RU2498954C2 - Защитные слои для оптических покрытий - Google Patents

Защитные слои для оптических покрытий Download PDF

Info

Publication number
RU2498954C2
RU2498954C2 RU2008146334/03A RU2008146334A RU2498954C2 RU 2498954 C2 RU2498954 C2 RU 2498954C2 RU 2008146334/03 A RU2008146334/03 A RU 2008146334/03A RU 2008146334 A RU2008146334 A RU 2008146334A RU 2498954 C2 RU2498954 C2 RU 2498954C2
Authority
RU
Russia
Prior art keywords
layer
carbon
optical coating
metal
optical
Prior art date
Application number
RU2008146334/03A
Other languages
English (en)
Other versions
RU2008146334A (ru
Inventor
Кайли В. ХАКЕРИ
Питер А. МЕШВИТЦ
Ренд Д. ДАННЕНБЕРГ
Original Assignee
АГК Флэт Гласс Нос Амэрика, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АГК Флэт Гласс Нос Амэрика, Инк. filed Critical АГК Флэт Гласс Нос Амэрика, Инк.
Publication of RU2008146334A publication Critical patent/RU2008146334A/ru
Application granted granted Critical
Publication of RU2498954C2 publication Critical patent/RU2498954C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3634Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

Изобретение относится к защитным слоям, наносимым на оптические покрытия, находящиеся на прозрачных подложках. Предложено оптическое покрытие на прозрачной подложке с временным углеродным слоем, предназначенным для защиты от царапин и корродирующих сред во время изготовления. Когда оптическое покрытие и/или подложка подвергаются закалке в атмосфере, реакционноспособной по отношению к углероду, такой как воздух, слой углерода удаляется в виде углеродсодержащего газа. Для оптического покрытия с хрупким стеклообразным наружным слоем, самым дальним от подложки, дополнительная защита обеспечивается препятствующим распространению трещин слоем, расположенным между наружным слоем и углеродным слоем. Способ получения прозрачного изделия включает формирование на наружном слое препятствующего распространению трещин слоя, имеющего толщину от 2 до 8 нм, в котором препятствующий распространению трещин слой является однородным слоем, содержащим материал, выбранный из группы, состоящей из Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; оксидов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; нитридов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; и их смесей. Техническим результатом изобретения является уменьшение количества царапин и других поверхностных дефектов на поверхности прозрачного изделия. 2 н. и 12 з.п. ф-лы, 6 ил., 2 табл., 4 пр.

