RU2511488C2 - Компактный у3ел возбуждения для создания круговой поляризации в антенне и способ получения такого компактного узла возбуждения - Google Patents

Компактный у3ел возбуждения для создания круговой поляризации в антенне и способ получения такого компактного узла возбуждения Download PDF

Info

Publication number
RU2511488C2
RU2511488C2 RU2009133480/08A RU2009133480A RU2511488C2 RU 2511488 C2 RU2511488 C2 RU 2511488C2 RU 2009133480/08 A RU2009133480/08 A RU 2009133480/08A RU 2009133480 A RU2009133480 A RU 2009133480A RU 2511488 C2 RU2511488 C2 RU 2511488C2
Authority
RU
Russia
Prior art keywords
omt
coupler
connecting slots
branches
slots
Prior art date
Application number
RU2009133480/08A
Other languages
English (en)
Other versions
RU2009133480A (ru
Inventor
Пьер Боссар
Филипп ЛЕПЕЛТЬЕ
Ален ЛАССЕРР
Софи ВЕРЛАК
Original Assignee
Таль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Таль filed Critical Таль
Publication of RU2009133480A publication Critical patent/RU2009133480A/ru
Application granted granted Critical
Publication of RU2511488C2 publication Critical patent/RU2511488C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2131Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations

Landscapes

  • Waveguide Aerials (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Изобретение относится к устройству создания круговой поляризации в антенне. Технический результат - снижение омических потерь и упрощение конструкции устройства. Компактный узел возбуждения для создания круговой поляризации в антенне содержит разделительный ортомодовый преобразователь и ответвитель, при этом ортомодовый преобразователь, называемый ОМТ, является асимметричным и содержит основной волновод квадратного или круглого сечения с продольной осью ZZ' и две ветви, соединенные с основным волноводом соответственно двумя щелями параллельного соединения, при этом обе соединительные щели выполнены в двух ортогональных стенках основного волновода, при этом обе ветви ОМТ связаны соответственно с двумя волноводами неуравновешенного ответвителя, при этом ответвитель имеет два разных коэффициента деления (α, β), оптимизированные таким образом, чтобы компенсировать ортогональные паразитные составляющие (δу, δх) электрического поля, возникающие из-за асимметрии ОМТ. 3 н. и 5 з.п. ф-лы, 13 ил.

