RU2523482C2 - Устройство для равномерного разделения потоков текучей среды в химических аппаратах на два или несколько отдельных потоков - Google Patents

Устройство для равномерного разделения потоков текучей среды в химических аппаратах на два или несколько отдельных потоков Download PDF

Info

Publication number
RU2523482C2
RU2523482C2 RU2009132109/05A RU2009132109A RU2523482C2 RU 2523482 C2 RU2523482 C2 RU 2523482C2 RU 2009132109/05 A RU2009132109/05 A RU 2009132109/05A RU 2009132109 A RU2009132109 A RU 2009132109A RU 2523482 C2 RU2523482 C2 RU 2523482C2
Authority
RU
Russia
Prior art keywords
holes
plate
flows
hole
liquid
Prior art date
Application number
RU2009132109/05A
Other languages
English (en)
Other versions
RU2009132109A (ru
Inventor
Бертхольд КЕГГЕНХОФФ
Джеффри БОЛТОН
Фридхельм ШТЕФФЕНС
Марк ЗЕЕКАМП
Герхард РУФФЕРТ
Юрген КЕРН
Томас РУНОВСКИ
Original Assignee
Байер Матириальсайенс Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Байер Матириальсайенс Аг filed Critical Байер Матириальсайенс Аг
Publication of RU2009132109A publication Critical patent/RU2009132109A/ru
Application granted granted Critical
Publication of RU2523482C2 publication Critical patent/RU2523482C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/06Influencing flow of fluids in pipes or conduits by influencing the boundary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/44Fluidisation grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/008Liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/082Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed arrangements of devices for distributing fluidising gas, e.g. grids, nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00707Fouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85938Non-valved flow dividers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Изобретение относится к устройству для равномерного разделения потоков текучей среды на потоки в химических аппаратах. Устройство для равномерного разделения жидких потоков текучей среды, в которых, по меньшей мере, одно вещество растворено и/или присутствует в виде суспензии в химических аппаратах, на два или несколько отдельных потоков включает, по меньшей мере, одну пластину с двумя или несколькими отверстиями, которые скруглены или снабжены фаской на входной стороне частичных потоков. Отверстия имеют форму дырок или щелей. Технический результат: уменьшение склонности к образованию отложений. 5 з.п. ф-лы, 6 ил., 2 пр.