Description

Область изобретения
Настоящее изобретение относится к защитным слоям, наносимым на оптические покрытия, находящиеся на прозрачных подложках. В частности, настоящее изобретение относится к использованию временного углеродного защитного слоя. Кроме того, настоящее изобретение относится к препятствующему распространению трещин (ПРТ) слою, нанесенному на наружный слой различных оптических покрытий.
Обсуждение предшествующего уровня техники
Оптические покрытия наносят на прозрачные подложки для отражения или иного изменения части или всего излучения, падающего на подложку. Например, оптическое покрытие зеркала предназначено для отражения видимого света. Оптические покрытия с низкой излучательной способностью предназначены для ослабления пропускания инфракрасного излучения. Оптические покрытия обычно включают два или большее количество разных слоев, каждый из которых обладает толщиной в диапазоне от менее 1 до более 500 нм.
Оптические покрытия часто повреждаются во время транспортировки и обращения с ними вследствие царапания и воздействия корродирующих сред. В частности, после выведения на рынок декоративных окон несколько десятилетий тому назад покрытия с низкой излучательной способностью на основе серебра подвергались коррозии. Попытки увеличения долговечности оптических покрытий включали нанесение временного защитного слоя, такого как пластмассовая пленка с клеющим слоем. Другие защитные слои формировали путем нанесения на стекло и отверждения полимеров на основе растворителей.
Однако применение клеящихся пленок и полимерных пленок в качестве защитных слоев на оптических покрытиях сопряжено с целым рядом затруднений. Для нанесения клеящихся пленок и полимерных пленок на оптические покрытия необходимо дорогостоящее специализированное оборудование. При отделении клеящейся пленки от оптического покрытия клеящаяся пленка увеличивает опасность того, что будут удалены участки оптического покрытия. Даже если участки оптического покрытия не удаляются, сила, действующая на оптическое покрытие при удалении клеящейся пленки, может повредить оптическое покрытие. Полимерную пленку на основе растворителя, нанесенную на оптическое покрытие, необходимо высушить и удалить растворитель, не оказывая вредного воздействия на окружающую среду. Удаление полимерной пленки с оптического покрытия требует специальной промывки, которая легко может повредить оптическое покрытие.
Для защиты от коррозии в большинстве применяющихся в настоящее время многослойных покрытий с низкой излучательной способностью на основе серебра используются барьерные или наружные слои, находящиеся в непосредственном соприкосновении со слоями серебра и расположенные с одной или обеих сторон от слоев серебра. В данной области техники хорошо известно, что различные тонкие пленочные слои могут выступать в качестве барьеров для перемещения корродирующих жидкостей, таких как пары воды, и кислорода. Известно, что слои металлов являются особенно эффективными барьерами для диффузии, что обусловлено их способностью физически и химически подавлять диффузию корродирующих жидкостей. Слои металлов склонны являться более эффективными физическими барьерами для диффузии, чем диэлектрические слои, такие как оксиды, поскольку и нанесенные из газовой фазы, и напыленные слои металлов склонны содержать меньше точечных микродефектов, чем слои оксидов. Слои металлов также склонны химически блокировать диффузию путем реакции с диффундирующими через точечные микродефекты жидкостями, в результате чего останавливается перемещение всех химически связанных молекул жидкости. В свою очередь, связанные молекулы жидкости ограничивают прохождение других молекул жидкости через точечные микродефекты. Для химического блокирования особенно эффективными являются более активные металлы.
Закалка значительно уменьшает вызванные коррозией проблемы, связанные с покрытием с низкой излучательной способностью на основе серебра. Закалка приводит к переходу структуры на атомном уровне в состояние с более низкой энергией и делает серебро намного менее склонным к коррозии. Закалка также повышает твердость и сопротивление оптических покрытий к царапанию.
Однако до закалки оптических покрытий покрытия остаются особенно восприимчивыми к повреждению путем царапания и коррозии. Даже после закалки оптические покрытия не защищены от царапания и коррозии.
Царапины на оптическом покрытии часто не становятся видимыми до того, как покрытие будет нагрето и подвергнуто закалке, что вызывает рост и распространение царапин.
В качестве защитного покрытия на стеклянных подложках используют углерод. Например, в патенте США №6303226 раскрыто использование защитного слоя из аморфного алмазоподобного углерода (АПУ) на стеклянной подложке.
Имеется потребность в улучшенных способах и слоях для защиты оптических покрытий.
Краткое содержание изобретения
Настоящее изобретение относится к способу получения прозрачного изделия с уменьшенным количеством царапин и других поверхностных дефектов. Прозрачное изделие включает оптическое покрытие на прозрачной подложке. В соответствии с настоящим изобретением на оптическом покрытии формируется защитное покрытие, которое увеличивает долговечность и стойкость оптического покрытия к царапанию, в особенности во время получения.
Защитное покрытие может включать слой, состоящий по существу из углерода. Углеродный защитный слой формируется на оптическом покрытии до закалки. Во время транспортировки не подвергнутого закалке оптического покрытия и обращения с ним углеродный слой служит в качестве обладающего низким трением защитного слоя, предохраняющего от царапания. Нагрев и закалка оптического покрытия и/или прозрачной подложки в атмосфере, реакционноспособной по отношению к углероду, приводит к расходованию углеродного защитного слоя, что исключает образование каких-либо царапин или других поверхностных дефектов углерода. Углеродный защитный слой превращается в углеродсодержащий газ, а под ним остается в основном не содержащее царапин оптическое покрытие.
Защитное покрытие также может включать тонкий защитный слой материала, препятствующего распространению трещин (ПРТ). Материал ПРТ подавляет распространение трещин в хрупком, стеклообразном наружном слое различных оптических покрытий во время закалки. Материалы ПРТ, такие как Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Ta и W и их оксиды и нитриды, пригодны для использования на наружном слое нитрида кремния (например, Si3N4). Слой ПРТ можно сформировать путем осаждения на наружном слое оптического покрытия барьерного для диффузии слоя, содержащего, по меньшей мере, один металл, субоксид металла или субнитрид металла Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та или W с последующим введением барьерного для диффузии слоя в реакцию с кислородсодержащей атмосферой, такой как воздух, с образованием металлооксидного слоя ПРТ, включающего, по меньшей мере, одно из следующих соединений: TiO2, SiO2, ZnO, SnO2, In2O3, ZrO2, Al2O3, Cr2O3, Nb2O5, MoO3, HfO2, Ta2O5 и WO3. Слой ПРТ можно использовать с углеродным защитным слоем на слое ПРТ или без него.
Применение временного углеродного защитного слоя при получении прозрачного изделия, обладающего оптическим покрытием, значительно уменьшает количество и размер царапин, образованных в оптическим покрытии во время получения. Поскольку углеродный слой удаляется во время закалки, углеродный слой не влияет на оптические характеристики оптического покрытия. Хотя слой ПРТ не удаляется во время закалки и может оказывать влияние на оптические характеристики оптического покрытия, все же вследствие предотвращения распространения царапин слой ПРТ особенно полезен для защиты хрупкого, стеклообразного наружного слоя оптического покрытия от образования видимых царапин. Слой металла, субоксида металла или субнитрида металла особенно полезен для обеспечения защиты от коррозии перед закалкой и с помощью закалки в атмосфере, содержащей кислород, он может быть превращен в слой ПРТ оксида металла, который по существу прозрачен для видимого света.
Краткое описание чертежей
Предпочтительные варианты осуществления настоящего изобретения будут подробно описаны с помощью приведенных ниже чертежей.
На ФИГ.1A-1C показано осаждение углеродного защитного слоя на оптическом покрытии, находящемся на стеклянной подложке, и последующее удаление углеродного защитного слоя.
На ФИГ.2 показана стеклянная подложка, покрытая оптическим покрытием, слоем, препятствующим распространению трещин, и углеродным защитным слоем.
На ФИГ.3 показано распространение трещины через слой Si3N4.
На ФИГ.4A-4C показано осаждение металлического слоя на оптическом покрытии, находящемся на стеклянной подложке, и последующее превращение металлического слоя в металлооксидный слой, препятствующий распространению трещин.
На ФИГ.5 сопоставлены процарапанные стеклянные подложки, обладающие одинаковым оптическим покрытием, но обладающие и не обладающие углеродным защитным слоем.
На ФИГ.6 сопоставлены процарапанные стеклянные подложки, обладающие одинаковым оптическим покрытием, но обладающие и не обладающие углеродным защитным слоем.
Подробное описание предпочтительных вариантов осуществления
Настоящее изобретение относится к защитному покрытию на оптическом покрытии, осажденном на прозрачную подложку, предназначенному для предотвращения образования царапин на оптическом покрытии и коррозии оптического покрытия.
Прозрачная подложка может являться пластмассой или стеклом. Предпочтительно, чтобы прозрачная подложка являлась стеклом, которое можно подвергнуть закалке путем нагревания и резкого охлаждения.
В вариантах осуществления защитное покрытие включает углеродный защитный слой. Углерод является классическим материалом с низким трением. Даже если абразивный материал первоначально царапает углерод, абразивный материал часто покрывается углеродом. Последующий контакт между покрытым углеродом абразивным материалом и углеродом характеризуется одним из самых низких коэффициентов трения µстатический = µкинетический = от 0,1 до 0,2. Таким образом, покрытый углеродом абразивный материал склонен соскальзывать с углерода и более не повреждать углерод. Углерод также инертен во многих корродирующих средах и обладает высокой стойкостью к воздействию щелочей и большинства кислот. Таким образом, углеродный слой на оптическом покрытии может защищать оптическое покрытие от царапин и корродирующего воздействия окружающей среды во время обращения с ним.
На ФИГ.1A-1C проиллюстрирован вариант осуществления настоящего изобретения, в котором на оптическом покрытии сформирован временный углеродный слой для защиты оптического покрытия от царапин и корродирующего воздействия окружающей среды во время изготовления. На ФИГ.1A показана стеклянная подложка 1, покрытая оптическим покрытием 2. На ФИГ.1B показано, что для защиты оптического покрытия от царапин и корродирующего воздействия окружающей среды во время транспортировки и обращения с ним на оптическое покрытие 2 нанесен углеродный защитный слой 3. На ФИГ.1C показано, что после закалки оптического покрытия 2 и/или стеклянной подложки 1 при повышенных температурах в атмосфере, реакционноспособной по отношению к углероду, углеродный защитный слой 3 превращается в углеродсодержащий газ и удаляются все царапины и другие дефекты, которые имелись в углеродном защитном слое 3.
Углеродный защитный слой представляет собой слой, по существу состоящий из углерода. Выражение "по существу состоящий из", не исключая неизбежных примесей, исключает другие произвольные элементы и соединения, которые могли бы остаться в виде твердого остатка после того, как углерод полностью прореагировал с реакционноспособной атмосферой с образованием углеродсодержащего газа. В вариантах осуществления углеродный слой состоит из углерода и неизбежных примесей.