Description

Настоящее изобретение касается компактного узла возбуждения для создания круговой поляризации в антенне, антенны, содержащей такой компактный узел возбуждения, и способа получения такого компактного узла возбуждения. В частности, оно применяется в области передающих и/или принимающих антенн и, в частности, для антенн, содержащих решетку элементарных излучающих элементов, связанных с устройством ортомодового преобразования, объединенным с ответвителем, таких, например, как многолучевые антенны.
Получение большого числа смежных лучей требует выполнения антенны, содержащей большое число элементарных излучающих элементов, расположенных в фокальной плоскости параболического отражателя, расстояние между которыми напрямую зависит от углового расстояния между лучами. В случае применения для многолучевой антенны объем, выделяемый для размещения радиочастотного системы RF, предназначенного для обеспечения функций передачи и приема в режиме круговой биполяризации, ограничен излучающей поверхностью излучающего элемента.
В наиболее распространенной конфигурации, при которой источник, образованный излучающим элементом, соединенным с радиочастотной системой, вырабатывает луч, называемый также «spot», при этом образованный луч, излучается, например, соответствующим рупором, образующим элементарный излучающий элемент, и для каждого луча радиочастотная система реализует функции передачи/приема в режиме монополяризации или биполяризации в частотной полосе, выбираемой в зависимости от потребностей пользователей и/или операторов. Как правило, радиочастотная система в основном содержит возбудитель и тракты волноводов, называемые также рекомбинационными контурами и позволяющие связывать радиочастотные компоненты. Для создания круговой поляризации, как известно, используют возбудитель, содержащий ортомодовый преобразователь, известный под аббревиатурой ОМТ (от английского OrthoMode Transducer), соединенный с элементарным излучающим элементом, например, типа рупора. ОМТ питает рупор (при передаче) или питается от рупора (при приеме) селективно либо в первом электромагнитном режиме, представляющим первую поляризацию, либо во втором электромагнитном режиме, представляющим вторую поляризацию, ортогональную к первой поляризации. Первая и вторая поляризации, которым соответствуют две составляющие электрических полей, являются линейными и называются соответственно горизонтальной поляризацией Н и вертикальной поляризацией V. Круговую поляризацию получают, соединяя ОМТ с ответвителем (на английском языке: branch line coupler), предназначенным для расположения составляющих Н и V электрических полей в фазовой квадратуре. Поиск компактного решения приводит к группировке радиочастотных компонентов и рекомбинационных контуров радиочастотной схемы в несколько уровней, размещенных друг под другом, как показано, например, на фиг.1а и 1b, описание которых следует ниже. Однако, чем больше число лучей, тем больше сложность, масса и стоимость радиочастотной системы. Для уменьшения массы и снижения стоимости радиочастотной системы необходимо менять ее электрическую архитектуру.
Настоящее изобретение призвано решить эту проблему и предложить новый узел возбуждения, работающий в режиме биполяризации, не требующий регулировок и позволяющий упростить и сделать более компактной радиочастотную систему, а также уменьшить ее массу и снизить ее стоимость.
В связи с этим объектом настоящего изобретения является компактный узел возбуждения для создания круговой поляризации в антенне, содержащий разделительный ортомодовый преобразователь и ответвитель, отличающийся тем, что ортомодовый преобразователь, называемый ОМТ, является асимметричным и содержит основной волновод квадратного или круглого сечения с продольной осью ZZ' и две ветви, соединенные с основным волноводом соответственно двумя параллельными соединительными щелями, при этом обе соединительные щели выполнены в двух ортогональных стенках волновода, при этом обе ветви ОМТ связаны соответственно с двумя волноводами неуравновешенного ответвителя, при этом ответвитель имеет два разных коэффициента деления, оптимизированных таким образом, чтобы компенсировать ортогональные паразитные составляющие электрического поля, возникающие из-за асимметрии ОМТ.
Предпочтительно сечение основного волновода ОМТ на выходе соединительных щелей меньше сечения основного волновода ОМТ на входе соединительных щелей, при этом разрыв сечения образует плоскость короткого замыкания.
Предпочтительно соединительные щели ОМТ, имеющие длину L1 и ширину L2, связаны с ответвителем при помощи двух шлейфовых фильтров, установленных на расстоянии D1 от соединительных щелей, при этом расстояние D1, длину L1 и ширину L2 выбирают таким образом, чтобы обеспечить ортогональность между паразитными составляющими электрического поля, возникающими из-за асимметрии ОМТ.
Предпочтительно коэффициенты деления ответвителя определяют при помощи трех следующих отношений:
- α22=1,
- α.Ех-β.δу=
Figure 00000001
вольт/метр,
- β.Еу+α.δх=
Figure 00000002
вольт/метр.
Объектом настоящего изобретения является также антенна, отличающаяся тем, что содержит, по меньшей мере, один такой компактный узел возбуждения.
Наконец, объектом настоящего изобретения является также способ получения компактного узла возбуждения для создания круговой поляризации в антенне, отличающийся тем, что состоит в том, что асимметричный ортомодовый преобразователь с двумя ветвями соединяют с неуравновешенным ответвителем, имеющим два разных коэффициента деления, размеры ОМТ определяют таким образом, чтобы установить фазовую квадратуру между двумя паразитными составляющими электрического поля, возникающими из-за асимметрии ОМТ, и коэффициенты деления ответвителя оптимизируют, чтобы компенсировать две паразитные составляющие электрического поля.
Предпочтительно определение размеров ОМТ состоит в определении длины L1 соединительных щелей ОМТ, в определении расстояния D1, отделяющего соединительные щели от двух шлейфовых фильтров, расположенных между соединительными щелями и ответвителем, в расположении плоскости короткого замыкания в основном волноводе ОМТ на выходе соединительных щелей , при этом расстояние D1, длину L1 и ширину L2 выбирают таким образом, чтобы обеспечить ортогональность между паразитными составляющими электрического поля, возникающими из-за асимметрии ОМТ.
Предпочтительно коэффициенты деления ответвителя определяют при помощи трех следующих отношений:
- α22=1,
- α.Ех-β.δу=
Figure 00000001
вольт/метр,
- β.Еу+α.δх=
Figure 00000002
вольт/метр.
Другие отличительные признаки и преимущества настоящего изобретения будут более очевидны из нижеследующего описания, представленного в качестве не ограничительного примера, со ссылками на прилагаемые схематичные чертежи, на которых:
Фиг.1 - схематичный вид сверху примера разделительного ОМТ из предшествующего уровня техники.
Фиг.1b - вид в перспективе примера радиочастотной системы RF, содержащей разделительный ОМТ, показанный на фиг.1а.
Фиг.2 - вид в разрезе примера упрощенной архитектуры радиочастотной системы RF, содержащей компактный узел возбуждения в соответствии с настоящим изобретением.
Фиг.3а и 3b - два вида, соответственно в перспективе и сверху, примера асимметричного разделительного ОМТ в соответствии с настоящим изобретением.
Фиг.4 - пример соединения между двумя портами, соединенным и изолированным, полученного при помощи асимметричного ОМТ перед оптимизацией формы ОМТ, в соответствии с настоящим изобретением.
Фиг.5 - пример дисперсии фазы между соединенным и изолированным портами ОМТ перед оптимизацией формы ОМТ, в соответствии с настоящим изобретением.
Фиг.6 - пример дисперсии фазы между соединенным и изолированным портами ОМТ перед оптимизацией параметров формы ОМТ, в соответствии с настоящим изобретением.
Фиг.7 - схематичный вид сверху ОМТ, показывающий паразитные составляющие поля после оптимизации параметров формы ОМТ, в соответствии с настоящим изобретением.
Фиг.8а и 8b - вид в перспективе и в продольном разрезе примера неуравновешенного ответвителя в соответствии с настоящим изобретением.
Фиг.9а и 9b - пример степени эллипсности, полученной путем объединения ОМТ с двумя ветвями и неуравновешенным ответвителем, для получения компактного узла возбуждения в соответствии с настоящим изобретением.
