 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 170°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (А), ударная вязкость (А).
Пример 18
В отдельной емкости готовят смесь, содержащую дициклопентадиен (57,47 мас.%), полимерные стабилизаторы 1010 (0,02 мас.%), 168 (0,04 мас.%), 770 (0,04 мас.%), и органосиланы Si4 (0,30 мас.%), Si2 (0,70 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (40,558 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 165°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ДМЭГ (0,36 мас.%) растворяют катализатор N5 (0,012 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (0,5 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 5 мин, после чего полученную полимерную матрицу нагревают до температуры 220°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (А), ударная вязкость (А).
Пример 19
В отдельной емкости готовят смесь, содержащую дициклопентадиен (55,16 мас.%), полимерные стабилизаторы 168 (0,50 мас.%), 168 (0,50 мас.%), 123 (0,50 мас.%), и органосилан Si1 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (38,933% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах БГДМА (0,90 мас.%) и АлМАК (0,50 мас.%) растворяют катализатор N5a (0,007 мас.%) и вносят полученный раствор и радикальные инициаторы Б (0,5 мас.%), 30 (2,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 10°C. Данную смесь перемешивают 2 мин, после чего полученную полимерную матрицу нагревают до температуры 270°C и выдерживают при данной температуре в течение 45 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (А), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (Б).
Пример 20
В отдельной емкости готовят смесь, содержащую дициклопентадиен (51,35 мас.%), полимерные стабилизаторы ДФА (0,40 мас.%), 168 (0,20 мас.%), 234 (0,45 мас.%), и органосилан Si4 (0,20 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (45,788 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 220°C, выдерживают при заданной температуре в течение 15 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ДМЭГ (0,60 мас.%) растворяют катализатор N1 (0,012 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 5 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (В), ударная вязкость (В).
Пример 21
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 702 (0,20 мас.%), 168 (0,50 мас.%), и органосиланы Si3 (0,50 мас.%), Si4 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (34,939 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ДМЭГ (1,25 мас.%) растворяют катализатор N15a (0,011 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (0,1 мас.%), ТФМ (2,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 30°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 250°C и выдерживают при данной температуре в течение 45 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (Б), ударная вязкость (Б).
Пример 22
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 330 (0,40 мас.%), 168 (0,40 мас.%), 770 (0,40 мас.%), и органосиланы Si1 (0,40 мас.%), Si2 (0,40 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки К25 (34,488% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 150°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах ДМЭГ (1,00 мас.%) и E2BADMA (0,50 мас.%) растворяют катализатор N4 (0,012 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (1,0 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 30°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 275°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (В), ударная вязкость (Б).
Пример 23
В отдельной емкости готовят смесь, содержащую дициклопентадиен (48,71 мас.%), полимерные стабилизаторы 1010 (0,40 мас.%), 168 (0,50 мас.%), 770 (0,50 мас.%), и органосиланы Si1 (0,50 мас.%), Si3 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (34,38 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 175°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилатах ДГДМА (11,25 мас.%) и E2BADMA (2,25 мас.%) растворяют катализатор N2 (0,010 мас.%) и вносят полученный раствор и радикальный инициатор Б (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 5°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 60 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (А), ударная вязкость (А).
Пример 24
В отдельной емкости готовят смесь, содержащую дициклопентадиен (56,69 мас.%), полимерные стабилизаторы 5057 (0,20 мас.%), ТНРР (0,50 мас.%), и органосилан Si1 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (40,007% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 360 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилате E2BADMA (2,0 мас.%) растворяют катализатор N5b (0,003 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (0,1 мас.%) в композицию олигоциклопентадиенов и микросфер при 20°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 180°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (В).
Пример 25
В отдельной емкости готовят смесь, содержащую дициклопентадиен (50,58 мас.%), полимерные стабилизаторы 1010 (0,50 мас.%), 168 (0,50 мас.%), и органосилан Si2 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (45,108 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилате БГДМА (0,80 мас.%) растворяют катализатор N6a (0,012 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (2,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 30°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 170°C и выдерживают при данной температуре в течение 240 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (В).