Углеродный слой можно осадить на оптическое покрытие с помощью способа газофазного осаждения. Методики и способы газофазного осаждения углерода хорошо известны в данной области техники. Подходящий способ газофазного осаждения включает способы превращения в пар и плазменного осаждения, такие как плазменное химическое газофазное осаждение, внедрение ионов и распыление. Распыление может осуществляться с помощью постоянного тока и высокочастотного излучения. Для формирования углеродного слоя в способе плазменного осаждения можно использовать инертный газ, такой как Ar, с небольшими количествами дополнительных газов, таких как водород и азот, или без них. Наличие от 1 до 10% азота в инертном газе способствует осаждению графитообразного углерода. Азот, содержащийся в инертном газе, можно использовать для легирования углерода азотом.
Углеродный слой может включать одну или большее количество фаз углерода, такую как графитовую, алмазную и аморфную углеродную фазы. Углеродный слой также может включать алмазоподобный углерод. В графите углерод образует sp2 связи. В алмазе углерод образует sp3 связи. Аморфный углерод обычно включает и sp2, и sp3 связи, но не обладает дальним порядком. Алмазоподобный углерод также включает и sp2, и sp3 связи и обладает твердостью, сходной с твердостью алмаза.
Углеродный слой может обладать толщиной, равной от 1 до 10 нм. Углеродный слой толщиной менее 1 нм не обеспечивает надлежащее сопротивление царапанию. Углеродный слой толщиной более 10 нм становится трудно полностью удалить в атмосфере, реакционноспособной по отношению к углероду.
Реакционноспособная атмосфера, использующаяся для превращения углеродного защитного слоя в углеродсодержащий газ, может включать различные газы, для которых в данной области техники известно, что они реакционноспособны по отношению к углероду. Например, реакционноспособная атмосфера может включать водород, который может превращать углерод в газообразный метан. Галоген, такой как фтор или хлор, можно использовать для образования при повышенных температурах газообразного галогенметана, такого как CF4 или CCl4. Кислород в реакционноспособной атмосфере можно использовать для образования газообразных монооксида углерода и диоксида углерода. Поскольку оптические покрытия и стекла обычно содержат различные оксиды, которые инертны в атмосфере кислорода, атмосфера, реакционноспособная по отношению к углероду, предпочтительно содержит кислород. Поскольку воздух, который содержит 02, является недорогостоящим и легко доступным, более предпочтительной реакционноспособной атмосферой является воздух.
Закалка является процессом, который включает нагрев материала до повышенных температур и последующее резкое охлаждение. Известно, что закалка значительно увеличивает прочность и ударную вязкость стекла и оптических покрытий на стекле. Стекло можно подвергнуть закалке путем нагревания до температуры в диапазоне от 400 до 650°C с последующим резким охлаждением до комнатной температуры. Оптические покрытия, включающие слои Ag, можно подвергнуть закалке путем нагревания до температуры ниже 960°C, температуры плавления Ag, с последующим резким охлаждением до комнатной температуры. Например, обладающее низкой излучательной способностью оптическое покрытие, включающее слой Ag, можно подвергнуть закалке путем нагревания при температуре, равной примерно 730°C, в течение нескольких минут, с последующим резким охлаждением. Стеклянные и оптические покрытия предпочтительно подвергать закалке при температуре, равной не менее 400°C. В вариантах осуществления настоящего изобретения и стеклянное, и оптическое покрытие подвергают закалке в печи, находящейся при повышенной температуре. В других вариантах осуществления, чтобы не нагревать всю массу стекла, закалке подвергают только оптическое покрытие. Например, вместо нагревания в печи оптическое покрытие можно нагревать с помощью пламени или лампы высокой интенсивности до температуры, достаточной и для закалки оптического покрытия, и для выжигания углеродного защитного слоя.
Таким образом, закалка оптического покрытия, покрытого углеродным защитным слоем, в атмосфере, реакционноспособной по отношению к углероду, может привести к тому, что углерод образует углеродсодержащий газ и удалится с поверхности оптического покрытия. Вместе с углеродным слоем исчезнут царапины, находящиеся на углеродном слое. Предпочтительно, чтобы закалка в реакционноспособной атмосфере привела к удалению всего углеродного защитного слоя с оптической поверхности.
Углеродный защитный слой может защитить оптическое покрытие от царапин, образующихся во время получения покрытия, например, во время транспортировки и обращения с ним. Кроме того, углеродный защитный слой может защитить оптическое покрытие от воздействия корродирующих окружающих сред, которые могут образоваться, когда оптическое покрытие с углеродным защитным слоем хранится на воздухе в течение одних или большего количества суток или промывается. Предпочтительно, чтобы количество царапин, имеющихся на оптическом покрытии сразу же после удаления углеродного защитного слоя, составляло не более 110% от количества царапин, имевшихся на оптическом покрытии непосредственно перед осаждением углерода на оптическом покрытии.
В вариантах осуществления настоящего изобретения между углеродным защитным слоем и оптическим покрытием можно сформировать слой ПРТ. Предпочтительно, чтобы слой ПРТ обладал равномерным составом и был однородным. Слой ПРТ изготавливается из материала, обладающего способностью во время закалки препятствовать распространению царапин и трещин в наружном слое оптического покрытия. Для разных наружных слоев в слое ПРТ требуются разные материалы. Материал, формирующий слой ПРТ, должен быть менее хрупким и стеклообразным, чем наружный слой оптического покрытия. Предпочтительно, чтобы вязкость разрушения материала ПРТ была больше, чем у наружного слоя.
На ФИГ.2 показан вариант осуществления настоящего изобретения, в котором слой ПРТ4 расположен между углеродным защитным слоем 3 и наружным слоем Si3N4 2а оптического покрытия 2. И слой ПРТ4, и углеродный защитный слой 3 обеспечивают защиту от царапания оптического покрытия 2. В частности, слой ПРТ4 препятствует распространению царапин в углеродном защитном слое 3 как в самом слое, так и в слое Si3N4 2а.
Предпочтительно, чтобы наружный слой нитрида кремния обладал равномерным составом и был однородным.
Предпочтительно, чтобы наружный слой аморфного нитрида кремния (т.е. аморфного Si3N4) находился в оптическом покрытии на стекле, подвергающемся закалке. Аморфный нитрид кремния не должен испытывать фазового перехода при нагревании до температур, необходимых для закалки стекла. Кроме того, плотность аморфного нитрида кремния одинакова до и после закалки, так что закалка не приводит к возникновению напряжений на границе раздела между нитридом кремния и остальной частью оптического покрытия, которые могут привести к отслаиванию.
Аморфный нитрид кремния также предотвращает образование помутнения в оптическом покрытии. Помутнение возникает, когда материалы смешиваются с образованием двухфазной системы, вследствие чего показатель преломления меняется, как функция положения в слое. Поскольку фазовая стабильность нитрида кремния предотвращает смешивание, в оптическим покрытии с наружным слоем нитрида кремния помутнение после закалки незначительно.
Поскольку нитрид кремния остается аморфным, на границах раздела между слоями оптического покрытия перемещение атомов меньше, чем могло бы быть, если бы происходил фазовый переход, что обеспечивает лучшее сохранение первоначальной адгезии между слоями.
Затруднением в случае использования наружного слоя нитрида кремния в оптическом покрытии является то, что ковалентная связь и аморфная структура нитрида кремния приводят к жесткому материалу, в котором характеристики распространения трещин сходны с характеристиками для стекла. Небольшие трещины легко распространяются через жесткие, стеклообразные материалы.
На ФИГ.3 проиллюстрирован возможный механизм, по которому трещины могут распространяться через оптическое покрытие 2, обладающее наружным слоем нитрида кремния. Первоначально небольшие царапины являются мелкими и не обнаруживаются при использовании способов обследования невооруженным глазом, применяющихся на большинстве технологический линий закалки. Это обусловлено тем, что царапины не проникают полностью сквозь наружный нитрид кремния. Однако при нагревании небольшие трещины проникают сквозь нитрид кремния в расположенные под ним слои, например, Ag. При воздействии трещины Ag может подвергаться агломерации на своей свободной поверхности. Когда Ag подвергается агломерации, трещина становится видимой и деталь следует забраковать.
В варианте осуществления, представленном на ФИГ.2, количество трещин в закаленных оптических покрытиях с наружными слоями нитрида кремния сведено к минимуму путем проведенного до закалки осаждения слоя ПРТ на нитриде кремния и слоя С на слое ПРТ. Такое же оборудование для распыления можно использовать для осаждения комбинации ПРТ/С и оптического покрытия на стекле.
Как показано выше, углерод образует классическую поверхность с низким трением. Даже если абразивный материал первоначально царапает углерод, абразивный материал часто покрывается углеродом, что приводит к скольжению углерод-по-углероду с чрезвычайно низким трением.
Если абразивный материал прокалывает углеродный защитный слой, то абразивный материал попадает в слой ПРТ. Однако большинство царапин или трещин, созданных абразивным материалом, при закалке не проникает сквозь слой ПРТ. Хотя, в отличие от углеродного защитного слоя, слой ПРТ сохраняется после закалки, большинство царапин на ПРТ не видны невооруженным глазом.
Подходящие материалы для формирования слоя ПРТ включают металлы, такие как Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Ta и W; оксиды этих металлов и нитриды этих металлов.
Термин "оксиды" при использовании в настоящем изобретении включает стехиометрические оксиды; пероксиды, содержащие количество кислорода, превышающее стехиометрическое; и субоксиды, содержащие количество кислорода, меньшее стехиометрического. Термин "субоксид металла" при использовании в настоящем изобретении включает металлы, легированные небольшими количествами кислорода, например, 0,1-10 атомн. %.
Термин "нитриды" при использовании в настоящем изобретении включает стехиометрические нитриды; пернитриды, содержащие количество азота, превышающее стехиометрическое; и субнитриды, содержащие количество азота, меньшее стехиометрического. Термин "субнитрид металла" при использовании в настоящем изобретении включает металлы, легированные небольшими количествами азота, например, 0,1-10 атомн. %.
Подходящие стехиометрические оксиды для формирования слоя ПРТ включают TiO2, SiO2, ZnO, SnO2, In2O3, ZrPO2, Al2O3, Cr2O3, Nb2O5, MoO3, HfO2, Ta2O5, WO3. Подходящие стехиометрические нитриды для формирования слоя ПРТ включают TiN. В частности, TiO2 очень хорошо препятствует царапанию. Слой ПРТ можно сформировать с помощью способов газофазного осаждения, известных в данной области техники.
Слой ПРТ может обладать толщиной от 2 до 8 нм. Если слой ПРТ представляет собой стехиометрический оксид или нитрид, то предпочтительно, чтобы слой ПРТ обладал толщиной от 2 до 8 нм, более предпочтительно - толщиной от 3 до 6 нм. Если слой ПРТ представляет собой металл, то предпочтительно, чтобы слой ПРТ обладал толщиной от 4 до 8 нм, более предпочтительно - толщиной от 4 до 6 нм. Если ПРТ слой стехиометрического оксида или нитрида тоньше, чем 2 нм, или слой ПРТ металла тоньше, чем 4 нм, то материал ПРТ проявляет меньшую склонность препятствовать распространению царапин. Толщина слоя ПРТ, превышающая 8 нм, создает мало преимуществ, поскольку препятствование распространению трещин, обусловленное слоем ПРТ, достигает насыщения при толщине, равной примерно 8 нм, и влияние слоя ПРТ на оптические характеристики оптического покрытия, которое следует принимать во внимание, усиливается при увеличении толщины слоя ПРТ. Однако, как показано ниже, металлы, субоксиды металлов и субнитриды металлов можно использовать в качестве барьерных для диффузии слоев при толщине, превышающей 2 нм, и после окисления во время закалки они могут образовать металлооксидные слои ПРТ, которые могут быть по существу невидимыми.
