RU2496393C2 - Система датчиков расхода - Google Patents

Система датчиков расхода Download PDF

Info

Publication number
RU2496393C2
RU2496393C2 RU2011104185/28A RU2011104185A RU2496393C2 RU 2496393 C2 RU2496393 C2 RU 2496393C2 RU 2011104185/28 A RU2011104185/28 A RU 2011104185/28A RU 2011104185 A RU2011104185 A RU 2011104185A RU 2496393 C2 RU2496393 C2 RU 2496393C2
Authority
RU
Russia
Prior art keywords
puff
sensitive circuit
sensor system
signal
mode
Prior art date
Application number
RU2011104185/28A
Other languages
English (en)
Other versions
RU2011104185A (ru
Inventor
Жан-Марк Флик
Original Assignee
Филип Моррис Продактс С.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40032704&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2496393(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Филип Моррис Продактс С.А. filed Critical Филип Моррис Продактс С.А.
Publication of RU2011104185A publication Critical patent/RU2011104185A/ru
Application granted granted Critical
Publication of RU2496393C2 publication Critical patent/RU2496393C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/6986Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters with pulsed heating, e.g. dynamic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Обеспечивается система датчиков расхода для восприятия потока текучей среды, указывающего затяжку в системе генерации аэрозолей. Система датчиков включает в себя чувствительную схему, содержащую чувствительный резистор и выход напряжения. Чувствительный резистор выполнен с возможностью обнаружения потока текучей среды на основе изменения сопротивления. Чувствительная схема выполнена таким образом, что изменение сопротивления чувствительного резистора вызывает изменение выходного напряжения. Система датчиков также включает в себя генератор сигналов, выполненный с возможностью подачи импульсного управляющего сигнала на чувствительную схему для питания чувствительной схемы. Чувствительная схема получает электропитание, когда импульсный управляющий сигнал является высоким, и не получает электропитание, когда импульсный управляющий сигнал является низким. Система датчиков выполнена с возможностью работы в первом режиме, в котором затяжка не ожидается или не обнаружена и в котором импульсный управляющий сигнал имеет первую частоту, и во втором режиме, в котором затяжка ожидается или обнаружена и в котором импульсный управляющий сигнал имеет вторую частоту выше, чем первая частота. Технический результат - обеспечение улучшенной системы датчиков расхода, подходящей для генерации аэрозолей. 3 н. и 11 з.п. ф-лы, 5 ил.

Description

Настоящее изобретение относится к системе датчиков расхода. В частности, но не исключительно, настоящее изобретение относится к системе датчиков расхода для системы генерации аэрозолей. Настоящее изобретение находит конкретное применение в качестве системы датчиков расхода для курительной системы, например, электрически нагреваемой курительной системы.
Несколько документов предшествующего уровня техники, например, US-A-5060671, US-A-5388594, US-A-5505214, US-A-5591368, WO-A-2004/043175, EP-A-0358002, EP-A-0295122, EP-A-1618803, EP-A-1736065 и WO-A-2007/131449, раскрывают электрические управляемые курительные системы, имеющие некоторое количество преимуществ. Одним из преимуществ является то, что они значительно уменьшают боковой дымовой поток, между тем позволяя курильщику по его желанию временно прекращать и возобновлять курение.
Системы генерации аэрозолей предшествующего уровня техники могут включать формирующий аэрозоль субстрат, один или более нагревательных элементов для нагрева субстрата для формирования аэрозоля и источник электропитания для подачи электропитания одному или более нагревательным элементам. Системы генерации аэрозолей предшествующего уровня техники могут обеспечивать энергетический импульс для нагревателя для обеспечения температурного диапазона, требуемого для работы, и для освобождения летучих соединений для каждой затяжки. Многие системы генерации аэрозолей предшествующего уровня техники включают в себя датчик расхода для восприятия потока текучих сред (например, воздушного потока или потока аэрозоля) в системе генерации аэрозолей. Датчик может играть важную роль в управлении доставкой аэрозоля. Когда датчик расхода обнаруживает поток воздуха, указывающий на всасывание, вызванное затяжкой пользователя, активируется механизм аэролизации, который может включать в себя нагревательный элемент или элементы, или пульверизатор любого типа, для обеспечения аэрозоля для этой затяжки. Датчик расхода может быть пассивным (т.е. механическим) датчиком или активным датчиком.