Пример 26
В отдельной емкости готовят смесь, содержащую дициклопентадиен (56,31 мас.%), полимерные стабилизаторы 1010 (0,50 мас.%), 168 (0,50 мас.%), и органосилан Si4 (1,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM30K (39,729% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилате ДМЭГ (0,45 мас.%) растворяют катализатор N8a (0,011 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 35°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 150°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (Б).
Пример 27
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (0,37 мас.%), 327 (0,10 мас.%), 770 (0,47 мас.%), и органосиланы Si3 (0,10 мас.%), Si4 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (34,102% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате ТЦДДМА (1,35 мас.%) растворяют катализатор N12a (0,008 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (2,0 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 30°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 310°C и выдерживают при данной температуре в течение 5 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (А), прочность при изгибе (А), прочность при растяжении (Б), ударная вязкость (Б).
Пример 28
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 1010 (0,50 мас.%), 168 (0,50 мас.%), и органосилан Si2 (0,50 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки МС-Б1 (33,085 мас.%). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 170°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилате ДМЭГ (4,40 мас.%) растворяют катализатор N16a (0,015 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 1 мин, после чего полученную полимерную матрицу нагревают до температуры 255°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (А).
Пример 29
В отдельной емкости готовят смесь, содержащую дициклопентадиен (57,38 мас.%), полимерные стабилизаторы 702 (0,30 мас.%), 168 (0,40 мас.%), 123 (0,40 мас.%), и органосиланы Si3 (0,40 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (39,313% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 155°C, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате БГДМА (0,80 мас.%) растворяют катализатор N19a (0,007 мас.%) и вносят полученный раствор и радикальный инициатор Б (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 1 мин, после чего полученную полимерную матрицу нагревают до температуры 260°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (Б), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (Б), ударная вязкость (Б).
Пример 30
В отдельной емкости готовят смесь, содержащую дициклопентадиен (57,03 мас.%), полимерные стабилизаторы 330 (0,40 мас.%), 168 (0,80 мас.%), и органосилан Si1 (0,80 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (39,066% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 200°C, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилатах ГМА (0,40 мас.%) и ГПМА (0,50 мас.%) растворяют катализатор N1a (0,004 мас.%) и вносят полученный раствор и радикальный инициатор БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 25°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 200°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (В), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (В), ударная вязкость (В).
Пример 31
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 702 (0,40 мас.%), 168 (0,40 мас.%), 770 (0,20 мас.%), и органосилан Si1 (0,40 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки К25 (36,492% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 160°C, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами.
В метакрилатах ДМЭГ (0,60 мас.%) и ГМА (0,50 мас.%) растворяют катализатор N17a (0,008 мас.%) и вносят полученный раствор и радикальные инициаторы БЦ-ФФ (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 15°C. Данную смесь перемешивают 5 мин, после чего полученную полимерную матрицу нагревают до температуры 280°C и выдерживают при данной температуре в течение 1 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (В), ударная вязкость (В).
Пример 32
В отдельной емкости готовят смесь, содержащую дициклопентадиен (60 мас.%), полимерные стабилизаторы 702 (1,50 мас.%), 168 (1,00 мас.%) и органосиланы Si1 (1,00 мас.%), Si2 (1,00 мас.%). Смесь перемешивают и в процессе перемешивания вносят в нее полые стеклянные микросферы марки iM16K (33,043% об.). Полученную смесь нагревают в инертной атмосфере аргона в автоклаве до 155°C, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. Получают текучую композицию олигоциклопентадиенов с частично соединенными с ними микросферами. В метакрилате БГДМА (0,45 мас.%) растворяют катализатор N3 (0,007 мас.%) и вносят полученный раствор и радикальные инициаторы Б (1,0 мас.%), 30 (1,0 мас.%) в композицию олигоциклопентадиенов и микросфер при 10°C. Данную смесь перемешивают 10 мин, после чего полученную полимерную матрицу нагревают до температуры 270°C и выдерживают при данной температуре в течение 30 мин, после чего охлаждают до комнатной температуры. Получают композиционный материал со следующими свойствами Tg (А), прочность при сжатии (Б), прочность при изгибе (Б), прочность при растяжении (В), ударная вязкость (В).