Как показано выше, в вариантах осуществления слой ПРТ можно скомбинировать с углеродным защитным слоем, расположенным на слое ПРТ. В других вариантах осуществления слой ПРТ может образовать только защитный слой на оптическим покрытии. Слой ПРТ может способствовать предотвращению царапания и распространению царапин при обращении даже при отсутствии углеродного защитного слоя.
В вариантах осуществления настоящего изобретения слой ПРТ можно сформировать путем окисления барьерного для диффузии слоя, использующегося для обеспечения защиты оптического покрытия от коррозии до закалки. Барьерный для диффузии слой представляет собой металл, субоксид металла или субнитрид металла, включающий элемент-металл, выбранный из группы, включающей Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Ta и W. Барьерный для диффузии слой осаждается на наружном слое оптического покрытия до закалки оптического покрытия. Закалка оптического покрытия в атмосфере, содержащей кислород, превращает барьерный для диффузии слой в металлооксидный слой ПРТ. Предпочтительно, чтобы барьерный для диффузии слой содержал Ti, Zr или Al, которые при нагревании в воздухе можно превратить в слои ПРТ оксидов металлов TiO2, ZrO2 или Al2O3 соответственно. Предпочтительно, чтобы металлооксидный слой содержал примерно 80% или менее кислорода, содержащегося в наиболее полно окисленном стехиометрическом оксиде металла. Пленки из субоксидов металлов, осажденные при степени окисления, составляющей 80% или менее от полного окисления, склонны образовывать лучшие барьеры для диффузии, чем пленки, осажденные путем реакции при степени окисления, составляющей 80% или более от полного окисления.
Как показано выше, известно, что металлические слои являются особенно эффективными барьерами для диффузионного перемещения корродирующих жидкостей. В качестве барьеров для диффузии субоксиды металлов и субнитриды металлов действуют аналогично металлам. Субоксиды металлов и субнитриды металлов склонны образовывать плотные слои при распылении или газофазном осаждении и химически подавляют диффузию кислорода и паров воды в большей степени, чем соответствующие полностью окисленные металлы.
Субоксиды металлов и субнитриды металлов можно сформировать способами газофазного осаждения, известными в данной области техники. Например, субоксиды металлов и субнитриды металлов можно сформировать путем газофазного осаждения металла в атмосфере, содержащей контролируемое количество кислорода и азота.
Субоксиды металлов и субнитриды металлов склонны оптически поглощать и ослаблять пропускание видимого света оптическим покрытием, пока они не будут нагреты и не прореагируют с образованием полностью окисленного состояния.
Связь между азотом и металлом в субнитриде металла обычно не такая прочная, как связь между кислородом и металлом в субоксиде металла. Нагревание субнитрида металла в атмосфере, содержащей кислород, обычно приведет к превращению субнитрида металла в оксид соответствующего металла или, по меньшей мере, в оксинитрид металла, который по существу является прозрачным.
Барьерный для диффузии слой может обладать толщиной от 4 до 8 нм, предпочтительно - толщиной от 4 до 6 нм. Обычно реакционноспособные металлические слои будут полностью окисляться в воздухе при комнатной температуре, если толщина металла составляет 2 нм или менее. Более толстые металлические слои часто будут окисляться на глубину, равную 2 нм, а остальная часть слоя останется металлической. Процесс окисления можно сделать протекающим на большей глубине, если металл подвергнуть воздействию источника энергии, такого как теплота, или химически более реакционноспособной среды, чем воздух. В вариантах осуществления настоящего изобретения барьерный для диффузии слой осаждается более толстым, чем до толщины, которая обеспечивает полное окисление в воздухе при комнатной температуре. При таком способе слой остается металлическим и до закалки выступает в качестве эффективного барьера для коррозии. Для обеспечения обсужденной выше стойкости к царапанию до окисления предпочтительно, чтобы барьерный для диффузии слой осаждался до толщины, равной 4 нм или более. Для обеспечения того, чтобы барьерный для диффузии слой полностью окислялся во время закалки, барьерный для диффузии слой осаждают до толщины, равной 8 нм или менее, предпочтительно - равной 6 нм или менее.
Когда слой металла, субоксида металла или субнитрида металла толщиной от 4 до 6 нм полностью окислен, он склонен оказывать малое влияние на оптические характеристики многослойной оптической структуры. Поскольку оксиды металлов более прозрачны для видимого света, чем металлы, субоксиды металлов и субнитриды металлов, полное окисление барьерного для диффузии слоя приводит к металлооксидному слою ПРТ, который является практически оптически невидимым.
Использование закалки для формирования металлооксидного слоя ПРТ из барьерного для диффузии слоя на способном к закалке обладающем низкой излучательной способностью оптическом покрытии одновременно защищает покрытие от коррозии перед закалкой и исключает многие нежелательные оптические эффекты, связанные с наличием барьерного для диффузии слоя в виде слоя ПРТ на обладающем низкой излучательной способностью оптическом покрытии, после закалки. В других вариантах осуществления углеродный слой можно осадить на барьерный для диффузии слой на способном к закалке обладающем низкой излучательной способностью оптическом покрытии в качестве дополнительной защиты для оптического покрытия. Закалка оптического покрытия путем нагревания в воздухе затем может привести к выжиганию углеродного слоя и превращению барьерного для диффузии слоя в прозрачный металлооксидный слой ПРТ.
На ФИГ.4A-4C проиллюстрированы варианты осуществления настоящего изобретения, в которых металлооксидный слой ПРТ сформирован путем осаждения металлического слоя на оптическом покрытии с последующим введением металла в реакцию в атмосфере, содержащей кислород, с формированием оксида. На ФИГ.4A показана стеклянная подложка 1, снабженная оптическим покрытием 2. На ФИГ.4В показан металлический слой 5, осажденный на оптическом покрытии 2. На ФИГ.4C показано, что после нагревания металлического слоя 5 в атмосфере, содержащей кислород, такой как воздух, металлический слой 5 превращается в металлооксидный препятствующий распространению трещин слой 4.
ПРИМЕРЫ
Приведенные ниже примеры предназначены для дополнительной иллюстрации настоящего изобретения, а не для ограничения области его применения в соответствии с прилагаемой формулой изобретения.
Пример 1
На ФИГ.5(1)-5(4) приведены полученные на оптическим микроскопе фотографии, показывающие значительное уменьшение количества трещин, которое происходит в соответствии с настоящим изобретением путем осаждения временного углеродного защитного слоя на оптическом покрытии до закалки с последующим удалением углеродного защитного слоя путем закалки в реакционноспособной атмосфере. На каждом образце было одно и то же оптическое покрытие. Оптическое покрытие включало множество слоев Zn, Ag и NiCr и наружный слой Si толщиной 36 нм. Углеродный защитный слой толщиной 1 нм осаждают на оптических покрытиях образцов, показанных на ФИГ.5(1) и 5(2), а на оптических покрытиях образцов, показанных на ФИГ.5(3) и 5(4), его не осаждают. Затем образцы процарапывают при одинаковых условиях с использованием одного и того же продажного шлифовального круга (круга TABER®). На ФИГ.5(1) и 5(2) показаны различные участки защищенных углеродом образцов, типичные для наиболее значительного процарапывания. На ФИГ.5(1) ширина царапины составляла примерно 10-15 нм. На ФИГ.5(1) и 5(3) показаны процарапанные образцы до закалки. На ФИГ.5(2) и 5(4) показаны процарапанные образцы после закалки в воздухе при температуре 730°C в течение 4 мин. Во время закалки в воздухе ширина царапин примерно удваивалась. Углеродный защитный слой, показанный на ФИГ.5(2), выжигают во время закалки совместно с большей частью царапин.
На ФИГ.5 показано, что наличие на оптическом покрытии углеродного защитного слоя до закалки значительно уменьшает количество трещин, появляющихся на оптическом покрытии после закалки в воздухе, когда углеродный слой был выжжен.
Пример 2
На ФИГ.6 показаны 9 образцов (с номерами от 1 до 9) для сопоставления влияния различной толщины углеродного защитного слоя на царапины, остающиеся на оптическом покрытии после закалки. На каждом образце было одно и то же оптическое покрытие. Оптическое покрытие включало множество слоев Zn, Ag и NiCr и наружный слой Si толщиной 36 нм. На образцах осаждены углеродные защитные слои различной толщины, указанной в приведенной ниже таблице 1. На образцах 1-2 углеродный защитный слой отсутствовал.
Таблица 1
ОБРАЗЕЦ ТОЛЩИНА УГЛЕРОДНОГО СЛОЯ (нм)
1 отсутствует
2 отсутствует
3 1
4 1,2
5 1,8
6 5
7 5
8 10
9 15
Образцы процарапывают при таких же условиях с использованием того же продажного шлифовального круга (круга TABER®). Все 9 образцов подвергают закалке в воздухе при температуре 730°С в течение 4 мин. На ФИГ.6 показаны образцы 1-9 после закалки.
Как показано на ФИГ.6, образцы 3-9, которые включали временный углеродный защитный слой, после закалки в воздухе обладали значительно меньшим числом царапин, чем образцы 1-2, которые не включали углеродных защитных слоев. Цвет образцов 3-8 после закалки был таким же, как и цвет образцов 1-2 перед закалкой, что показывает, что на образцах 3-8 углеродный слой был полностью удален. На образце 9 после закалки остались следы углерода.
Пример 3
Отдельные защитные слои из различных материалов ПРТ и углерода осаждены на идентичные оптические покрытия на стекле. Защитные слои процарапывают при таких же условиях с использованием того же продажного шлифовального круга (круга TABER®). В таблице 2 охарактеризована относительная способность отдельных материалов ПРТ и углерода уменьшать повреждение при процарапывании.
Таблица 2
ЗАЩИТНЫЙ СЛОЙ (ПРТ ИЛИ С) ТОЛЩИНА (нм) ПОВРЕЖДЕНИЕ (%)
незащищенный (стандартный) - 100
SiO2 2 60
TiN 2 30
TiO2 2 30
ZnO 2 10
C 1 10
C 10 2
В таблице 2 "повреждение (%)" означает приближенное количество царапин на единицу длины перпендикулярно направлению воздействия шлифовального инструмента.
В таблице 2 показано, что слой ПРТ может способствовать предотвращению царапания и распространения царапин при обращении даже при отсутствии углеродного защитного слоя. Совместно слои ПРТ и С могут проявить даже более значительный эффект в предотвращении образования царапин. Толщину каждого слоя ПРТ и С можно менять в соответствии с необходимостью.
Пример 4
Слои Zr различной толщины осаждают на одинаковые оптические покрытия с низкой излучательной способностью на основе серебра, нанесенные на стеклянные подложки. Покрытые Zr оптические покрытия в течение 24 ч подвергают воздействию воздуха при комнатной температуре и относительно влажности, равной 80%. Затем оптические покрытия подвергают закалке в воздухе при 730°C. Обнаружено, что слои Zr, обладающие толщиной, равной 2 и 3 нм, не обеспечивают защиту от коррозии для оптических покрытий с низкой излучательной способностью на основе серебра. В отличие от этого обнаружено, что слои Zr, обладающие толщиной, равной 4 и 8 нм, обеспечивают существенную защиту от коррозии для оптических покрытий с низкой излучательной способностью на основе серебра.
Хотя настоящее изобретение описано с помощью конкретных вариантов осуществления, оно не ограничивается приведенными конкретными деталями, а включает различные изменения и модификации, которые могут предложить сами специалисты в данной области техники, и все они входят в объем настоящего изобретения как определено приведенной ниже формулой изобретения.