Ортомодовый преобразователь 5 с четырьмя ветвями, показанный на фиг.1а, содержит основной волновод 10 с продольной осью ZZ', например, квадратного или круглого сечения, содержащий первый конец, предназначенный для связи с не показанным на фигуре рупором, и второй выходной конец, при этом оба конца находятся в продольной оси корпуса основного волновода. Группа из четырех продольных или поперечных щелей 11, 12, 13, 14 параллельного соединения выполнена в стенке каждой из четырех боковых сторон основного волновода и расположена диаметрально противоположными парами. Размеры основного волновода 10 между рупором и соединительными щелями соответствуют распространению основных электромагнитных мод, связанных с составляющими поля H и V основного волновода, в частотных полосах передачи и приема. За пределами соединительных щелей сечение основного волновода уменьшается, что создает плоскость короткого замыкания для полосы низких частот. В этом случае на частоте отсечки волновод ведет себя как фильтр высоких частот, пропуская только полосу высоких частот. Составляющие поля Н и V, связанные с основными электромагнитными модами ТЕ01 и ТЕ10 волновода квадратного сечения или с модами ТЕ11Н и TE11V волновода круглого сечения, соединены в полосе низких частот, например в полосе передачи, при помощи четырех щелей 11, 12, 13, 14 параллельного соединения. Полоса высоких частот, например полоса приема, отсекается четырьмя шлейфовыми фильтрами 15, 16, 17, 18, соединенными с четырьмя щелями параллельного доступа, и распространяется в основном волноводе до его выходного конца. Узел ОМТ с фильтрами, называемый разделительным ОМТ, содержит, таким образом, шесть физических портов, и его работа совместима с применением для линейной поляризации или для круговой поляризации. Полосу низких частот можно, например, зарезервировать для передачи радиочастотных сигналов RF, а полосу высоких частот можно зарезервировать для приема сигналов RF. Как показано на фиг.1b, при передаче получение круговой поляризации обеспечивает ответвитель 19, уравновешенный на 3 дБ, который питает четыре соединительные щели 11, 12, 13, 14, попарно в фазовой квадратуре. Противоположные щели питаются по фазе через фазные рекомбинационные контуры 20. Различные компоненты узла возбуждения, образованного разделительным ОМТ и ответвителем, оптимизируют раздельно, и общая функция перехода вытекает из характеристик, присущих каждому компоненту. В месте соединительных щелей геометрия ОМТ 5 с четырьмя ветвями предполагает наличие плоскости симметрии для электрического поля, которое распространяется в ОМТ, что сводит к минимуму амплитуды пересекающихся составляющих электрического поля. Таким образом, чистота круговой поляризации не зависит от ОМТ 5, а только от ответвителя 19 и от рекомбинационных контуров 20, которые осуществляют разделение по мощности и фазовую квадратуру между соединительными щелями. Не показанный поляризатор с перегородкой соединен с выходным концом основного волновода ОМТ, при этом поляризатор с перегородкой обеспечивает получение круговой поляризации при приеме.
Радиочастотные компоненты и рекомбинационные контуры радиочастотной системы расположены друг под другом на нескольких уровнях, при этом на фиг.1b показаны два уровня 1, 2, но, как правило, реализуют три уровня, расположенные друг под другом. В этом случае интеграция компонентов является максимальной, и, чтобы еще уменьшить массу, объем и стоимость радиочастотной системы, необходимо изменить ее архитектуру.
На фиг.2 показан пример упрощенной архитектуры системы RF, содержащей компактный узел возбуждения в соответствии с настоящим изобретением. Система RF в основном содержит разделительный ортомодовый преобразователь 21 с двумя ветвями, показанный на фиг.3а и 3b, и неуравновешенный ответвитель 40. ОМТ 21 содержит основной волновод 22, например, квадратного или круглого сечения с продольной осью ZZ', содержащий два конца 23, 24, при этом первый конец 23, соединенный с круглым доступом 31, предназначен для связи с не показанным на фигуре рупором и содержит две соединительные щели 25, 26 параллельного доступа, выполненные в стенке основного волновода и выходящие в две соответствующие ветви ОМТ. Обе щели 25, 26 параллельного доступа выполнены в двух ортогональных боковых стенках основного волновода и, например, предпочтительно расположены на одинаковой высоте относительно двух концов 23, 24 основного волновода. Полосу низких частот можно, например, зарезервировать для передачи радиочастотных сигналов RF, а полосу высоких частот можно, например, зарезервировать для приема сигналов RF. При передаче каждая из двух соединительных щелей 25, 26 связана с ответвителем 40 через шлейфовый фильтр 27, 28 и рекомбинационные контуры 29, 30. Круглый доступ 31 образует входной и выходной порт, общий для двух составляющих электрического поля, соответственно горизонтальной Н и вертикальной V, соответствующих двум ортогонально поляризованным электромагнитным модам, распространяющимся при передаче и приеме. Каждая щель параллельного доступа, связанная с шлейфовым фильтром, образует входной и выходной порт одной из составляющих электрического поля, называемый для этой составляющей соединенным портом, при этом другой порт называют изолированным. Например, как показано на фиг.3а, горизонтальная составляющая Н электрического поля проходит через соединенный порт 32, а порт 33 является для этой составляющей Н изолированным портом. Для вертикальной составляющей V электрического поля соединенным портом является порт 33, а изолированным портом является порт 32. Ответвитель 40 содержит два прямоугольных волновода 35, 36, образующих две основные ветви, соответственно связанные первым концом с одним из портов 32, 33 ОМТ и вторым концом с соответствующим доступом 37, 38 питания, при этом доступы 37, 38 питания имеют одинаковую электрическую длину. Каждый доступ питания связан с каждой из двух основных ветвей 35, 36 ответвителя 40 для питания электрическим полем. Две основные ветви ответвителя соединены между собой через не показанные соединительные щели, выходящие, по меньшей мере, в один поперечный волновод 39, образующий поперечную ветвь. Длина поперечных волноводов 39, выполненных в определенном количестве, например, равном трем на фиг.2, равна λg/4, за счет чего на выходе ответвителя 40 получают сдвиг по фазе на 90° между двумя составляющими электрического поля, при этом λg является длиной направляемой волны основной моды, распространяющейся в основных ветвях 35, 36 ответвителя 40.
При приеме непоказанный поляризатор с перегородкой можно соединить с вторым концом 24 основного волновода ОМТ.
С точки зрения геометрии разделительный ОМТ с двумя ветвями не обеспечивает естественного разъединения горизонтальной Н и вертикальной V составляющих электрического поля, учитывая отсутствие симметрии в месте соединительных щелей 25, 26. Анализ параметров матрицы дисперсии энергии между общим портом 31 и соединенным портом 32, соответствующим одной из составляющих электрического поля, затем между общим портом и изолированным портом 33 этой же составляющей электрического поля, показывает, как представлено на фиг.4 и 5, что существует соединение энергии порядка -20 дБ между соединенным портом и изолированным портом и что существует разность фазы, дисперсная по частоте, между двумя портами, при этом фазовая квадратура достигается только для отдельной частоты, хотя физически длины от общего порта 31 до двух портов, соединенного и изолированного 32, 33, являются одинаковыми. Это значит, что с учетом асимметрии ОМТ энергия основной моды, которая распространяется в основном волноводе, не проходит полностью в соединенный порт, а частично направляется в изолированный порт. Распределение энергии между двумя портами связано с тем, что, кроме соединения основной моды ТЕ10 на -20 дБ, существует также соединение на -20 дБ моды ТЕ20 (или ТЕ02 в зависимости от того, идет ли речь о составляющей Н или V электрического поля) между соединенным портом и изолированным портом. Мода ТЕ20 (или ТЕ02) влияет на разделение мощности и приводит к неодинаковой подаче фазы электрического поля на соединенный порт по сравнению с изолированным портом.
