RU2505563C1 - Полимерная композиция для изготовления труб - Google Patents

Полимерная композиция для изготовления труб Download PDF

Info

Publication number
RU2505563C1
RU2505563C1 RU2012129477/05A RU2012129477A RU2505563C1 RU 2505563 C1 RU2505563 C1 RU 2505563C1 RU 2012129477/05 A RU2012129477/05 A RU 2012129477/05A RU 2012129477 A RU2012129477 A RU 2012129477A RU 2505563 C1 RU2505563 C1 RU 2505563C1
Authority
RU
Russia
Prior art keywords
nanofibers
polyethylene
pe80b
polymer composition
polyacrylonitrile
Prior art date
Application number
RU2012129477/05A
Other languages
English (en)
Inventor
Евгения Спартаковна Петухова
Савва Николаевич Попов
Мария Евгеньевна Саввинова
Марина Дмитриевна Соколова
Светлана Владимировна Соловьева
Лилия Ягьяевна Морова
Ирина Вадимовна Токарева
Илья Владимирович Мишаков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук
Priority to RU2012129477/05A priority Critical patent/RU2505563C1/ru
Application granted granted Critical
Publication of RU2505563C1 publication Critical patent/RU2505563C1/ru

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к полимерным композициям и может быть использовано для изготовления полимерных труб, предназначенных для транспортировки воды, газа, нефтепродуктов и т.д. Композиция включает полиэтилен низкого давления средней плотности марки ПЭ80Б и рубленные углеродные волокна в количестве 10 мас.%. При этом используют рубленные углеродные волокна на основе полиакрилонитрила длиной 5÷6 мм, диаметром 5,4÷6,0 мкм, на поверхности которых каталитически наращены наноуглеродные волокна с приростом 22-32 мас.%. Изобретение обеспечивает повышение физико-механических свойств трубного материала, а именно увеличение предела текучести и модуля упругости при растяжении, удлинения при разрыве и при пределе текучести. 1 табл.