Claims (14)

1. Способ получения прозрачного изделия, предусматривающий предоставление стеклянной подложки, обладающей оптическим покрытием, включающим расположенный дальше всего от подложки однородный наружный слой; и
формирование на наружном слое препятствующего распространению трещин слоя, имеющего толщину от 2 до 8 нм, в котором препятствующий распространению трещин слой является однородным слоем, содержащим материал, выбранный из группы, состоящей из Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W;
оксидов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W;
нитридов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; и
их смесей.
2. Способ по п.1, в котором наружный слой содержит нитрид кремния.
3. Способ по п.1, в котором формирование предусматривает газофазное осаждение препятствующего распространению трещин слоя на наружном слое.
4. Способ по п.1, в котором
препятствующий распространению трещин слой содержит материал,
выбранный из группы, состоящей из TiO2, SiO2, ZnO, SnO2, In2O3, ZrO2, Al2O3, Cr2O3, Nb2O5, МоО3, HfO2, Ta2O5 и WO3 и их смесей; и
формирование предусматривает
осаждение на наружном слое барьерного для диффузии слоя металла,
субоксида металла или субнитрида металла, содержащего, по меньшей мере, один элемент, выбранный из группы, состоящей из Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W;
нагревание барьерного для диффузии слоя в атмосфере, содержащей кислород; и
введение барьерного для диффузии слоя в реакцию с кислородом с образованием препятствующего распространению трещин слоя.
5. Способ по п.4, в котором барьерный для диффузии слой имеет толщину от 4 до 6 нм.
6. Способ по п.4, в котором атмосферой, содержащей кислород, является воздух.
7. Способ по п.4, в котором нагревание предусматривает повышение температуры оптического покрытия по меньшей мере до 400°С.
8. Способ по п.4, в котором нагревание подвергает закалке оптическое покрытие.
9. Способ по п.4, в котором нагревание подвергает закалке подложку.
10. Способ по п.4, дополнительно предусматривающий осаждение слоя, по существу состоящего из углерода, на барьерном для диффузии слое перед нагреванием барьерного для диффузии слоя; и введение слоя, по существу, состоящего из углерода, в реакцию с кислородом с образованием углеродсодержащего газа.
11. Способ по п.10, в котором углеродсодержащий газ содержит, по меньшей мере, одно соединение, выбранное из группы, состоящей из монооксида углерода и диоксида углерода.
12. Способ по п.1, в котором стекло является прозрачным для видимого света.
13. Прозрачное изделие, содержащее стеклянную подложку;
оптическое покрытие, содержащее один или большее количество находящихся на подложке слоев, в котором один или большее количество слоев включает расположенный дальше всего от подложки однородный наружный слой, содержащий нитрид кремния; и защитное покрытие, расположенное на наружном слое, в котором защитное покрытие состоит из препятствующего распространению трещин слоя, имеющего толщину от 2 до 8 нм, расположенного на наружном слое; и
препятствующий распространению трещин слой является однородным слоем, содержащим материал, выбранный из группы, состоящей из Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; оксидов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W;
нитридов Ti, Si, Zn, Sn, In, Zr, Al, Cr, Nb, Mo, Hf, Та и W; и их смесей.
14. Прозрачное изделие по п.13, в котором оптическое покрытие представляет собой покрытие, подвергнутое закалке.
RU2008146334/03A 2002-01-25 2003-01-27 Защитные слои для оптических покрытий RU2498954C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/054,973 2002-01-25
US10/054,973 US6770321B2 (en) 2002-01-25 2002-01-25 Method of making transparent articles utilizing protective layers for optical coatings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2004126086/03A Division RU2366624C2 (ru) 2002-01-25 2003-01-27 Способ защиты оптического покрытия на прозрачном изделии