Согласно изобретению, поскольку ОМТ с двумя ветвями не позволяет полностью разделить две составляющие электрического поля, когда оно связано с ответвителем, уравновешенным на 3дБ, который реализует разделение мощности равными частями и фазовую квадратуру между соединительными щелями, то достичь круговой поляризации невозможно. Полученная поляризация является эллиптической при степени эллипсности излучаемого поля, равной 1,7 дБ.
Однако, воздействуя на параметры формы ОМТ, такие как длина L1 и ширина L2 соединительных щелей 25, 26, расстояние между щелью и плоскостью короткого замыкания для полосы низких частот, соответствующее изменениям сечения основного волновода, расстояние D1 между щелями 25, 26 и началом шлейфовых фильтров 27, 28, можно, как показано на фиг.6, получить фазовую квадратуру между составляющей поля на изолированном порте и составляющей поля на соединенном порте и сделать не периодичным дифференциальное поведение фаз между этими двумя составляющими поля, соединенной и изолированной, в полосе пропускания, на 7% превышающей общую полосу низких частот. Расстояние D1 действует на частотную дисперсию фазы основной составляющей поля на соединенном порте относительно пересекающейся паразитной составляющей поля на изолированном порте. Длина L1 и ширина L2 позволяют отрегулировать абсолютную фазу на -90° между составляющей поля на соединенном порте и паразитной составляющей поля на изолированном порте. Расстояние между щелью и плоскостью короткого замыкания может, например, быть нулевым. Вместе с тем, оптимизация параметров формы ОМТ является оптимизацией с многими переменными, при которой другие параметры действуют во вторую очередь, приводя, например, к биениям энергии между радиочастотными дискретностями, и которую можно оптимизировать только путем последовательных итераций и путем анализа распространяющихся электромагнитных мод.
На фиг.7 показано, что электрическое поле, появляющееся в результате подачи питания на порт 32, 33 доступа горизонтальной поляризации Н, соответственно вертикальной поляризации V, разлагается на две составляющие, сдвинутые по фазе на -90°. Таким образом, для порта 33 доступа вертикальной составляющей V электрического поля Ey добавляется паразитная горизонтальная составляющая δу, смещенная по фазе на -90° относительно Еу, и для порта 32 доступа горизонтальной составляющей Н электрического поля Ех добавляется паразитная вертикальная оставляющая δх, смещенная по фазе на -90° относительно Ех. Паразитные составляющие δу и δх ослаблены на 20 дБ по отношению к амплитуде Ех и Еу.
Асимметричный ОМТ в соответствии с настоящим изобретением, связанный с неуравновешенным ответвителем, позволяет компенсировать дефект, появляющийся по причине асимметрии ОМТ, и обеспечивает работу антенны при монополяризации и при биполяризации с отличной чистотой поляризации.
Чтобы достичь хорошей чистоты круговой поляризации, составляющие Н и V электрического поля должны иметь одинаковую амплитуду и находиться в фазовой квадратуре. На фиг.8а и 8b в перспективе и в продольном разрезе показан неуравновешенный ответвитель 40 в соответствии с настоящим изобретением. Ответвитель 40 содержит четыре порта 1-4, расположенные на четырех концах двух основных ветвей. Порты 1-4 предназначены для связи с двумя доступами питания, при этом два порта 2 и 3 соответственно предназначены для связи с соединенным и изолированным портами ОМТ. Ответвитель имеет два коэффициента деления α и β при
Figure 00000003
, которые должны распределять энергию электрического поля, прикладываемого на один из портов 1 или 4, между портами 2 или 3 со сдвигом по фазе на 90° по абсолютной величине между портами 2 и 3. Таким образом, при приложении электрического поля на порт 1 оно распространяется в ветви ответвителя, связанной с портом 1, до порта 2 с коэффициентом деления α и распространяется по диагонали, проходя через соединительные щели и различные поперечные волноводы, до порта 3 с коэффициентом деления β. Задержка по фазе на 90° между двумя составляющими электрического поля на выходе ответвителя на портах 2 и 3 соответствует длинам поперечных волноводов, равным четверти длины волны λg/4. Поперечные волноводы имеют одинаковую длину, но разную ширину. Число поперечных ветвей выбирают в зависимости от потребности в полосе пропускания. Ширину поперечных ветвей определяют в зависимости от реализуемых значений коэффициента деления α и β. Соответственно, когда электрическое поле прикладывают на порт 4, оно распространяется в основной ветви ответвителя, связанной с портом 4, до порта 3 с коэффициентом деления α и распространяется по диагонали, проходя через соединительные щели и различные поперечные волноводы, до порта 2 с коэффициентом деления β с сдвигом по фазе на -90°.
Согласно изобретению, коэффициенты деления α и β выбирают таким образом, чтобы компенсировать паразитный дефект, связанный с асимметрией ОМТ. Так, коэффициенты α и β уже не будут равны, как это было в случае уравновешенных ответвителей, обычно используемых в ОМТ с четырьмя ветвями, а будут разными.
Наличие ОМТ оптимизирует коэффициенты деления, которые компенсируют горизонтальную и вертикальную паразитные составляющие δу и δх таким образом, чтобы на каждом выходном порте 2 и 3 получить половину мощности, поступающей на входной порт 1.
Поскольку работа ответвителя является симметричной при приеме и при передаче, оптимизацию коэффициентов деления можно производить при приеме, чтобы компенсировать горизонтальную и вертикальную паразитные составляющие δу и δх, связанные с асимметрией ОМТ.
Так, при приеме, при прохождении через ответвитель составляющие поля, входящего на порт 1, Ех и δy.е-j90° на выходе порта 1 соответственно становятся: α.Ех и α.δх.е-j90°.
Точно так же, составляющие поля, входящего на порт 3, Еу и δу.е-j90°, становятся на выходе порта 1 соответственно: β.Еу.е-j90° и β.δу.е-j180°.
В этом случае на ортогональных осях Х и Y получают следующие проекции этих составляющих поля:
На оси Х: α.Ех+β.δу.е-j180°,
На оси Y: β.Еу.е-j90°+α.δх.е-j90°.
На оси Х составляющие поля Ех и δу суммируются при разности фаз в 180°, и компенсация является деструктивной. На оси Y составляющие поля Еу и δх суммируются по фазе, и компенсация является конструктивной. Чтобы компенсация позволила получить на каждом выходном порте 2 и 3 половину мощности, полученной на входном порте 1, коэффициенты деления α и β должны быть такими, чтобы соблюдались следующие отношения:
α22=1,
α.Ех-β.δу=
Figure 00000001
вольт/метр, что соответствует -3 дБ по мощности,
β.Еу+α.δх=
Figure 00000002
вольт/метр, что соответствует -3 дБ по мощности.
Из фиг.9а и 9b видно, что степень эллипсности, полученная при объединении ОМТ с двумя ветвями и неуравновешенного ответвителя в соответствии с настоящим изобретением, меньше 0,1 дБ на полосе Ка, находящейся между 19,7 ГГц и 20,2 ГГц. Степень эллипсности меньше 0,4 дБ на 1,5 ГГц полосы пропускания, что позволяет использовать эту конструкцию для потребительских целей, а также для других вариантов применения, независимо от частотных полос.
Преимуществом новой архитектуры является ее исключительная компактность, при этом габариты источников, представляющих собой систему RF и рупор передачи/приема, выполненные таким образом, равны 60 мм по диаметру и 100 мм по высоте. Для сравнения эквивалентное соединение источников согласно известным техническим решениям имеет габариты 150 мм по высоте и 72 мм по диаметру. Стоимость изготовления является оптимальной по отношению к числу компонентов. Действительно, уменьшение числа механических деталей позволяет получить выигрыш во времени изготовления. Масса системы RF без рупора уменьшилась на 60%. Конструкция упростилась, и число электрических слоев уменьшилось до одного вместо трех, так как ОМТ, ответвитель и рекомбинационные контуры находятся на одном уровне. Длина трактов волновода уменьшилась на 50%, что позволяет снизить омические потери на 0,1 дБ по сравнению с известными техническими решениями с ОМТ с четырьмя ветвями, омические потери в которых составляют 0,25 дБ.
Настоящее изобретение было описано для частного варианта выполнения, но, разумеется, оно ни в коем случае не ограничивается этим вариантом и охватывает все технические эквиваленты описанных средств, а также их комбинации, если они не выходят за рамки настоящего изобретения.