Claims (3)

1. Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер, включающий смешивание дициклопентадиена по крайней мере с одним из органосиланов, выбранных из группы: винилтриметоксисилан, винил-трис(2-метоксиэтокси)силан, 3-метакрилоксипропилтриметоксисилан, 3-аминопропилтриэтоксисилан, 3-тиопропилтриалкоксисилан, 5-триалкоксисилил-2-норборнен, по крайней мере с одним из полимерных стабилизаторов, выбранных из группы: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан, 2,6-ди-трет-бутил-4-(диметиламино)фенол, 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол, трис(4-трет-бутил-3-гидрокси-2,6-диметилбензил)изоцианурат, 3,5-ди-трет-бутил-4-гидроксианизол, 4,4′-метиленбис(2,6-ди-трет-бутилфенол), дифениламин, пара-ди-трет-бутилфенилендиамин, N,N′-дифенил-1,4-фенилендиамин, трис(2,4-ди-трет-бутилфенил)фосфит, трис(нонилфенил)фосфит, бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат, бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат, 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол, 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол и стеклянными микросферами, полученную смесь нагревают в инертной атмосфере до температуры 50-220°C, выдерживают при данной температуре в течение 15-360 мин, а затем охлаждают до комнатной температуры, после чего в смесь вносят по крайней мере один из радикальных инициаторов, выбранных из группы: ди-трет-бутилпероксид, дикумилпероксид, 2,3-диметил-2,3-дифенил-бутан, трифенилметан и катализатор, в качестве которого используют соединение общей формулы
Figure 00000010
где заместитель L выбран из группы
Figure 00000011

Figure 00000012

Figure 00000013

Figure 00000014

Figure 00000015

Figure 00000016

предварительно растворенный в по крайней мере одном из метакрилатов, выбранных из группы: глицидилметакрилат, этилендиметакрилат, диэтиленгликольдиметакрилат, бутиленгликольдиметакрилат, 2-гидроксиэтилметакрилат, 2-гидроксипропилметакрилат, трициклодекандиметанолдиметакрилат, этоксилированный бисфенол А, диметакрилат, триметилолпропантриметакрилат, причем компоненты смеси находятся в следующем соотношении, мас. %:
- органосиланы 0,2-3;
- полимерные стабилизаторы 0,1-3;
- радикальные инициаторы 0,1-4;
- метакрилаты 0,3-25;
- катализатор 0,001-0,02;
- дициклопентадиен 1-60;
- стеклянные микросферы остальное,
полученную смесь нагревают до температуры 50-340°C и выдерживают при данной температуре в течение 1-360 мин.
2. Композиционный материал на основе полиолигоциклопентадиена и стеклянных микросфер, характеризующийся тем, что он получен способом по п. 1.
3. Композиционный материал по п. 2, отличающийся тем, что стеклянные микросферы выполнены полыми.
.
RU2015110944/04A 2015-03-27 2015-03-27 Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал RU2596192C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015110944/04A RU2596192C1 (ru) 2015-03-27 2015-03-27 Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015110944/04A RU2596192C1 (ru) 2015-03-27 2015-03-27 Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал

Publications (1)

Publication Number Publication Date
RU2596192C1 true RU2596192C1 (ru) 2016-08-27

Family

ID=56892082

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015110944/04A RU2596192C1 (ru) 2015-03-27 2015-03-27 Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал

Country Status (1)

Country Link
RU (1) RU2596192C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875730A (zh) * 2020-08-17 2020-11-03 台州中浮新材料科技股份有限公司 一种高性能固体浮力材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009507A1 (en) * 2002-07-23 2004-01-29 Ppg Industries Ohio, Inc. Glass fiber sizing compositions, sized glass fibers, and polyolefin composites
RU2515248C1 (ru) * 2013-05-15 2014-05-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ получения изделий из полидициклопентадиена центробежным формованием
RU2527278C1 (ru) * 2013-03-28 2014-08-27 Открытое акционерное общество "Нефтяная компания "Роснефть" Композиционный материал на основе полидициклопентадиена, состав для получения матрицы и способ получения композиционного материала
RU2544549C1 (ru) * 2014-01-29 2015-03-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Композиция для приготовления полимерной матрицы, содержащей полидициклопентадиен для получения композиционного материала, композиционный материал на основе полидициклопентадиена и способ его получения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009507A1 (en) * 2002-07-23 2004-01-29 Ppg Industries Ohio, Inc. Glass fiber sizing compositions, sized glass fibers, and polyolefin composites
RU2527278C1 (ru) * 2013-03-28 2014-08-27 Открытое акционерное общество "Нефтяная компания "Роснефть" Композиционный материал на основе полидициклопентадиена, состав для получения матрицы и способ получения композиционного материала
RU2515248C1 (ru) * 2013-05-15 2014-05-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ получения изделий из полидициклопентадиена центробежным формованием
RU2544549C1 (ru) * 2014-01-29 2015-03-20 Открытое акционерное общество "Нефтяная компания "Роснефть" Композиция для приготовления полимерной матрицы, содержащей полидициклопентадиен для получения композиционного материала, композиционный материал на основе полидициклопентадиена и способ его получения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875730A (zh) * 2020-08-17 2020-11-03 台州中浮新材料科技股份有限公司 一种高性能固体浮力材料及其制备方法