Пассивные датчики обычно включают в себя смещающуюся мембрану и электрический контакт. Поток воздуха, созданный пользователем при всасывании, смещает мембрану, так что она касается электрического контакта, который активирует механизм аэролизации. Пока поток воздуха достаточно силен, чтобы сохранить смещение мембраны, механизм аэролизации будет оставаться активированным. Преимущества пассивного датчика включают в себя простоту конструкции, следовательно, низкую стоимость и незначительное энергопотребление. Активные датчики часто основаны на потерях тепла в результате потока текучей среды. Такой тип активного датчика часто называют термоанемометром. Датчик содержит резистор, который нагревается до высокой температуры. Когда поток охлаждает резистор, последующее уменьшение температуры при заданной мощности или увеличение мощности для поддержания заданной температуры указывает скорость потока воздуха. Резистор обычно является резистором, основанным на кремниевых микроэлектромеханических системах (MEMS). Преимущества активного датчика включают в себя тот факт, что потери тепла пропорциональны скорости потока, поэтому датчик может быть использован для обеспечения информации о характеристиках затяжки. Дополнительно, датчик не так подвержен механическим ударам во время транспортировки и использования.
Поскольку датчики расхода, обеспеченные в системах генерации аэрозолей предшествующего уровня техники, включая вышеописанные, имеют определенное количество недостатков, задачей изобретения является обеспечение улучшенной системы датчиков расхода, подходящей для системы генерации аэрозолей.
Согласно первому аспекту изобретения обеспечивается система датчиков расхода для восприятия потока текучей среды, указывающего на затяжку в системе генерации аэрозолей, причем система датчиков выполнена с возможностью работы в первом режиме, в котором затяжка не ожидается или не обнаружена, и во втором режиме, в котором затяжка ожидается или обнаружена, и содержащая: чувствительную схему, содержащую чувствительный резистор и выход напряжения, причем чувствительный резистор выполнен с возможностью обнаружения потока текучей среды на основе изменения сопротивления, причем чувствительная схема выполнена так, что изменение сопротивления чувствительного резистора вызывает изменение в выходе напряжения; и генератор сигналов, выполненный с возможностью подачи импульсного управляющего сигнала S1 на чувствительную схему для питания чувствительной схемы, так что чувствительная схема запитывается, когда импульсный управляющий сигнал S1 является высоким, и не запитывается, когда импульсный управляющий сигнал S1 является низким, причем импульсный управляющий сигнал S1 имеет первую частоту f1 в первом режиме и второю частоту f2, которая выше, чем первая частота f1, во втором режиме.
Так как система датчиков включает чувствительный резистор, включенный в состав чувствительной схемы, которая имеет выходное напряжение, которое является разностным напряжением, чувствительность высока, и могут быть обнаружены малые изменения потока. Использование импульсного управляющего сигнала S1 означает, что чувствительная схема не получает электропитание постоянно, но питается только каждый раз, когда импульсный управляющий сигнал S1 является высоким, т.е. когда прямоугольный сигнал S1 равен 1, а не 0. Это значительно уменьшает энергопотребление. Система датчиков может быть постоянно активной, что означает, что нет необходимости в отдельном переключателе включено/отключено. Частоты f1 и f2 могут быть выбраны для обеспечения подходящей чувствительности и энергопотребления. Система датчиков может быть использована для получения качественной и количественной информации о затяжке.
Генератор сигналов для подачи импульсного управляющего сигнала предпочтительно содержит микроконтроллер, причем импульсный сигнал обеспечивается на одном выходе микроконтроллера. Если генератор сигналов содержит микроконтроллер, предпочтительно микроконтроллер программируют для управления значениями f1 и f2. В других вариантах воплощения генератор сигналов для подачи импульсного управляющего сигнала может быть программируемой электронной схемой любого типа.