Claims (8)

1. Компактный узел возбуждения для создания круговой поляризации в антенне, содержащий разделительный ортомодовый преобразователь и ответвитель, отличающийся тем, что ортомодовый преобразователь (21), называемый ОМТ, является асимметричным и содержит основной волновод (22) квадратного или круглого сечения с продольной осью ZZ' и две ветви, соединенные с основным волноводом соответственно двумя щелями (25, 26) параллельного соединения, при этом обе соединительные щели (25, 26) выполнены в двух ортогональных стенках основного волновода, при этом обе ветви ОМТ связаны соответственно с двумя волноводами (35, 36) неуравновешенного ответвителя (40), при этом ответвитель (40) имеет два разных коэффициента деления (α, β), оптимизированные таким образом, чтобы компенсировать ортогональные паразитные составляющие (δy, δx) электрического поля, возникающие из-за асимметрии ОМТ (21).
2. Узел возбуждения по п.1, отличающийся тем, что сечение основного волновода (22) ОМТ на выходе соединительных щелей (25, 26) меньше сечения основного волновода (22) ОМТ на входе соединительных щелей (25, 26), при этом разрыв сечения образует плоскость короткого замыкания.
3. Узел возбуждения по одному из пп.1 или 2, отличающийся тем, что соединительные щели (25, 26) ОМТ (21), имеющие длину L1 и ширину L2, связаны с ответвителем (40) при помощи двух шлейфовых фильтров (27, 28), размещенных на расстоянии D1 от соединительных щелей (25, 26), и тем, что расстояние D1, длина L1 и ширина L2 выбраны таким образом, чтобы получить ортогональность между паразитными составляющими (δy, δx) электрического поля, возникающими из-за асимметрии ОМТ.
4. Узел возбуждения по одному из пп.1 или 2, отличающийся тем, что коэффициенты деления (α, β) ответвителя (40) определены при помощи трех следующих отношений:
- α22=1,
  α . E x β . δ y = 1 2 в о л ь т / м е т р ,
Figure 00000004