Similar Documents

Publication Publication Date Title
US9458299B1 (en) Polyhemiaminal and polyhexahydrotriazine materials from 1,4 conjugate addition reactions
KR102078425B1 (ko) 열가소성 (메트) 아크릴 수지의 제자리 중합을 통한 복합 물질 및 그 용도
JP6539590B2 (ja) 繊維性基材を含浸するための液体(メタ)アクリルシロップ、繊維性基材を含浸するための方法、このプレ含浸基材の重合の後に得られた複合材料
JP2018162461A (ja) 繊維状基材の含浸方法、含浸方法用の液体状(メタ)アクリルシロップ剤、その重合方法、及びその得られた構造化物品
KR102495651B1 (ko) 액체 (메트)아크릴 시럽, 상기 시럽으로의 섬유 기재의 함침 방법 및 상기 함침 시럽의 중합 후 제조된 복합 재료
RU2009134483A (ru) Способ получения композиционных материалов, содержащих эпоксидную смолу
ES2804100T3 (es) Procedimiento de impregnación para un sustrato fibroso, un jarabe de monómero líquido para el procedimiento de impregnación, su método de polimerización y artículo estructurado obtenido del mismo
JP2016512269A (ja) 繊維性基材を含浸するための液体(メタ)アクリルシロップ及びこれらの製造方法、繊維性基材を含浸するための方法、及びこのプレ含浸基材の重合の後に製造された複合材料
KR102559703B1 (ko) 2 종의 개시제를 포함하는 액체 조성물, 이의 중합 방법, 용도 및 조성물의 중합 후에 수득되는 재료 또는 조성물
KR102419947B1 (ko) 섬유 재료, 다단 중합체 및 (메트)아크릴 중합체를 포함하는 조성물, 이의 제조 방법, 및 이의 용도
KR20210076001A (ko) 복합재용 (메트)아크릴 중합체 조성물, 이의 제조 방법 및 용도
KR20170100577A (ko) 액체 (메트)아크릴 시럽, 상기 시럽으로 섬유질 기재를 함침시키는 방법, 및 상기 함침 시럽의 중합 후 수득된 복합 재료
RU2596192C1 (ru) Способ получения композиционного материала на основе полиолигоциклопентадиена и стеклянных микросфер и композиционный материал
EP3867290B1 (en) Composition for (meth) acrylic polymeric compositions and composites, its method of preparation and use
CN103298854A (zh) 热固性树脂组合物
KR102140039B1 (ko) 에폭시수지 변성 비닐에스테르 아크릴레이트 수지 제조용 조성물 및 이를 이용한 프리프레그
FR2804686A1 (fr) Preforme souple expansible et durcissable contenant des resines insaturees, pour le tubage d'un puits ou d'une canalisation
RU2527278C1 (ru) Композиционный материал на основе полидициклопентадиена, состав для получения матрицы и способ получения композиционного материала
FR3064267A1 (fr) Compose reticulant, son procede de synthese, composition liquide comprenant ledit compose reticulant, son procede de polymerisation, et materiau obtenu apres polymerisation de ladite composition
WO2019243469A1 (en) Liquid composition comprising three initiators, its process of polymerization, use and material or composition obtained following polymerization of composition
RU2579118C1 (ru) Способ получения композиционного материала на основе полиолигоциклопентадиена и волластонита и композиционный материал
RU2527453C1 (ru) Полимерный материал для проппанта и способ его получения
JP2007154088A5 (ru)
FR3016641A1 (ru)
WO2020109723A1 (fr) Collage d'un monobrin en composite verre-résine à une matrice thermoplastique