Предпочтительно, система датчиков расхода дополнительно содержит источник тока, выполненный с возможностью подачи тока заданной величины через чувствительную схему, причем импульсный управляющий сигнал S1 подают на источник тока. Источник тока заданной величины позволяет использовать чувствительный резистор в чувствительной схеме при постоянном токе, что обеспечивает способ работы, имеющий наименьшее энергопотребление. Так как источник тока питается через импульсный управляющий сигнал S1, источник тока не получает электропитание постоянно, но питается только каждый раз, когда импульсный управляющий сигнал является высоким, что дополнительно снижает энергопотребление. Источник тока уменьшает нелинейность зависимости выхода напряжения чувствительной схемы от сопротивления чувствительного резистора. В предпочтительном варианте воплощения источник тока является температурно-компенсированным источником тока. Это предпочтительно, поскольку это исключает любые изменения выхода напряжения чувствительной схемы при изменении окружающей температуры. В одном варианте воплощения источник тока содержит источник напряжения, два транзистора в зеркальной конфигурации и входной резистор.
Предпочтительно, система датчиков расхода дополнительно содержит дифференциальный усилитель, выполненный с возможностью усиления выхода напряжения чувствительной схемы. Это предпочтительно, поскольку выход чувствительной схемы может составлять всего лишь несколько мВ. Дифференциальный усилитель предпочтительно имеет низкое энергопотребление и высокий коэффициент усиления.
Предпочтительно, дифференциальный усилитель может быть отключен, когда импульсный управляющий сигнал S1 является низким, и может быть включен, когда импульсный управляющий сигнал S1 является высоким. Это дополнительно снижает энергопотребление. Предпочтительно, выход дифференциального усилителя пропорционален выходу напряжения чувствительной схемы в диапазоне значений выхода напряжения чувствительной схемы, и насыщается, когда выход напряжения чувствительной схемы ниже или выше диапазона. То есть, когда выход напряжения чувствительной схемы ниже диапазона, выход дифференциального усилителя имеет постоянное значение; когда выход напряжения чувствительной схемы выше диапазона, выход дифференциального усилителя имеет постоянное значение; и когда выход напряжения чувствительной схемы находится в диапазоне, имеет место линейная зависимость между выходом чувствительной схемы и выходом дифференциального усилителя.
Предпочтительно, система датчиков работает во втором режиме в течение заданного периода времени после обнаружения изменения в выходе напряжения чувствительной схемы, указывающего на затяжку, и работает в первом режиме в все другое время. Таким образом, при обнаружении затяжки или в другой момент времени импульсный управляющий сигнал S1 изменяется с первой частоты f1 на более высокую вторую частоту f2. Это означает, что максимальное время для затяжки, когда датчик работает в первом режиме, составляет
Figure 00000001
секунд. f1 может быть выбрана для обеспечения подходящего баланса между энергопотреблением и чувствительностью в первом режиме. Если затяжка обнаружена при работе датчика во втором режиме, максимальное время для затяжки составляет
Figure 00000002
секунд. f2 может быть выбрана для обеспечения подходящего баланса между энергопотреблением и чувствительностью во втором режиме. В одном варианте воплощения первая частота f1 равна 3 Гц, а вторая частота f2 равна 22 Гц.
Предпочтительно, заданный период времени, в течение которого датчик работает во втором режиме, после обнаружения затяжки, равен среднему времени между затяжками для конкретного пользователя. Дополнительно, заданный период времени может быть адаптивным, чтобы он непрерывно настраивался, основываясь на скользящем среднем предыдущих периодов времени между затяжками. Альтернативно, заданный период времени может иметь фиксированное значение.
Если средство для подачи импульсного управляющего сигнала S1 содержит микроконтроллер, предпочтительно, выход напряжения чувствительной схемы обеспечивают на вход микроконтроллера. Это можно осуществить посредством дифференциального усилителя. Затем, в одном варианте воплощения, когда ввод в микроконтроллер указывает обнаружение затяжки, микроконтроллер может изменить импульсный управляющий сигнал S1 на своем выходе, с первой частоты f1 на вторую частоту f2.