Description

Изобретение относится к химическому приборостроению, в частности устройству для равномерного разделения потоков текучей среды в химических аппаратах на два или более отдельных потоков, которые имеют по сравнению с существующими устройствами уменьшенную склонность к образованию отложений.
В химической технике в применяемых химических реакторах часто используются устройства, которые внутри химических реакторов должны обеспечивать равномерное разделение потоков текучей среды. Эти устройства часто также еще называются внутренними устройствами.
Специальную форму осуществления таких внутренних устройств представляют так называемые тарелки, среди которых так называемые распределительные тарелки представляют другой особый случай. В частности, в химических аппаратах, таких как колонны или теплообменники такие распределительные тарелки часто находят свое применение.
Обычно такие распределительные тарелки выполнены так, что горизонтальная плоская поверхность (тарелки) снабжается проемами, через которые соответствующий поток текучей среды поступает в остальное пространство химического аппарата. При проходе через проемы в местах геометрического разрыва (например, угол 90° у отверстий или проемов в виде высверленных отверстий) обычно на распределительной тарелке возникают зоны, которые характеризуются замедленной скоростью протекания среды или рециркуляционным потоком.
Когда текучая среда, которая поступает через отверстия или проемы в химические аппараты, содержит растворенные вещества или суспензии частиц, то обычно в зонах с замедленной скоростью движения и рециркуляционного потока возникают отложения этих веществ и/или частиц. Этот феномен в общем известен и, к примеру, описан в H.Meuller-Steinhagen "Heat-Exchanger Fouling-Mitigation and Cleaning Technologies" Publico Publications, pp.8-9, Essen 2000. ISBN 3-934736-00-9.
В IN-A-192183 раскрыто устройство, которое должно сделать возможным равномерное распределение жидкостей в колоннах. Это устройство отличается главным распределителем (10) и присоединенным к нему вторичным распределителем (11), которые опять же соединены с помощью труб (2) с собственно распределяющими распределительными тарелками (4). Собственное равномерное распределение происходит благодаря капанию с распределительных тарелок (4) вдоль направляющих стенок (5), которые структурированы и в смысле узких щелей и расположены вокруг распределительных тарелок (4). Точная геометрическая форма имеющихся в устройстве проемов не раскрывается. При этом использованные позиции относятся к использованным в IN-A-192183 позициям.
Устройство имеет недостаток, так как тонкая щель между распределительной тарелкой (4) и направляющей стенкой (5) образует зону, в которой поток жидкости сильно замедляется и в некоторых случаях возникает рециркуляция. Поэтому при применении такого устройства следует исходить из того, что могут возникать отложения веществ, растворенных/находящихся в виде суспензии в жидкости. Далее устройство содержит много мест геометрического разрыва, как то кромки распределительной тарелки (4), а также места сверления выходных отверстий (12), на которых весьма вероятны отложения, исходя из названных выше соображений.
В заявке на патент Германии DE-A-2752391 раскрыто устройство для равномерного распределения жидкостей, которое состоит из параллельных желобов с гребнями водослива (3, 6), которые имеют V-образные выпускные отверстия для жидкости. Количество распределенной жидкости определяется величиной и количеством V-образных выпускных отверстий для жидкости. Точная геометрическая форма V-образных выпускных отверстий для жидкостей, а также, в частности, угол заострения не раскрываются. При этом использованные позиции относятся к использованным в заявке на патент Германии DE-A-2752391 позициям.
Устройство имеет большое количество мест геометрического разрыва. Так, к примеру, как желобок V-образных выпускных отверстий для жидкости, так и гребни водослива отличаются такими геометрическими разрывами. Отсюда, таким образом, следует исходить из того, что, в частности, в таких местах будет иметь место замедление скоростей жидкости и/или рециркуляционные потоки и в результате этого образовываться отложения, когда подлежащая распределению жидкость будет содержать растворенные/присутствующие в виде суспензии вещества.
Отталкиваясь от уровня техники и подлежащих там решению проблемы в части распределения жидкостей или потоков жидкостей, содержащих растворенные и присутствующие в виде суспензий вещества, задачей изобретения является создание устройства, которое позволяет равномерно распределить потоки среды и, в частности, потоки жидкостей с растворенными и/или присутствующими в виде суспензий веществами в химических аппаратах, не способствуя при этом образованию отложений растворенных и/или присутствующих в виде суспензий веществ на устройстве.
Эта задача решается с помощью предложенного согласно изобретению устройства для равномерного разделения потоков текучей среды в химических аппаратах на два или несколько потоков, которое включает, по меньшей мере, пластину (2) с двумя или несколькими отверстиями (3), причем отверстия (3) на, по меньшей мере, одной стороне пластины скруглены или снабжены фасками.
В связи с настоящим изобретением под текучей средой понимаются все жидкости и/газы в надкритическом, докритическом или критическом состоянии. Соответствующее состояние жидкости и/или газа определяется условиями перед и/или после прохода потока текучей среды через предложенное согласно изобретению устройство. Для изобретения состояние не имеет значения. Также возможно, что состояние среды изменяется при проходе через предложенное согласно изобретению устройство.
Предпочтительно в случае текучей среды речь идет о жидкостях. Особенно предпочтительно речь идет о жидкостях, в которых растворено, по меньшей мере, одно вещество или существует в виде суспензии.
Жидкости, в которых растворено и/или присутствует в виде суспензии, по меньшей мере, одно вещество, в связи с предложенным согласно изобретению устройством особенно предпочтительны, так как здесь особенно проявляется уменьшенная склонность к образованию отложений.
В связи с настоящим изобретением под пластинами понимаются отформованные плоские тела толщиной D. Геометрия пластины в плоскости несущественна для настоящего изобретения. Но обычно речь идет об имеющих форму круга пластинах, так как они должны устанавливаться горизонтально в колоннах или подобных известных специалисту имеющих форму цилиндра химических аппаратах. Если пространственная протяженность пластины в плоскости велика, то она может усиливаться на стороне, их которой выходят частичные потоки среды, с помощью подкосов или применяться другие усиливающие мероприятия.