Publications (2)

Publication Number Publication Date
RU2008146334A RU2008146334A (ru) 2010-05-27
RU2498954C2 true RU2498954C2 (ru) 2013-11-20

Family

ID=27609177

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2004126086/03A RU2366624C2 (ru) 2002-01-25 2003-01-27 Способ защиты оптического покрытия на прозрачном изделии
RU2008146334/03A RU2498954C2 (ru) 2002-01-25 2003-01-27 Защитные слои для оптических покрытий

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2004126086/03A RU2366624C2 (ru) 2002-01-25 2003-01-27 Способ защиты оптического покрытия на прозрачном изделии

Country Status (9)

Country Link
US (3) US6770321B2 (ru)
EP (2) EP1472194B1 (ru)
CN (3) CN100480203C (ru)
AU (1) AU2003210109A1 (ru)
ES (2) ES2741446T3 (ru)
HK (1) HK1116467A1 (ru)
HU (2) HUE045179T2 (ru)
RU (2) RU2366624C2 (ru)
WO (1) WO2003065081A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622281C1 (ru) * 2016-01-29 2017-06-13 Общество с ограниченной ответственностью "Пилкингтон Гласс" Способ защитной олеофобной обработки тонкопленочных электропроводящих оптических покрытий на стекле
RU2725209C2 (ru) * 2015-06-19 2020-06-30 ГАРДИАН ГЛАСС, ЭлЭлСи Покрытое изделие с последовательно активированным низкоэмиссионным покрытием и/или способ его изготовления