  β . E y + α . δ x = 1 2 в о л ь т / м е т р .
Figure 00000005
5. Антенна, отличающаяся тем, что содержит, по меньшей мере, один компактный узел возбуждения по одному из предыдущих пунктов.
6. Способ получения компактного узла возбуждения для создания круговой поляризации в антенне, отличающийся тем, что состоит в том, что асимметричный ортомодовый преобразователь ОМТ (21) с двумя ветвями соединяют соответственно двумя щелями (25, 26) параллельного соединения с неуравновешенным ответвителем (40), имеющим два разных коэффициента деления (α, β), размеры ОМТ (21) определяют таким образом, чтобы установить фазовую квадратуру между двумя паразитными составляющими (δy, δx) электрического поля, возникающими из-за асимметрии ОМТ, и коэффициенты деления (α, β) ответвителя (40) оптимизируют, чтобы компенсировать две паразитные составляющие (δy, δx) электрического поля.
7. Способ по п.6, отличающийся тем, что определение размеров ОМТ состоит в определении длины L1 и ширины L2 соединительных щелей (25, 26) ОМТ (21), в расположении плоскости короткого замыкания в основном волноводе ОМТ на выходе соединительных щелей, в определении расстояния D1, отделяющего соединительные щели (25, 26) от двух шлейфовых фильтров (27, 28), расположенных между соединительными щелями (25, 26) и ответвителем (40), при этом расстояние D1, длину L1 и ширину L2 выбирают таким образом, чтобы получить ортогональность между паразитными составляющими (δy, δx) электрического поля, возникающими из-за асимметрии ОМТ.
8. Способ по одному из пп.6 или 7, отличающийся тем, что коэффициенты деления (α, β) ответвителя (40) определяют при помощи трех следующих отношений:
- α22=1,
  α . E x β . δ y = 1 2 в о л ь т / м е т р ,
Figure 00000006

  β . E y + α . δ x = 1 2 в о л ь т / м е т р .
Figure 00000007
RU2009133480/08A 2008-12-16 2009-09-07 Компактный у3ел возбуждения для создания круговой поляризации в антенне и способ получения такого компактного узла возбуждения RU2511488C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0807063A FR2939971B1 (fr) 2008-12-16 2008-12-16 Ensemble d'excitation compact pour la generation d'une polarisation circulaire dans une antenne et procede d'elaboration d'un tel ensemble d'excitation
FR0807063 2008-12-16