В смысле изобретения к химическим аппаратам относятся все аппараты, в которых могут происходить химические реакции или процессы транспортировки вещества или тепла, как, например, реакторы, в частности, кожухотрубные реакторы, или теплообменник, в частности, кожухотрубный теплообменник и аппараты для разделения веществ как-то колонны или другие соответствующие аппараты.
Толщина пластины D обычно выбирается таким образом, что пластина устойчиво держится под действием своего собственного веса, а также, в общем, дополнительно под весом находящегося на ней жидкости. Специалисту, в общем, известно, как он определяет эту толщину с учетом использованного для пластины материала. В качестве альтернативы толщина D пластины может выбираться также очень малой и взамен этого применяться мероприятия по усилению, например, в форме описанных выше подкосов.
Пластина может состоять из всех известных в химическом приборостроении материалов. Обычно пластина состоит из материала, который может быть просто обработан режущим инструментом (например, сверлом или фрезой), как то металлы или полимеры. Предпочтительно пластина состоит из металлического материала. Особенно предпочтительна пластина из стали. Особое преимущество имеет пластина из нержавеющей стали.
Применение металлических веществ, как то стали или нержавеющей стали, особенно предпочтительно, так как эти материалы особенно прочны, может выбираться небольшая толщина D и соответственно можно в целом отказаться от мероприятий по усилению, например от подкосов. Нержавеющая сталь, в частности, предпочтительна, так как она обладает стойкостью к большинству жидкостей, вызывающих химическую, например, коррозию. Специалисту, в общем, известно, как он выбирает нержавеющую сталь для соответствующего применения описанного здесь предложенного в соответствии с изобретением устройства с помощью легирующих добавок.
Для изобретения применяемый материал не существенен. Существенным является только то, что применяемый материал может быть обработан для получения закругления и фасок. Способ, с помощью которого это может быть достигнуто, может быть любым способом, который специалисту покажется пригодным для этого.
Пластина предпочтительно устанавливается в химическом аппарате точно перпендикулярно направлению основного потока разделяемой с ее помощью жидкости. Особенно предпочтительно, когда пластина располагается точно горизонтально.
Перпендикулярное расположение к направлению основного потока разделяемой с помощью пластины жидкости является предпочтительным, так как благодаря этому не возникает отдельной области распределительного устройства, в которой было бы больше среды, чем в другой. Таким образом, может обеспечиваться равномерное распределение. Горизонтальное расположение предпочтительно, в частности, тогда, когда в случае подлежащей разделению жидкости речь идет о жидкости, которая проходит отвесно сверху вниз или снизу вверх через химический аппарат. Таким образом, может обеспечиваться, что какая-либо отдельная область распределительного устройства не будет загружена жидкостью больше, чем другая.
Отверстия в пластине могут иметь любую геометрическую форму. Предпочтительны отверстия в форме дырок или щелей. Особенно предпочтительны отверстия в форме дырок, в высшей степени предпочтительны отверстия в форме круглых дырок.
Дырки и щели предпочтительны, так как они могут быть проделаны в пластине с помощью простых средств, например сверла и/или фрезы. Другие геометрические формы требуют больших затрат при их изготовлении, однако также годятся, как дырки, так и щели.
Отверстия в пластине могут быть распределены по пластине распределительного устройства равномерно или неравномерно. Предпочтительно отверстия равномерно распределены по пластине.
Равномерное распределение предпочтительно, так как таким образом может лучше получаться равномерное распределение жидкости.
Обычно размер и количество отверстий определяется количеством жидкости, которое должно разделяться, и обычно выбирается так, что число Рейнольдса потока жидкости на выходе из отверстий составляет не более 1.
Число Рейнольдса означает в связи с настоящим изобретением безразмерный показатель, в общем и целом известный специалисту, Re=(u·d)/v, где u - скорость выхода потока жидкости из отверстий, v - кинематическая вязкость жидкости и d - диаметр отверстий, когда они выполнены круглыми, или ширину щели, когда они выполнены в виде щели, соответственно характеристическую длину отверстия, определенную по известным специалисту правилам, если это не отверстия, имеющие геометрию названную выше.
Предпочтительно число отверстий на пластине составляет от 10 до 10000, особенно предпочтительно от 100 до 5000.
Отверстия предпочтительно, по меньшей мере, на стороне пластины (2), на которую поступает жидкость, скруглены или снабжены фасками.
Отверстия могут быть скруглены или иметь фаски также на обеих сторонах пластины (2). Равным образом возможно, что отверстия на одной стороне пластины снабжены фасками, а на другой стороне скруглены.
Предпочтительно отверстия только на одной стороне пластины снабжены фасками или скруглены.
Скруглены - означает в связи с настоящим изобретением, что геометрический разрыв, например 90° угол, заменяется не имеющей разрыва геометрией, например, в смысле полуокружностью.
Выражаясь по-другому, «скруглены» в связи с настоящим изобретением означает, что в области входа в отверстие не образовано каких-либо кромок. Вместо этого плоская поверхность пластины (снаружи отверстий) без образования кромок переходит в поверхность отверстий в области прохода через пластину.
Наличие фаски в связи с настоящим изобретением означает, что геометрический разрыв, например 90° угол, заменяется на точно также имеющей разрыв, но по сравнению с первоначальной геометрическим разрывом геометрией, подобной геометрии без разрыва (например, два 45° угла).
Выражаясь по-другому, в связи с настоящим изобретением наличие фаски означает, что в области входа в отверстие не образовано каких-либо острых кромок. Вместо этого плоская поверхность пластины (снаружи отверстий) без образования острых кромок (т.е. предпочтительно без угла α, β≥60) переходит в поверхность отверстий в области прохода через пластину.
При этом угол α - это угол между плоской поверхностью пластины и поверхностью отверстия на стороне входа отдельного потока жидкости и угол β - это угол между плоской поверхностью пластины и поверхностью отверстия на стороне выхода отдельного потока жидкости. Это иллюстрировано фигурой 3. При этом для угла α принята позиция 4 и для угла β позиция 5.