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361404B2 (en) * 2000-05-10 2008-04-22 Ppg Industries Ohio, Inc. Coated article with removable protective coating and related methods
US20030155065A1 (en) * 2002-02-13 2003-08-21 Thomsen Scott V. Method of making window unit
US6994910B2 (en) * 2003-01-09 2006-02-07 Guardian Industries Corp. Heat treatable coated article with niobium nitride IR reflecting layer
US7087309B2 (en) * 2003-08-22 2006-08-08 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Coated article with tin oxide, silicon nitride and/or zinc oxide under IR reflecting layer and corresponding method
US7153579B2 (en) * 2003-08-22 2006-12-26 Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A, (C.R.V.C.) Heat treatable coated article with tin oxide inclusive layer between titanium oxide and silicon nitride
US7150849B2 (en) * 2003-11-04 2006-12-19 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7501148B2 (en) * 2003-11-04 2009-03-10 Guardian Industries Corp. Method of making heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7537801B2 (en) * 2003-11-04 2009-05-26 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7507442B2 (en) * 2003-11-04 2009-03-24 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) and/or zirconium in coating
US7445273B2 (en) * 2003-12-15 2008-11-04 Guardian Industries Corp. Scratch resistant coated glass article resistant fluoride-based etchant(s)
US20050224807A1 (en) * 2004-03-25 2005-10-13 Ravi Kramadhati V Low dielectric constant carbon films
EP1765740B1 (en) 2004-07-12 2007-11-07 Cardinal CG Company Low-maintenance coatings
US20060065350A1 (en) * 2004-09-27 2006-03-30 Guardian Industries Corp. Method of making heat treated coated glass article, and intermediate product used in same
US20090258222A1 (en) * 2004-11-08 2009-10-15 Agc Flat Glass Europe S.A. Glazing panel
BRPI0515784A (pt) * 2004-12-17 2008-08-05 Afg Ind Inc artigo com camada protetora resistente a arranhões oxidável no ar para revestimentos ópticos e método para melhorar a proteção contra arranhões destes revestimentos
BRPI0612455A2 (pt) * 2005-05-11 2012-03-13 Agc Flat Glass Europe Sa estrutura de laminação de proteção solar
AU2006247708A1 (en) 2005-05-12 2006-11-23 Agc Flat Glass North America, Inc. Low emissivity coating with low solar heat gain coefficient, enhanced chemical and mechanical properties and method of making the same
EP2013150B1 (en) 2006-04-11 2018-02-28 Cardinal CG Company Photocatalytic coatings having improved low-maintenance properties
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
US7645487B2 (en) * 2006-07-20 2010-01-12 Guardian Industries Corp. Heat treatable coated article with zinc-doped zirconium based layer(s) in coating
CL2007003233A1 (es) * 2006-11-09 2008-05-30 Agc Flat Glass North America Recubrimiento optico sobre un sustrato que comprende, en direccion hacia afuera desde el sustrato, una capa aumentadora de la durabilidad, una capa de nucleacion y una capa reflectante de infrarrojos; unidad de ventana; y metodo para hacer una pelicu
US8132426B2 (en) * 2007-01-29 2012-03-13 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US8071166B2 (en) 2007-01-29 2011-12-06 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US7833574B2 (en) * 2007-01-29 2010-11-16 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
JP4430112B2 (ja) * 2007-03-28 2010-03-10 古河電気工業株式会社 熱伝導膜、熱伝導膜を備える半導体デバイスおよび電子機器
US7820309B2 (en) 2007-09-14 2010-10-26 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US7901781B2 (en) 2007-11-23 2011-03-08 Agc Flat Glass North America, Inc. Low emissivity coating with low solar heat gain coefficient, enhanced chemical and mechanical properties and method of making the same
PL3702337T3 (pl) * 2008-03-20 2024-03-04 Agc Glass Europe Oszklenie pokryte cienkimi warstwami
HUE039941T2 (hu) * 2008-09-17 2019-02-28 Agc Glass Europe Megnövelt fényvisszaverésû üvegezés
US8003164B2 (en) * 2008-09-19 2011-08-23 Guardian Industries Corp. Method of making a scratch-and etch-resistant coated glass article
WO2010058697A1 (ja) * 2008-11-19 2010-05-27 株式会社村田製作所 ガラスセラミック組成物およびガラスセラミック基板
WO2010074050A1 (ja) * 2008-12-25 2010-07-01 東海ゴム工業株式会社 透明積層フィルムおよびその製造方法
US20100261036A1 (en) * 2009-04-10 2010-10-14 Vtec Technologies, Llc Light-Reflective Articles
US9460887B2 (en) * 2009-05-18 2016-10-04 Hermes Microvision, Inc. Discharging method for charged particle beam imaging
BE1019641A3 (fr) * 2010-03-10 2012-09-04 Agc Glass Europe Vitrage a reflexion elevee.
KR101350960B1 (ko) * 2012-01-13 2014-01-16 한화케미칼 주식회사 글래스 프릿, 이를 포함하는 도전성 페이스트 조성물 및 태양전지
US9725357B2 (en) 2012-10-12 2017-08-08 Corning Incorporated Glass articles having films with moderate adhesion and retained strength
US9255029B2 (en) 2012-04-17 2016-02-09 Guardian Industries Corp. Method of making heat treated coated article using TCO and removable protective film
BE1020719A3 (fr) * 2012-06-26 2014-04-01 Agc Glass Europe Panneau reflechissant.
RU2505888C1 (ru) * 2012-07-31 2014-01-27 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ получения слоя прозрачного проводящего оксида на стеклянной подложке
EP2906418B1 (en) 2012-10-12 2021-05-26 Corning Incorporated Articles having retained strength
FR3005654B1 (fr) * 2013-05-17 2017-03-24 Saint Gobain Procede de depot de revetements sur un substrat
KR102325927B1 (ko) * 2013-10-14 2021-11-15 코닝 인코포레이티드 중간 접착력 및 잔류 강도를 갖는 필름을 갖는 유리 제품
CN103771726A (zh) * 2013-12-21 2014-05-07 揭阳市宏光镀膜玻璃有限公司 一种低辐射玻璃的制作方法
CN105522789A (zh) * 2014-09-30 2016-04-27 鸿富锦精密工业(深圳)有限公司 镀膜玻璃及其制造方法、应用该镀膜玻璃的电子装置
FR3030492B1 (fr) * 2014-12-23 2021-09-03 Saint Gobain Vitrage comprenant une couche de protection superieure a base de carbone
FR3030491B1 (fr) * 2014-12-23 2016-12-30 Saint Gobain Vitrage comprenant un revetement protecteur
FR3030490B1 (fr) * 2014-12-23 2019-12-20 Saint-Gobain Glass France Vitrage comprenant une couche de protection superieure a base de carbone hydrogene
FR3032958B1 (fr) * 2015-02-24 2017-02-17 Saint Gobain Vitrage comprenant un revetement protecteur.
CN108884134A (zh) 2015-12-10 2018-11-23 加拿大全国研究委员会 脂化肺炎链球菌抗原组合物、制备方法和用途
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11267751B2 (en) * 2017-06-30 2022-03-08 Guardian Glass, LLC Heat treatable coated article with substoichiometric zirconium oxide based layer and corresponding method
JP6627828B2 (ja) 2017-07-19 2020-01-08 日亜化学工業株式会社 薄膜の製造方法、薄膜形成材料、光学薄膜、及び光学部材
US10611679B2 (en) 2017-10-26 2020-04-07 Guardian Glass, LLC Coated article including noble metal and polymeric hydrogenated diamond like carbon composite material having antibacterial and photocatalytic properties, and/or methods of making the same
FR3106006B1 (fr) * 2020-01-02 2023-10-27 Saint Gobain Système optique, vitrage isolant comportant un tel système optique, procédé de fabrication de ce vitrage isolant et procédé de protection d’un système optique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1006402A1 (ru) * 1981-06-02 1983-03-23 Предприятие П/Я Г-4461 Способ получени защитного покрыти на поверхности стекл нных изделий
US4592723A (en) * 1984-12-24 1986-06-03 Owens-Corning Fiberglas Corporation Process for reusing scrap glass
US5190807A (en) * 1990-10-18 1993-03-02 Diamonex, Incorporated Abrasion wear resistant polymeric substrate product
US5846649A (en) * 1994-03-03 1998-12-08 Monsanto Company Highly durable and abrasion-resistant dielectric coatings for lenses
RU2127231C1 (ru) * 1993-04-29 1999-03-10 Сэн-Гобэн Витраж Остекление и способ его получения