Description

Изобретение относится к области полимерного материаловедения, а именно, к созданию композиционно-волокнистого материала для изготовления полимерных труб и может быть использовано в различных отраслях народного хозяйства: в технике, в строительстве, в коммунальном хозяйстве, в промышленности для транспортировки воды, пульп, газа, нефтепродуктов и т.д.
Известна полимерная композиция конструкционного назначения, включающая полиэтилен низкого давления, волокнистый наполнитель и силикатную смазку, линейный полиэтилен высокого давления и скользящую добавку на полимерной основе Booster PO. В качестве волокнистого наполнителя и силикатной смазки используют коротковолокнистый хризотил-асбест с длиной волокон 0,1 и 1,35 мм, взятых в соотношении 1:6. Скользящая добавка на полимерной основе Booster PO состоит из олефиновых эластомеров, сополимера этилена и вторичного винилового сополимера, полиэтилена. Изделия, изготовленные из этой полимерной композиции, обладают повышенными физико-механическими характеристиками и эксплуатационными свойствами при низких и высоких температурах. (1. Шуклин В.Н., Беленков В.Н., Бурындин В.Г., Мухин Н.М. Полимерная композиция. Патент РФ №2356919, МПК C08L 23/00, дата подачи заявки 01.10.2007. - М.: 2009.). Однако, данная полимерная композиция имеет ограниченные области применения (преимущественно для изготовления предохранительных деталей резьбовых частей труб), что связано с технологическими сложностями при изготовлении композита, а также редкостью использованных компонентов.
Известна мультимодальная полимерная композиция предназначенная для изготовления труб которая содержит 92-99 мас.% бимодального полиэтилена и 1-8 мас.% сажи (2. Ээрилэ Яри, Бэкман Мате. Полимерная композиция для труб. Патент РФ №2271373 МПК C04L 23/04, C04L 23/06, F16L 9/12. - М.: 2006). Материал обладает высокой технологичностью, высоким сопротивлением быстрому распространению трещин и высоким максимально допустимым расчетным напряжением. Недостатком получения данной композиции - полиэтилена с заданным молекулярно-массовым распределением, который состоит из 42-55 мас.% низкомолекулярного гомополимера этилена, имеющего скорость течения расплава MFR2, i от 350 до 1500 г/10 мин., и 58-45 мас.% высокомолекулярного сополимера этилена с 1-гексеном, 4-метил-1-пентеном, 1 октеном и/или 1-десеном, следует считать технологически сложный процесс производства бимодального полиэтилена: в предпочтительном варианте изобретения бимодальный полиэтилен производится с использованием многоступенчатого процесса. В частности, предпочтительным является процесс, включающий в себя каскад из реактора с циркуляцией и реактора газовой фазы, причем полимеризация происходит в присутствии катализатора Циглера-Натта. Это исключает широкое использование данной полимерной композиции и сильно удорожает готовую продукцию.
Наиболее близкой по технической сущности и достигаемому результату к заявляемой композиции является полимерная композиция содержащая полиэтилен низкого давления средней плотности марки ПЭ80Б и дисперсно-армирующий наполнитель, в которой дисперсно-армирующий наполнитель содержит рубленые углеродные волокна, синтезированные из полиакрилонитрила длиной 5÷6 мм, диаметром 5,4÷6,0 мкм. Изделия, изготовленные из этой полимерной композиции, обладают высокими физико-механическими характеристиками при растяжении (3. Морова Л.Я., Попов С.Н., Семенова Е.С., Саввинова М.Е., Соловьева С.В., Мишаков И.В., Стрельцов И.А. Перспективы применения макро- и наноуглеродных волокон для модификации полиэтилена марки ПЭ80Б / Известия Самарского научного центра Российской академии наук. Самара, Т.13, №1(2), 2011, С.386-389). Однако, данные полимерные композиции имеют низкие значения деформационных характеристик.
Технической задачей настоящего изобретения является создание дисперсно-армированного трубного материала с улучшенными физико-механическими свойствами при разрыве и пределе текучести.
Достижение такого эффекта обеспечивается введением в полиэтилен низкого давления средней плотности класса ПЭ80 рубленых углеродных волокон, синтезированных из полиакрилонитрила длиной 5÷6 мм и диаметром 5,4÷6,0 мкм, на поверхности которых каталитически наращены углеродные нановолокна, массовый прирост которых составляет 22-32%, при следующем соотношении компонентов (мас.%):
Рубленые углеродные волокна из полиакрилонитрила,
на поверхности которых наращены нановолокна
(массовый прирост которых составляет 22-32%) 10,0
Полиэтилен низкого давления средней плотности
марки ПЭ80Б остальное
ПЭ80Б - полиэтилен низкого давления средней плотности класса ПЭ80 (ТУ 2243-046-00203521-2004) - представляет собой гранулированный материал черного цвета плотностью при 20°C 945÷953 кг/м3 и показателем текучести расплава при нагрузке 212 Н - 6,5÷16,0 г/10 мин и при нагрузке 49 Н - 0,35÷0,70 г/10 мин и отличается повышенной стойкостью к старению при эксплуатации.
В качестве основы для получения модифицированных углеродных волокон (волокон, на поверхность которых нанесены нановолокна) были использованы углеродные волокна, синтезированные из полиакрилонитрила. Длина использованных волокон составляла 5÷6 мм, диаметр 5,4÷6,0 мкм, удельная поверхность 1,811 м2/г (ГОСТ 280008-88). Полиакриловые волокна обладают довольно высокой прочностью (разрывное напряжение 250÷400 МПа) и сравнительно большой растяжимостью (22÷35%). Благодаря низкой гигроскопичности эти свойства во влажном состоянии не изменяются.
Углеродные нановолокна относятся к наноструктурированным графитоподобным материалам. Углеродные нановолокна получают путем каталитической диссоциации углеводородов на металлах 8-ой группы (никель, кобальт и железо) и их сплавах с другими элементами. В зависимости от природы катализатора, температуры процесса и состава углеводородного сырья можно целенаправленно синтезировать углеродные нановолокна с заданным архитектурным устройством, определяемым взаимным расположением графеновых слоев относительно оси углеродной нити.
Нанесение нановолокон на поверхность рубленых макроволокон осуществлялось на модернизированной установке для переработки углеводородного сырья, снабженной роторным реактором. Процесс каталитического разложения углеводородного сырья производился с использованием в качестве катализаторов двухвалентных металлов VIII группы (никель, кобальт, железо), восстановленных из их солей. Синтез нановолокон на поверхности макроволокон осуществлялся из метана, этана, а также из пропан-бутановой смеси при температуре 500÷700°C в потоке аргона. Время выдержки модифицируемых волокон в потоке диссоциируемого газа составляет 10 минут. Модифицированные углеродные волокна представляют собой углеродные волокна, на поверхности которых содержится равномерный слой углеродных нановолокон. Массовый прирост нановолокон составляет 22÷32% в зависимости от концентрации катализатора и температуры реакции. Так, при использовании никелевого катализатора в количестве 1 мас.% от массы модифицируемого волокна и температуре реакции 500°C, прирост нановолокон составляет 22,3%, увеличение массы катализатора до 2,5 мас.% при той же температуре позволяет получить макроволокна с массовым приростом нановолокон 32,5 мас.%.
Получение полиэтиленовых дисперсно-армированных композитов осуществлялось на пластикордере «BRABENDER». Смесь полиэтилена и модифицированных углеродных волокон получали при температуре 180°C и скорости вращения валков пластикордера 30 об/мин. Полученную смесь механически измельчали до размеров стандартного гранулированного полиэтилена (2÷5 мм). Гранулированный композит экструдировали при температуре 180°С и скорости вращения валков 15 об/мин.
Физико-механические характеристики композитов заявляемого состава определяли на стандартных образцах согласно ГОСТ 11262-80. Испытания проводили на разрывной машине UTS-2 при скорости перемещения активных захватов 50 мм/мин. Пример:
К 36 г полиэтилена марки ПЭ80Б добавляли 4 г модифицированных нановолокнами рубленых углеродных волокон; смесь полиэтилена и наполнителя получали в расплаве при температуре 180°C; полученную смесь механически измельчали до размеров стандартного гранулированного материала - 2-5 мм. Полученные гранулы экструдировали на пластикордере «BRABENDER» при температуре 180°C и скорости вращения валков 15 об/мин.
Технико-экономическая эффективность.
Трубный дисперсно-армированный материал заявляемого состава обладает повышенными прочностными характеристиками по сравнению с прототипом (таблица 1).
Композиты, содержащие в качестве дисперсно-армирующей добавки рубленые углеродные волокна, поверхность которых модифицирована углеродными нановолокнами, характеризуются более высокими значениями предела текучести при растяжении по сравнению с исходным полиэтиленом, а также по сравнению с композитом, содержащим немодифицированный наполнитель. Удлинение при разрыве и удлинение при пределе текучести композитов с модифицированными волокнами в 8,5 и 2 раза, соответственно, выше, чем у композитов, содержащих немодифицированный наполнитель (прототип), что свидетельствует об улучшении адгезионного взаимодействия в системе полиэтилен - волокно.
Применение композиционного дисперсно-армированного трубного материала заявляемого состава для прокладки трубопроводов различного функционального назначения позволит значительно повысить их надежность и долговечность.
Таблица 1
Состав, мас.% Предел текучести при растяжении, МПа Модуль упругости при растяжении, МПа Удлинение при разрыве, % Удлинение при пределе текучести, %
1 ПЭ80Б 20,1 986 620,0 7,3
2 ПЭ80Б - 90 + Углеродные волокна из полиакрилонитрила модифицированные нановолокном - 10 26,3 1323,0 164,1 6,5
3 ПЭ80Б - 90 + Углеродные волокна из полиакрилонитрила - 10 (прототип) 23,8 1499,0 19,3 3,1