Предпочтительно предложенное согласно изобретению устройство, которое включает, по меньшей мере, одну пластину (2) с отверстиями (3), отличается тем, что обтекаемое поперечное сечение в области прохода через пластину (т.е. предпочтительно в области от 30 до 70% обтекаемой длины отверстия, которая соответствует толщине D пластины) меньше, чем в области входа в отверстие.
Если отверстия в пластине скруглены, то предпочтительно такое округление, что радиус R части круга, получающегося в результате скругления, меньше, чем толщина D пластины.
Если отверстия в пластине снабжены фасками, то предпочтительны такие фаски, что угол составляет между 40° и 60°. Точно также предпочтительны такие фаски, что фаска не распространяется до половины толщины D пластины.
Настоящее изобретение ниже более подробно поясняется с помощью фигур, не ограничивая этим изобретение.
На фиг.1 показана форма осуществления предложенного согласно изобретению устройства, состоящего из имеющей форму круга пластины 2 с равномерно распределенными на ней отверстиями 3 в форме дырок.
На фиг.2 показана другая форма осуществления предложенного согласно изобретению устройства, состоящего из имеющей форму круга пластины 2 с равномерно распределенными на ней отверстиями 3 в форме щелей.
На фиг.3 показан разрез по одному из показанных на фиг.1 отверстий 3, причем отверстие снабжено фасками на обеих сторонах с углами α, β. При этом угол α обозначен позицией 4, а угол β обозначен позицией 5. D - это толщина пластины 2.
На фиг.4 показан разрез одного из показанных на фигуре 2 отверстий 3, причем отверстие на одной стороне пластины скруглено радиусом R<D. При этом D толщина пластины 2.
На фиг.5 представлено графическое изображение результатов экспериментов примера 1.
На фиг.6 схематически показаны условия проведения экспериментов (пример 2).
Настоящее изобретение ниже более подробно поясняется с помощью примеров, не ограничивающих сами собой изобретение.
Примеры
Пример 1
В лабораторных условиях были проведены эксперименты по образованию отложений и нарастанию кристаллов. В качестве тестовой жидкости в экспериментах по образованию отложений служила Butyl Rubber/hexan и в экспериментах по нарастанию кристаллов служил водный раствор поваренной соли. Экспериментальная аппаратура состояла из бака, в который непрерывно текла тестовая жидкость. Бак на одной из вертикальных стенок (толщина: 2 мм) имел различного рода отверстия, из которых тестовая жидкость снова вытекала дугообразно в форме струи. Отверстия были представлены двумя круглыми дырками (диаметр: 2 мм), причем первое отверстие было образовано с острыми кромками (цилиндрической формы) и второе отверстие имело фаску (согласно изобретению). Была выбрана фаска с углом 45°, которая занимала половину толщины стенки. Во время эксперимента исследовались отложения (Fouling) на различных отверстиях. Оценка осуществлялась с одной стороны путем демонтажа пластины с дырками после окончания экспериментов и визуального освидетельствования отложений на или в дырках и с другой стороны путем измерения дальности полета струи или высот точки удара h на противоположной стенке, которая была расположена в горизонтальном направлении на расстоянии около 5 см от обоих отверстий. При этом A представляет на фигуре 5 имеющую острые кромки дырку (без фаски). В представляет на фигуре 5 дырку, снабженную фаской (с фаской). Как визуальное освидетельствование, так и измерения показали, что для обоих исследованных механизмов отложения (нарастание кристаллов и образование отложений) наличие фаски (согласно изобретению) или скругление (согласно изобретению) дырок на выходе потока ведет к меньшей склонности к образованию отложений. Фигура 5 показывает графическое построение измеренных высот точек встречи h в различные моменты времени t.
Пример 2
Для изучения процесса обрастания распределительных отверстий в ряду опытов по скринингу было применено устройство для разделения потоков жидкости в форме плоской пластины в диапазоне температур между 80° и 220°C. Пластина из нержавеющей стали толщиной 2 мм была снабжена 2 геометрически различными отверстиями (диаметр каждого 1,4 мм для обеспечения гарантии эквивалентности площадей живого сечения потока) (фигура 6). При этом дырка C представляла собой простое прямое сверленное отверстие. Вторая дырка D была снабжена фаской (45°). В качестве тестовой жидкости применялась жидкость средней вязкостью с плотностью между 700 и 1200 кг/м3 с диапазоном вязкости от 1 до 100 мПа, чье поверхностное натяжение составляло от 15 до 50 мН/м. Жидкость содержала растворенные компоненты. Жидкость подлежала нескольким реакциям разложения, механика которых частично не выяснена. При этом выпадали в осадок как твердые компоненты в форме тончайших кристаллов (во время опыта образовывалась суспензия), так и компоненты в форме высокомолекулярных неопределенных образующих отложение продуктов (обрастание).
Применяемая текучая среда направлялась в обогреваемом кругообороте в атмосфере защитного газа, причем распределительная пластина покрывалась слоем жидкости между 0 и 300 мм. Скорость перекачки в кругообороте жидкости, проходящем через пластину, определяет уровень жидкости на дырчатой пластине, причем уровень жидкости благодаря гидростатической высоте определяет характеристику стекания или скорость стекания жидкости через распределительные дырки.
Эксперименты продолжались с соответственно одним перерывом в 2 суток на протяжении 10 суток. По размерам воронок в покрытии на пластине вокруг дырок смогли установить, что жидкость стекала через дырку, снабженную фаской, лучше (более высокая скорость стекания на краях дырки). Пластина из нержавеющей стали с дырками в конце опыта была покрыта очень прочным и тяжело удаляемым даже при высоких температурах, пастообразным осадком, однако дырки с фаской были более пригодны для прохода по сравнению с прямыми дырками.
В частности, при низком уровне жидкости на распределительной пластине можно было наблюдать различие в поведении стекания жидкости через два типа дырок с различной геометрией. Стекание жидкости через распределительную дырку с фаской показало предпочтительное поведение по сравнению с прямой дыркой. При очень низком гидростатическом давлении на пластину (уровень жидкости между 10-20 мм) благодаря более низкой потере давления дырка с фаской была сначала более пригодна для прохода (более низкие коэффициенты напряжений и более низкое падение давления). Напротив прямая дырка требовала более высокого уровня (40-50 мм), чтобы можно было наблюдать равномерное стекание жидкости. Эксперименты однозначно показали, что распределительная дырка с фаской во время установившегося режима показала лучшее поведение стекания, чем имеющая острую кромку дырка.