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112142A (en) * 1969-09-09 1978-09-05 Glaswerk Schott & Gen. Method for the production of light-reflecting layers on a surface of a transparent glass article
GB2031756B (en) * 1978-10-20 1983-03-09 Gordon Roy Gerald Non-iridescent glass structures and processes for their production
US4716086A (en) 1984-12-19 1987-12-29 Ppg Industries, Inc. Protective overcoat for low emissivity coated article
US4702955A (en) * 1985-07-24 1987-10-27 Ovonic Synthetic Materials Company, Inc. Multilayer decorative coating
US4786563A (en) 1985-12-23 1988-11-22 Ppg Industries, Inc. Protective coating for low emissivity coated articles
DE3716860A1 (de) 1987-03-13 1988-09-22 Flachglas Ag Verfahren zum herstellen einer vorgespannten und/oder gebogenen glasscheibe mit silberschicht, danach hergestellte glasscheibe sowie deren verwendung
US4790922A (en) 1987-07-13 1988-12-13 Viracon, Inc. Temperable low emissivity and reflective windows
IL86366A0 (en) 1988-05-12 1988-11-15 Luz Ind Israel Ltd Protected silvered substrates and mirrors containing the same
JPH02225346A (ja) * 1989-02-27 1990-09-07 Central Glass Co Ltd 熱線反射ガラス
DE19520843A1 (de) * 1995-06-08 1996-12-12 Leybold Ag Scheibe aus durchscheinendem Werkstoff sowie Verfahren zu ihrer Herstellung
JP3612839B2 (ja) * 1996-02-13 2005-01-19 三菱電機株式会社 高誘電率薄膜構造、高誘電率薄膜形成方法および高誘電率薄膜形成装置
US6172812B1 (en) * 1997-01-27 2001-01-09 Peter D. Haaland Anti-reflection coatings and coated articles
US6495251B1 (en) * 1997-06-20 2002-12-17 Ppg Industries Ohio, Inc. Silicon oxynitride protective coatings
WO1999023043A1 (en) * 1997-10-31 1999-05-14 Cardinal Ig Company Heat-bendable mirrors
DE69919242T2 (de) * 1998-02-12 2005-08-11 Canon K.K. Verfahren zur Herstellung eines elektronenemittierenden Elementes, Elektronenquelle und Bilderzeugungsgerätes
US6428650B1 (en) * 1998-06-23 2002-08-06 Amerasia International Technology, Inc. Cover for an optical device and method for making same
SK285852B6 (sk) * 1998-12-18 2007-09-06 Glaverbel Zasklievacia tabuľa a spôsob jej výroby
US6273488B1 (en) * 1999-05-03 2001-08-14 Guardian Industries Corporation System and method for removing liquid from rear window of a vehicle
US6475573B1 (en) * 1999-05-03 2002-11-05 Guardian Industries Corp. Method of depositing DLC inclusive coating on substrate
US6303225B1 (en) 2000-05-24 2001-10-16 Guardian Industries Corporation Hydrophilic coating including DLC on substrate
US6447891B1 (en) * 1999-05-03 2002-09-10 Guardian Industries Corp. Low-E coating system including protective DLC
US6284377B1 (en) * 1999-05-03 2001-09-04 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
US6261693B1 (en) 1999-05-03 2001-07-17 Guardian Industries Corporation Highly tetrahedral amorphous carbon coating on glass
US6335086B1 (en) * 1999-05-03 2002-01-01 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
US6368664B1 (en) * 1999-05-03 2002-04-09 Guardian Industries Corp. Method of ion beam milling substrate prior to depositing diamond like carbon layer thereon
US6277480B1 (en) * 1999-05-03 2001-08-21 Guardian Industries Corporation Coated article including a DLC inclusive layer(s) and a layer(s) deposited using siloxane gas, and corresponding method
US6280834B1 (en) * 1999-05-03 2001-08-28 Guardian Industries Corporation Hydrophobic coating including DLC and/or FAS on substrate
US6461731B1 (en) * 1999-05-03 2002-10-08 Guardian Industries Corp. Solar management coating system including protective DLC
US6312808B1 (en) * 1999-05-03 2001-11-06 Guardian Industries Corporation Hydrophobic coating with DLC & FAS on substrate
US6338901B1 (en) * 1999-05-03 2002-01-15 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
US6849328B1 (en) 1999-07-02 2005-02-01 Ppg Industries Ohio, Inc. Light-transmitting and/or coated article with removable protective coating and methods of making the same
US6713179B2 (en) * 2000-05-24 2004-03-30 Guardian Industries Corp. Hydrophilic DLC on substrate with UV exposure
US6359388B1 (en) 2000-08-28 2002-03-19 Guardian Industries Corp. Cold cathode ion beam deposition apparatus with segregated gas flow
US6689476B2 (en) * 2001-06-27 2004-02-10 Guardian Industries Corp. Hydrophobic coating including oxide of Ni and/or Cr
US6610360B2 (en) * 2001-11-28 2003-08-26 Guardian Industries Corp. Buffing diamond-like carbon (DLC) to improve scratch resistance
US6589658B1 (en) * 2001-11-29 2003-07-08 Guardian Industries Corp. Coated article with anti-reflective layer(s) system
US6586102B1 (en) * 2001-11-30 2003-07-01 Guardian Industries Corp. Coated article with anti-reflective layer(s) system
US6830817B2 (en) * 2001-12-21 2004-12-14 Guardian Industries Corp. Low-e coating with high visible transmission
WO2003082760A1 (en) * 2002-03-25 2003-10-09 Guardian Industries Corp. Anti-reflective hydrophobic coatings and methods
PL204742B1 (pl) * 2002-05-06 2010-02-26 Guardian Industries Urządzenie powlekające do formowania pierwszej i drugiej powłoki na szklanym substracie
US6632491B1 (en) * 2002-05-21 2003-10-14 Guardian Industries Corp. IG window unit and method of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1006402A1 (ru) * 1981-06-02 1983-03-23 Предприятие П/Я Г-4461 Способ получени защитного покрыти на поверхности стекл нных изделий
US4592723A (en) * 1984-12-24 1986-06-03 Owens-Corning Fiberglas Corporation Process for reusing scrap glass
US5190807A (en) * 1990-10-18 1993-03-02 Diamonex, Incorporated Abrasion wear resistant polymeric substrate product
RU2127231C1 (ru) * 1993-04-29 1999-03-10 Сэн-Гобэн Витраж Остекление и способ его получения
US5846649A (en) * 1994-03-03 1998-12-08 Monsanto Company Highly durable and abrasion-resistant dielectric coatings for lenses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725209C2 (ru) * 2015-06-19 2020-06-30 ГАРДИАН ГЛАСС, ЭлЭлСи Покрытое изделие с последовательно активированным низкоэмиссионным покрытием и/или способ его изготовления
RU2622281C1 (ru) * 2016-01-29 2017-06-13 Общество с ограниченной ответственностью "Пилкингтон Гласс" Способ защитной олеофобной обработки тонкопленочных электропроводящих оптических покрытий на стекле

Also Published As

Publication number Publication date
CN102229471A (zh) 2011-11-02
RU2004126086A (ru) 2005-05-27
CN1620408A (zh) 2005-05-25
CN100480203C (zh) 2009-04-22
US20100266823A1 (en) 2010-10-21
EP1472194A2 (en) 2004-11-03
ES2741446T3 (es) 2020-02-11
US20030143401A1 (en) 2003-07-31
US20050260419A1 (en) 2005-11-24
EP1472194A4 (en) 2009-06-03
HK1116467A1 (en) 2008-12-24
EP1472194B1 (en) 2019-05-08
WO2003065081A2 (en) 2003-08-07
RU2008146334A (ru) 2010-05-27
AU2003210109A1 (en) 2003-09-02
WO2003065081A3 (en) 2003-10-30
ES2741551T3 (es) 2020-02-11
CN101092288A (zh) 2007-12-26
CN102229471B (zh) 2012-11-21
CN101092288B (zh) 2011-09-07
HUE045013T2 (hu) 2019-11-28
EP2289856A2 (en) 2011-03-02
HUE045179T2 (hu) 2019-12-30
US6770321B2 (en) 2004-08-03
RU2366624C2 (ru) 2009-09-10
EP2289856A3 (en) 2011-11-09
EP2289856B1 (en) 2019-05-08
US7883776B2 (en) 2011-02-08

Similar Documents

Publication Publication Date Title
RU2498954C2 (ru) Защитные слои для оптических покрытий
RU2410340C2 (ru) Панель остекления
CA2673609C (en) Method of making heat treated coated article using diamond-like carbon (dlc) coating and protective film
KR101116795B1 (ko) 투명 기판, 글레이징 조립체, 투명 기판의 기계적인 저항성을 향상시키는 방법
US8440255B2 (en) Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US7914857B2 (en) Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film with oxygen content of protective film based on bending characteristics of coated article
US9845261B2 (en) Method of making heat treated coated article using carbon based coating and protective film
JP5328650B2 (ja) 焼入れ可能なソーラーコントロール層系およびその製造方法
JP5328649B2 (ja) 焼入れ可能な赤外線反射層系およびその製造方法
CA2157948C (en) Alkali metal diffusion barrier layer
EA034384B1 (ru) Остекление, содержащее защитное покрытие
EP0962429A1 (fr) Vitrage muni d'un empilement de couches réfléchissant métallique
KR20170118736A (ko) 보호 코팅을 포함하는 글레이징
WO2018085503A1 (en) Heat treatable coated article with carbon-doped zirconium based layer(s) in coating
KR20060132028A (ko) 유리 코팅