Предпочтительно, сигнал S2 подают на другие компоненты системы генерации аэрозолей, причем сигнал S2 является высоким, когда выход напряжения чувствительной схемы указывает обнаружение затяжки, и сигнал S2 является низким, когда выход напряжения чувствительной схемы указывает, что затяжка не обнаружена. Если средство для подачи импульсного управляющего сигнала S1 содержит микроконтроллер, предпочтительно сигнал S2 обеспечивают на дополнительном выходе микроконтроллера. Предпочтительно, выход напряжения чувствительной схемы обеспечивают на входе микроконтроллера. Затем, когда ввод в микроконтроллер указывает обнаружение затяжки, микроконтроллер приспособлен выводить высокий сигнал S2, а когда ввод в микроконтроллер указывает, что затяжка не обнаружена, микроконтроллер приспособлен выводить низкий сигнал S2. Другие компоненты системы генерации аэрозолей могут включать в себя, но не ограничиваясь, механизм аэролизации (который может быть механизмом парообразования, средством парообразования, механизмом распыления или средством распыления), пульверизатор, нагревательный элемент и индикатор затяжки.
Система датчиков расхода может дополнительно содержать средство для регулировки чувствительности системы датчиков, причем средство для регулировки чувствительности содержат одно или более из: переменного резистора в чувствительной схеме; саморегулирующейся схемы смещения; и генератора сигналов для подачи импульсного калибровочного сигнала SC на чувствительную схему.
Переменный резистор допускает регулировку для изменения чувствительности системы датчиков. Предпочтительно, чувствительный резистор имеет диапазон рабочих сопротивлений (диапазон, имеющий фиксированную величину), и регулировка переменного резистора изменяет положение диапазона рабочих сопротивлений чувствительного резистора, т.е. нижнюю точку диапазона рабочих сопротивлений. Это в свою очередь влияет на выход напряжения чувствительной схемы в отсутствие затяжки, что влияет на чувствительность системы. В предпочтительном варианте воплощения переменный резистор регулируют таким образом, что диапазон рабочих сопротивлений чувствительного резистора имеет нижнюю точку около или чуть ниже нуля. Это обеспечивает наилучшую чувствительность.
Саморегулирующаяся схема смещения может быть использована для изменения чувствительности системы датчиков. Схема смещения может быть образована соединением выхода микроконтроллера с неинвертирующим входом дифференциального усилителя и соединением выхода дифференциального усилителя с входом микроконтроллера. Микроконтроллер может наблюдать за выходом VOUT дифференциального усилителя и подавать напряжение на неинвертирующий вход до тех пор, пока VOUT не равно 0.
Импульсный калибровочный сигнал SC используется для регулировки чувствительности системы датчиков. Предпочтительно, на каждом импульсе калибровочного сигнала SC регулируется ширина каждого импульса импульсного управляющего сигнала S1. Эта регулировка предпочтительно приспособлена для изменения пропорции каждого импульса сигнала S1, в течение которого может быть обнаружено изменение в выходе напряжения чувствительной схемы, указывающее на затяжку. Импульсный калибровочный сигнал SC может быть выполнен таким образом, что он имеет импульс на каждый x-й импульс импульсного управляющего сигнала S1, работающего или на первой частоте или на второй частоте. x является любым подходящим значением, например, 1000. Альтернативно, импульсный калибровочный сигнал Sc может быть выполнен таким образом, что он имеет импульс каждый раз, когда импульсный управляющий сигнал S1 переключается с первой частоты на вторую частоту, или в другие соответствующие моменты времени. Если средство для подачи импульсного управляющего сигнала S1 содержит микроконтроллер, предпочтительно импульсный калибровочный сигнал Sc обеспечивают на выходе микроконтроллера.
Чувствительным резистором может быть резистор, основанный на кремниевой MEMS. В другом варианте воплощения чувствительный резистор может составлять часть датчика, основанного на кремниевой MEMS. Датчик может дополнительно содержать эталонный резистор.
Чувствительная схема может содержать мост Уитстона, имеющий первую ветвь и вторую ветвь, и причем выходное напряжение является разницей между напряжением в первой ветви и напряжением во второй ветви.