Publications (2)

Publication Number Publication Date
RU2009133480A RU2009133480A (ru) 2011-03-20
RU2511488C2 true RU2511488C2 (ru) 2014-04-10

Family

ID=40672289

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009133480/08A RU2511488C2 (ru) 2008-12-16 2009-09-07 Компактный у3ел возбуждения для создания круговой поляризации в антенне и способ получения такого компактного узла возбуждения

Country Status (7)

Country Link
US (1) US8493161B2 (ru)
EP (1) EP2202839B1 (ru)
JP (1) JP5678314B2 (ru)
CN (1) CN101752632B (ru)
CA (1) CA2678530C (ru)
FR (1) FR2939971B1 (ru)
RU (1) RU2511488C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647203C2 (ru) * 2016-08-09 2018-03-14 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Частотно-поляризационный селектор

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938347B1 (fr) * 2008-11-07 2010-11-12 Thales Sa Procede d'estimation de l'ellipticite de polarisation d'un signal de reponse d'antenne a une onde electromagnetique incidente
US9112255B1 (en) * 2012-03-13 2015-08-18 L-3 Communications Corp. Radio frequency comparator waveguide system
CN103138036B (zh) 2013-02-05 2015-10-07 广东通宇通讯股份有限公司 微波通讯系统及其紧凑四通转换器
FR2993716B1 (fr) 2012-07-20 2016-09-02 Thales Sa Antenne d'emission et de reception multifaisceaux a plusieurs sources par faisceau, systeme d'antennes et systeme de telecommunication par satellite comportant une telle antenne
FR3012917B1 (fr) * 2013-11-04 2018-03-02 Thales Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur
FR3029018B1 (fr) 2014-11-26 2016-12-30 Thales Sa Module compact d'excitation radiofrequence a cinematique integree et antenne compacte biaxe comportantau moins un tel module compact
FR3030907B1 (fr) * 2014-12-19 2016-12-23 Thales Sa Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe
FR3035287B1 (fr) 2015-04-15 2017-05-12 Thales Sa Systeme de radiocommunications satellitaire multifaisceaux large bande a reutilisation amelioree de frequences sur voie aller et procede de reutilisation associe
FR3035546B1 (fr) * 2015-04-24 2017-04-21 Thales Sa Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
FR3035548B1 (fr) 2015-04-24 2017-05-05 Thales Sa Architecture d'antenne a plusieurs sources par faisceau et comportant un reseau focal modulaire
CN104868205B (zh) * 2015-05-28 2018-05-08 成都赛纳赛德科技有限公司 Y形结构准平面正交模转接器
CN106299554B (zh) * 2016-08-31 2019-05-14 电子科技大学 新型宽带矩形波导TEn,0模式激励器
US10297920B2 (en) * 2017-02-16 2019-05-21 Lockheed Martin Corporation Compact dual circular polarization multi-band waveguide feed network
FR3071363B1 (fr) 2017-09-19 2019-09-06 Thales Joint tournant pour une antenne rotative et antenne rotative comportant un tel joint
FR3071365B1 (fr) 2017-09-19 2019-09-06 Thales Antenne biaxe comportant une premiere partie fixe, une deuxieme partie rotative et un joint tournant
CN108847521B (zh) * 2018-05-04 2020-03-17 杭州电子科技大学 宽带差分馈电微带滤波天线
CN112514162B (zh) * 2018-09-30 2022-06-10 华为技术有限公司 天线及终端
US11228116B1 (en) * 2018-11-06 2022-01-18 Lockhead Martin Corporation Multi-band circularly polarized waveguide feed network
US10763593B1 (en) * 2018-11-07 2020-09-01 Lockheed Martin Corporation Broadband single pol TX, dual pol RX, circular polarization waveguide network
JP7252054B2 (ja) * 2019-05-15 2023-04-04 日本無線株式会社 ターンスタイル型偏分波器
US11658379B2 (en) * 2019-10-18 2023-05-23 Lockheed Martin Corpora Tion Waveguide hybrid couplers
WO2021083498A1 (en) * 2019-10-29 2021-05-06 European Space Agency Waveguide component for use in an orthomode junction or an orthomode transducer
US11710907B1 (en) * 2020-01-09 2023-07-25 Lockheed Martin Corporation Clone carousel waveguide feed network
FR3110290B1 (fr) 2020-05-15 2022-06-03 Thales Sa Transducteur orthomode large bande
CN111613857B (zh) * 2020-05-25 2022-02-01 南京师范大学 一种采用双层开槽圆形贴片的双通带滤波耦合器
CN111900513B (zh) * 2020-09-04 2021-11-19 北京邮电大学 正交模转换器、天线设备及通信系统
CN112103656A (zh) * 2020-09-17 2020-12-18 成都天锐星通科技有限公司 一种双线极化馈源喇叭
US11728553B1 (en) * 2020-10-19 2023-08-15 Lockheed Martin Corporation Dual-band waveguide feed network
CN112563710B (zh) * 2020-12-07 2022-02-01 江苏亨通太赫兹技术有限公司 一种e波段正交模耦合器
CN112510339B (zh) * 2020-12-22 2021-10-15 华南理工大学 一种高选择性增益的双极化滤波贴片天线
CN113036387B (zh) * 2021-04-21 2021-10-22 中国电子科技集团公司第五十四研究所 一种正交模转换器的加工方法
CN114256581B (zh) * 2021-12-06 2023-02-28 电子科技大学 基于高隔离网络的径向波导功率分配/合成器
CN115295983B (zh) * 2022-07-26 2024-01-02 武汉凡谷电子技术股份有限公司 一种滤波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2090963C1 (ru) * 1993-06-11 1997-09-20 Федор Федорович Дубровка Способ адаптивного преобразования поляризации радиосигналов
RU2118020C1 (ru) * 1995-12-28 1998-08-20 Акционерное общество открытого типа "Радиотехнический институт им.академика А.Л.Минца" Волноводный излучатель
US6166610A (en) * 1999-02-22 2000-12-26 Hughes Electronics Corporation Integrated reconfigurable polarizer
US7408427B1 (en) * 2004-11-12 2008-08-05 Custom Microwave, Inc. Compact multi-frequency feed with/without tracking