Claims (1)

  1. Полимерная композиция для изготовления труб, содержащая полиэтилен низкого давления средней плотности марки ПЭ80Б и дисперсно-армирующий наполнитель в виде рубленых углеродных волокон, синтезированных из полиакрилонитрила, длиной 5÷6 мм, диаметром 5,4÷6,0 мкм, отличающаяся тем, что на поверхности рубленых углеродных волокон каталитически наращены углеродные нановолокна с массовым приростом нановолокон до 22÷32%, при следующем соотношении компонентов, мас.%:
    Рубленые углеродные волокна из полиакрилонитрила, на поверхности которых наращены нановолокна 10,0 Полиэтилен низкого давления средней плотности марки ПЭ80Б Остальное
RU2012129477/05A 2012-07-11 2012-07-11 Полимерная композиция для изготовления труб RU2505563C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012129477/05A RU2505563C1 (ru) 2012-07-11 2012-07-11 Полимерная композиция для изготовления труб

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012129477/05A RU2505563C1 (ru) 2012-07-11 2012-07-11 Полимерная композиция для изготовления труб

Publications (1)

Publication Number Publication Date
RU2505563C1 true RU2505563C1 (ru) 2014-01-27

Family

ID=49957701

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012129477/05A RU2505563C1 (ru) 2012-07-11 2012-07-11 Полимерная композиция для изготовления труб

Country Status (1)