Claims (6)

1. Устройство для равномерного разделения жидких потоков текучей среды, в которых, по меньшей мере, одно вещество растворено и/или присутствует в виде суспензии, в химических аппаратах на два или несколько отдельных потоков, которое включает, по меньшей мере, одну пластину (2) с двумя или несколькими отверстиями (3), причем отверстия (3) скруглены или снабжены фаской на входной стороне частичных потоков.
2. Устройство по п.1, в котором отверстия (3) имеют форму дырок или щелей.
3. Устройство по п.1, в котором отверстия (3) скруглены, причем радиус R получающегося в результате скругления частичного круга меньше, чем толщина D пластины (2).
4. Устройство по п.1, в котором угол между плоской поверхностью пластины (2) на стороне, где выполнена фаска, и поверхностью отверстия (3) в области прохода через пластину (2) составляет от 40° до 60°.
5. Устройство по п.1, в котором отверстия (3) снабжены таким образом фаской, что фаска не простирается до половины толщины D пластины (2).
6. Устройство по одному из пп.1-5, в котором отдельные потоки при выходе из отверстий (3) характеризуются числом Рейнольдса ≤1.
RU2009132109/05A 2008-08-27 2009-08-26 Устройство для равномерного разделения потоков текучей среды в химических аппаратах на два или несколько отдельных потоков RU2523482C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810039947 DE102008039947A1 (de) 2008-08-27 2008-08-27 Verfahren zum Aufteilen von Fluidströmen
DE102008039947.7 2008-08-27