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060808A (en) * 1976-06-30 1977-11-29 Rca Corporation Antenna system with automatic depolarization correction
DE3111106A1 (de) * 1981-03-20 1982-09-30 Siemens AG, 1000 Berlin und 8000 München Polarisationsweiche
US6087908A (en) * 1998-09-11 2000-07-11 Channel Master Llc Planar ortho-mode transducer
FR2904478B1 (fr) 2006-07-28 2010-04-23 Cit Alcatel Dispositif de transduction orthomode a compacite optimisee dans le plan de maille, pour une antenne

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2090963C1 (ru) * 1993-06-11 1997-09-20 Федор Федорович Дубровка Способ адаптивного преобразования поляризации радиосигналов
RU2118020C1 (ru) * 1995-12-28 1998-08-20 Акционерное общество открытого типа "Радиотехнический институт им.академика А.Л.Минца" Волноводный излучатель
US6166610A (en) * 1999-02-22 2000-12-26 Hughes Electronics Corporation Integrated reconfigurable polarizer
US7408427B1 (en) * 2004-11-12 2008-08-05 Custom Microwave, Inc. Compact multi-frequency feed with/without tracking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647203C2 (ru) * 2016-08-09 2018-03-14 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Частотно-поляризационный селектор

Also Published As

Publication number Publication date
FR2939971B1 (fr) 2011-02-11
EP2202839B1 (fr) 2019-05-22
CN101752632A (zh) 2010-06-23
US8493161B2 (en) 2013-07-23
JP5678314B2 (ja) 2015-03-04
CN101752632B (zh) 2014-05-21
US20100149058A1 (en) 2010-06-17
JP2010148109A (ja) 2010-07-01
RU2009133480A (ru) 2011-03-20
EP2202839A1 (fr) 2010-06-30
CA2678530A1 (fr) 2010-06-16
FR2939971A1 (fr) 2010-06-18
CA2678530C (fr) 2017-03-21

Similar Documents

Publication Publication Date Title
RU2511488C2 (ru) Компактный у3ел возбуждения для создания круговой поляризации в антенне и способ получения такого компактного узла возбуждения
RU2422956C2 (ru) Устройство преобразования для возбуждения ортогональных мод с оптимизированной компактностью в плоскости ячейки для антенны
JP6490397B2 (ja) E平面内のtカプラを備えたパワースプリッタ、放射アレイ、およびそのような放射アレイを備えたアンテナ
WO2012172565A1 (en) Wideband waveguide turnstile junction based microwave coupler and monopulse tracking feed system
EP1291955B1 (en) Waveguide group branching filter
US4777459A (en) Microwave multiplexer with multimode filter
JPH1117402A (ja) マイクロ波送受信用のアンテナ源
JP5600359B2 (ja) 二帯域マイクロ波放射エレメント
CN111900513B (zh) 正交模转换器、天线设备及通信系统
JP5789673B2 (ja) ホモダインfmcw−レーダ・デバイス用ダイプレクサ
US20230246318A1 (en) Waveguide component for use in an orthomode junction or an orthomode transducer
US11476553B2 (en) Wideband orthomode transducer
CA3063463A1 (en) Multiple-port radiating element
RU2703605C1 (ru) Волноводный поляризационный селектор с уменьшенным продольным размером
JP4903100B2 (ja) 導波管形電力合成分配器およびそれを用いたアレーアンテナ装置
Navarrini et al. Design of a dual polarization SIS sideband separating receiver based on waveguide OMT for the 275–370 GHz frequency band
JPS6014501A (ja) 偏分波器
JPS6017162B2 (ja) 導波管型マルチプレクサ
US20240039137A1 (en) Waveguide
US20240047841A1 (en) Butler matrix circuit
US10069210B2 (en) Orthogonal-mode junction coupler and associated polarization and frequency separator
JPS6340487B2 (ru)
JP2002185205A (ja) 導波管分岐回路、導波管偏分波器および導波管群分波器
JPS6319083B2 (ru)
JPS6319082B2 (ru)