Согласно второму аспекту изобретения обеспечивается система генерации аэрозолей для приема формирующего аэрозоль субстрата, причем система включает в себя систему датчиков расхода для восприятия потока текучих сред в системе генерации аэрозолей, указывающего на затяжку, причем система датчиков расхода соответствует первому аспекту изобретения.
Система генерации аэрозолей может быть электрически нагреваемой системой генерации аэрозолей. Система генерации аэрозолей может быть курительной системой. Предпочтительно, система является портативной. Предпочтительно, система содержит корпус для приема формирующего аэрозоль субстрата и сконструирована быть захватываемой пользователем.
Формирующий аэрозоль субстрат может содержать содержащий табак материал (вещество), содержащий летучие соединения с ароматом табака, которые высвобождаются из субстрата при нагреве. Формирующий аэрозоль субстрат может дополнительно содержать формирователь аэрозоля. Формирующий аэрозоль субстрат может быть твердым субстратом, жидким субстратом, газообразным субстратом или комбинацией из двух или более из твердого, жидкого или газообразного.
Если формирующий аэрозоль субстрат является жидким субстратом, система генерации аэрозолей может содержать механизм аэролизации в контакте с источником жидкого субстрата. Механизм аэролизации может содержать, по меньшей мере, один нагревательный элемент для нагрева субстрата для формирования аэрозоля; причем нагревательный элемент может быть активирован, когда система генерации аэрозолей обнаруживает поток текучей среды, указывающий на затяжку. Альтернативно, нагревательный элемент может быть отдельным от механизма аэролизации, но при этом сообщается с ним. По меньшей мере, один нагревательный элемент может содержать единственный нагревательный элемент или более одного нагревательного элемента. Нагревательный элемент или элементы могут иметь любую подходящую форму для наиболее эффективного нагрева формирующего аэрозоль субстрата. Нагревательный элемент предпочтительно содержит электрически резистивный материал.
Механизм аэролизации может включать в себя один или более электромеханических элементов, таких как пьезоэлектрические элементы. Механизм аэролизации может включать в себя элементы, которые используют электростатические, электромагнитные или пневматические эффекты. Система генерации аэрозолей может содержать камеру конденсации.
В процессе использования субстрат может полностью содержаться внутри системы генерации аэрозолей. В таком случае пользователь может затягиваться из мундштука системы генерации аэрозолей. Альтернативно, в процессе использования субстрат может частично содержаться внутри системы генерации аэрозолей. В таком случае субстрат может составлять часть отдельной детали, и пользователь может затягиваться непосредственно из отдельной детали.
Система генерации аэрозолей может содержать источник электропитания. Источником электропитания может быть литиево-ионная батарея или один из ее вариантов, например, литиево-ионная полимерная батарея или никель-металл-гибридная батарея или никель-кадмиевая батарея, суперконденсатор или топливный элемент. В альтернативном варианте воплощения система генерации аэрозолей может содержать схему, заряжаемую внешним зарядным участком и приспособленную обеспечивать электропитание для заданного количества затяжек.
Согласно третьему аспекту изобретения обеспечивается способ управления системой датчиков расхода для восприятия потока текучих сред, указывающего на затяжку в системе генерации аэрозолей, причем система датчиков выполнена с возможностью работы в первом режиме, в котором затяжка не ожидается или не обнаружена, и во втором режиме, в котором затяжка ожидается или обнаружена, причем способ содержит этапы: подают импульсный управляющий сигнал S1 на чувствительную схему для подачи питания на чувствительную схему, так что чувствительная схема получает электропитание, когда импульсный управляющий сигнал S1 является высоким и не получает электропитание, когда импульсный управляющий сигнал S1 является низким, причем чувствительная схема включает в себя чувствительный резистор и выход напряжения, причем чувствительный резистор выполнен с возможностью обнаружения потока текучей среды на основе изменения сопротивления чувствительного резистора, причем чувствительная схема выполнена таким образом, что изменение сопротивления чувствительного резистора вызывает изменение в выходе напряжения; и переключают систему датчиков между первым и вторым режимами работы, причем импульсный управляющий сигнал S1 имеет первую частоту f1, в первом режиме, и имеет вторую частоту f2, которая выше, чем первая частота f1, во втором режиме.