Publications (2)

Publication Number Publication Date
RU2009132109A RU2009132109A (ru) 2011-03-10
RU2523482C2 true RU2523482C2 (ru) 2014-07-20

Family

ID=41426813

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009132109/05A RU2523482C2 (ru) 2008-08-27 2009-08-26 Устройство для равномерного разделения потоков текучей среды в химических аппаратах на два или несколько отдельных потоков

Country Status (8)

Country Link
US (1) US10143987B2 (ru)
EP (1) EP2163300B1 (ru)
JP (1) JP2010051959A (ru)
KR (1) KR20100025487A (ru)
CN (1) CN101658734B (ru)
DE (1) DE102008039947A1 (ru)
HU (1) HUE057853T2 (ru)
RU (1) RU2523482C2 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848977B2 (ja) * 2012-01-31 2016-01-27 大阪瓦斯株式会社 吸収式冷凍機
CA2891002C (en) * 2015-05-13 2022-09-06 Veronica Rose Zimmerman Modeling a bed plate and its use
TWI702359B (zh) * 2016-04-21 2020-08-21 富世華股份有限公司 具有水流穩定性的水龍頭接頭
CN110624482B (zh) * 2018-06-22 2022-01-07 万华化学集团股份有限公司 一种阶梯状流化床气体分布板
CN112361720B (zh) * 2020-10-23 2024-03-29 天富(江苏)科技有限公司 一种具有扰动干燥功能的物料干燥设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU494193A1 (ru) * 1974-01-28 1975-12-05 Распределительна тарелка центробежного диска распылительной сушилки
DE2752391A1 (de) * 1977-11-24 1979-05-31 Montz Gmbh Julius Verteilerboden
SU1095918A1 (ru) * 1983-01-18 1984-06-07 Рубежанский филиал Ворошиловградского машиностроительного института Контактное устройство
SU1690798A1 (ru) * 1989-03-22 1991-11-15 Березниковское производственное объединение "Сода" им.В.И.Ленина Массообменна колонна
EP0721798A2 (en) * 1994-12-28 1996-07-17 Mitsui Petrochemical Industries, Ltd. Gas distributor plate for a gas phase polymerisation apparatus
RU2135268C1 (ru) * 1994-06-23 1999-08-27 АББ Флэкт Индустри АБ Способ и устройство для удаления двуокиси серы из газа
RU2286838C2 (ru) * 2001-07-05 2006-11-10 Альстом Текнолоджи Лтд. Способ и устройство для выделения двуокиси серы из газа