Country Link
RU (1) RU2505563C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2824357C1 (ru) * 2023-05-30 2024-08-07 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Якутский научный центр Сибирского отделения Российской академии наук", Абразивостойкий композиционный материал на основе полиэтилена низкого давления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU580845A3 (ru) * 1974-11-15 1977-11-15 Байер Аг (Фирма) Формовочна композици
RU2271373C2 (ru) * 2000-04-13 2006-03-10 Бореалис Текнолоджи Ой Полимерная композиция для труб
RU2379387C1 (ru) * 2008-04-29 2010-01-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ получения углеродного волокна, модифицированного многослойными углеродными нанотрубками
US20100291367A1 (en) * 2007-06-09 2010-11-18 Nextek Limited Lining
CN102417650A (zh) * 2011-11-28 2012-04-18 浙江伟星新型建材股份有限公司 一种耐磨交联pe复合管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU580845A3 (ru) * 1974-11-15 1977-11-15 Байер Аг (Фирма) Формовочна композици
RU2271373C2 (ru) * 2000-04-13 2006-03-10 Бореалис Текнолоджи Ой Полимерная композиция для труб
US20100291367A1 (en) * 2007-06-09 2010-11-18 Nextek Limited Lining
RU2379387C1 (ru) * 2008-04-29 2010-01-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ получения углеродного волокна, модифицированного многослойными углеродными нанотрубками
CN102417650A (zh) * 2011-11-28 2012-04-18 浙江伟星新型建材股份有限公司 一种耐磨交联pe复合管及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
МОРОВА Л.Я. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ МАКРО- И НАНОУГЛЕРОДНЫХ ВОЛОКОН ДЛЯ МОДИФИКАЦИИ ПОЛИЭТИЛЕНА МАРКИ ПЭ80Б. - Известия Самарского научного центра РАН, 2011, т.3, No.1(2). *
МОРОВА Л.Я. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ МАКРО- И НАНОУГЛЕРОДНЫХ ВОЛОКОН ДЛЯ МОДИФИКАЦИИ ПОЛИЭТИЛЕНА МАРКИ ПЭ80Б. - Известия Самарского научного центра РАН, 2011, т.3, №1(2). *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2824357C1 (ru) * 2023-05-30 2024-08-07 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Якутский научный центр Сибирского отделения Российской академии наук", Абразивостойкий композиционный материал на основе полиэтилена низкого давления

Similar Documents

Publication Publication Date Title
Pöllänen et al. Influence of carbon nanotube–polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene
TWI736891B (zh) 熱塑性聚烯烴組成物之改良的流變性質
JP6490580B2 (ja) 非常に低含有量の炭素系ナノフィラーを有する複合材料、これらの調製方法およびこれらの使用
US7652084B2 (en) Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes
Biswal et al. Thermal stability and flammability of banana‐fiber‐reinforced polypropylene nanocomposites
KR102214801B1 (ko) 중합체 수지 조성물 및 상기 조성물로 형성된 물건
RU2007149521A (ru) Полиэтиленовые трубы
CN105570560B (zh) 石墨烯增强导热性复合聚烯烃管材
CN102348758A (zh) 填充有官能化的碳纳米管的环氧树脂的改善的机械性能
Hanifpour et al. Silica‐grafted poly1‐hexene: A new approach to prepare polyethylene/silica nanocomposites
WO2004031461A1 (ja) 炭素繊維およびマットの製造のための方法と組成物
JP2019515970A (ja) 変性ポリエチレン樹脂及びそれを作製する方法
Haddadi et al. SiO2‐covered graphene oxide nanohybrids for in situ preparation of UHMWPE/GO (SiO2) nanocomposites with superior mechanical and tribological properties
JP7128318B2 (ja) プロピレン系樹脂組成物及びその射出成形体
KR20130139003A (ko) 그래핀 및 탄소나노튜브의 혼합 탄소나노입자가 도입된 선형저밀도폴리에틸렌 복합체와 그 제조방법
US20130190442A1 (en) Linear low density polyethylene nanocomposite fibers and method of making the same
Guo et al. Properties of bamboo flour/high‐density polyethylene composites reinforced with ultrahigh molecular weight polyethylene
Zheng et al. Thermoplastic soy protein nanocomposites reinforced by carbon nanotubes
CN109535532B (zh) 一种1-己烯共聚线性聚乙烯树脂的生产方法
Jia et al. Hydrogen Bonding Crosslinking of Starch‐Polyvinyl Alcohol Films Reinforced by Ultrasound‐Assisted and Cellulose Nanofibers Dispersed Cellulose Nanocrystals
RU2505563C1 (ru) Полимерная композиция для изготовления труб
Baniasadi et al. Innovative integration of pyrolyzed biomass into polyamide 11: Sustainable advancements through in situ polymerization for enhanced mechanical, thermal, and additive manufacturing properties
CN112321759B (zh) 一种低剪切模量的聚烯烃及其应用
Li et al. Mechanical properties and crystallization behavior of poly (butylene succinate) composites reinforced with basalt fiber
EP3743278B1 (en) Pipe with high abrasion resistance

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190712