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2157736B2 (de) * 1971-11-22 1978-10-05 Schering Ag, 1000 Berlin Und 4619 Bergkamen Vorrichtung zur kontinuierlichen Kontaktierung von Flüssigkeiten mit Gasen oder von Flüssigkeiten in Gegenwart von Gasen oder von Flüssigkeiten mit Feststoffen in Gegenwart von Gasen oder von Flüssigkeiten mit Gasen und feinverteilten Feststoffen im Gleichstrom
GB1420599A (en) * 1972-02-02 1976-01-07 Pye Ltd Apparatus for chemical analysis including a burner
JPS5096648U (ru) * 1974-01-08 1975-08-12
JPS51110478A (en) * 1975-03-26 1976-09-30 Hikari Yokoegawa Awasonyoru kiekikoryusetsushokusochi
JPS5522351A (en) * 1978-08-04 1980-02-18 Seitetsu Kagaku Co Ltd Tray for fluid contacting apparatus
JPS5916502A (ja) * 1982-07-19 1984-01-27 Asahi Chem Ind Co Ltd 充填塔の流体整流或は分集用多孔板
HU186652B (en) 1982-12-23 1985-09-30 Laszlo Gyoekhegyi Plate for columns serving for distillation and/or absorption operations
DK158532C (da) * 1987-07-14 1990-10-29 Niro Atomizer As Toerreapparat, der arbejder med fluid bed, og lejeplade dertil
US5161315A (en) * 1990-08-03 1992-11-10 Jet-Pro Company, Inc. Fluidized bed particulate material treating apparatus
US5209259A (en) * 1991-01-15 1993-05-11 E. I. Du Pont De Nemours And Company Fluid distribution system having noise reduction mechanism
DE4104019C1 (ru) * 1991-02-09 1992-04-23 Robert Bosch Gmbh, 7000 Stuttgart, De
JPH05200201A (ja) * 1992-01-29 1993-08-10 Hitachi Ltd 気液接触装置
JPH06328A (ja) * 1992-06-23 1994-01-11 Babcock Hitachi Kk 湿式排煙脱硫装置
EP0704232B1 (de) 1994-09-28 1998-01-14 Sulzer Chemtech AG Flüssigkeitsverteiler für Kolonnen
JPH10502130A (ja) * 1995-03-29 1998-02-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 特に噴射弁に用いられる孔付板
IN192183B (ru) 1995-09-07 2004-03-13 Sulzer Chemtech Ag
JP4491848B2 (ja) 1998-04-03 2010-06-30 東レ株式会社 ポリアミドの製造方法
WO2001025482A1 (en) 1999-10-02 2001-04-12 Bioneer Corporation Automatic dna purification apparatus
DE10015597A1 (de) 2000-03-29 2001-12-20 Huettlin Gmbh Bodenelement für eine Vorrichtung zum Behandeln von partikelförmigem Gut
EP1295647A1 (en) * 2001-09-24 2003-03-26 The Technology Partnership Public Limited Company Nozzles in perforate membranes and their manufacture
WO2004103478A1 (en) * 2003-05-20 2004-12-02 Collins James F Ophthalmic drug delivery system
RU2418628C2 (ru) * 2005-12-23 2011-05-20 Сименс Фаи Металз Текнолоджиз Гмбх Распределительная тарелка

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU494193A1 (ru) * 1974-01-28 1975-12-05 Распределительна тарелка центробежного диска распылительной сушилки
DE2752391A1 (de) * 1977-11-24 1979-05-31 Montz Gmbh Julius Verteilerboden
SU1095918A1 (ru) * 1983-01-18 1984-06-07 Рубежанский филиал Ворошиловградского машиностроительного института Контактное устройство
SU1690798A1 (ru) * 1989-03-22 1991-11-15 Березниковское производственное объединение "Сода" им.В.И.Ленина Массообменна колонна
RU2135268C1 (ru) * 1994-06-23 1999-08-27 АББ Флэкт Индустри АБ Способ и устройство для удаления двуокиси серы из газа
EP0721798A2 (en) * 1994-12-28 1996-07-17 Mitsui Petrochemical Industries, Ltd. Gas distributor plate for a gas phase polymerisation apparatus
RU2286838C2 (ru) * 2001-07-05 2006-11-10 Альстом Текнолоджи Лтд. Способ и устройство для выделения двуокиси серы из газа

Also Published As

Publication number Publication date
US10143987B2 (en) 2018-12-04
RU2009132109A (ru) 2011-03-10
DE102008039947A1 (de) 2010-03-04
CN101658734A (zh) 2010-03-03
EP2163300A1 (de) 2010-03-17
JP2010051959A (ja) 2010-03-11
EP2163300B1 (de) 2021-12-22
CN101658734B (zh) 2017-03-01
KR20100025487A (ko) 2010-03-09
HUE057853T2 (hu) 2022-06-28
US20100071770A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
RU2523482C2 (ru) Устройство для равномерного разделения потоков текучей среды в химических аппаратах на два или несколько отдельных потоков
EP1812150B1 (en) Multi fluid injection mixer
Mansouri et al. Experimental and numerical investigation of the effect of viscosity and particle size on the erosion damage caused by solid particles
US7261120B2 (en) Device for splitting a two-phase stream into two or more streams with the desired vapor/liquid ratios
AU2014365713B2 (en) Static internal, use of one or more static internal, agitated liquid-liquid contactor and use of an agitated liquid-liquid contactor
Wu et al. Mixing intensification for the mineral industry
CN105435588A (zh) 用于离岸气体/液体接触柱的紧凑型分配器托盘
Al-Sarkhi et al. Effect of drag reducing polymers on two-phase gas–liquid flows in a horizontal pipe
US3334870A (en) h baffle
JP6752570B2 (ja) 急冷システム
Dol et al. Experimental study on the effects of water-in-oil emulsions to wall shear stress in the pipeline flow
JP7357744B1 (ja) 清掃用リング
JP7361861B1 (ja) 清掃用リング、及び、反応装置
Wang et al. Direct observation of single-and two-phase flows in spacer filled membrane modules
USRE27908E (en) Fluid contact tray
RU2771051C2 (ru) Устройство для ограничения турбулентности и отложения твердых осадков
WO2018193031A1 (en) Method and apparatus for handling slurries in flow systems
Davoody et al. A novel approach to quantify scale thickness and distribution in stirred vessels
Kukulka et al. Evaluation of Vipertex enhanced heat transfer tubes under fouling conditions
KR101852283B1 (ko) 침착물 형성을 제어하기 위한 장치 및 방법
RU2819218C1 (ru) Газожидкостный распределитель
RU2744373C1 (ru) Способ для перемешивания среды, транспортируемой по трубопроводу, и устройство для его осуществления
Broniarz-Press et al. Thin film flow of a liquid down smooth and rough surfaces
WO2020041039A1 (en) Desalter inlet distributor designs and methods
Pruden et al. Effect of a variation in perforation size on performance of sieve tray absorbers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170827