Управление системой датчиков расхода с помощью импульсного управляющего сигнала S1 означает, что чувствительная схема не получает электропитание постоянно, но только когда S1 является высоким. Это значительно снижает энергопотребление, поскольку f1 и f2 могут быть выбраны для требуемой чувствительности.
В одном варианте воплощения этап переключения системы датчиков между первым и вторым режимами работы содержит переключение системы датчиков из первого режима, в котором импульсный управляющий сигнал S1 имеет первую частоту f1, во второй режим, в котором импульсный управляющий сигнал S1 имеет вторую частоту f2, при обнаружении затяжки. Затяжку обнаруживают посредством изменения в выходе напряжения чувствительной схемы. Альтернативно или дополнительно, этап переключения системы датчиков между первым и вторым режимами работы содержит переключение системы датчиков из первого режима, в котором импульсный управляющий сигнал S1 имеет первую частоту f1, во второй режим, в котором импульсный управляющий сигнал S1 имеет вторую частоту f2, когда ожидается затяжка, на основе привычек пользователя. Момент времени, в который ожидается затяжка, может быть предсказан на основе привычек пользователя. Например, система датчиков может быть переключена из первого режима во второй режим в одном или более случаях из: через заданный период времени после предшествующей затяжки и в заданный момент времени в течение дня. Заданный период времени может быть средним периодом времени между затяжками пользователя, и его можно таким образом адаптировать, чтобы он непрерывно регулировался на основе скользящего среднего времени между затяжками. Альтернативно, заданный период времени может иметь постоянное значение. Это предпочтительно, так как если система датчиков работает во втором режиме до затяжки, время отклика будет значительно короче.
Предпочтительно, способ содержит подачу импульсного управляющего сигнала S1 на второй частоте f2 в течение заданного периода времени после обнаружения изменения в выходе напряжения чувствительной схемы, указывающего затяжку, и подачу импульсного управляющего сигнала S1 на первой частоте f1 во все другое время.
Предпочтительно, способ дополнительно содержит этап подачи сигнала S2 на другие компоненты в системе генерации аэрозолей, причем сигнал S2 является высоким, когда выход напряжения чувствительной схемы указывает, что обнаружена затяжка, и сигнал S2 является низким, когда выход напряжения чувствительной схемы указывает, что затяжка не обнаружена. Сигнал S2 может быть использован для активации одного или более из: механизма аэролизации, пульверизатора, нагревательного элемента и индикатора затяжки.
Способ может дополнительно содержать этап регулировки чувствительности системы датчиков, содержащий одно или более из: периодической регулировки сопротивления переменного резистора в чувствительной схеме; обеспечение саморегулирующейся схемы смещения; и подачу импульсного калибровочного сигнала SC на чувствительную схему.
Способ может дополнительно содержать этап доставки аэрозоля пользователю в зависимости от характеристик затяжки, обнаруженной чувствительной схемой. Признаки, описанные в отношении одного аспекта изобретения, могут быть также применимы к другому аспекту изобретения.
Изобретение будет дополнительно описано, исключительно в качестве примера, со ссылкой на сопроводительные чертежи, на которых:
Фиг.1 показывает примерный вариант воплощения системы датчиков по изобретению;
Фиг.2а показывает сигнал GP2 по Фиг.1;
Фиг.2b показывает сигнал VOUT по Фиг.1 в отсутствие затяжки;
Фиг.2с показывает сигнал VOUT по Фиг.1 при обнаружении затяжки;
Фиг.3 показывает альтернативную схему размещения чувствительной схемы по Фиг.1, в виде моста для измерения сопротивления;
Фиг.4 показывает, каким образом может быть установлена заданная точка релаксации; и
Фиг.5 показывает один способ работы системы датчиков по Фиг.1.
Подходящий датчик для использования в системе датчиков по настоящему изобретению может содержать кремниевую подложку, мембрану из нитрида кремния на подложке и два платиновых нагревательных элемента на мембране. Два нагревательных элемента являются резисторами, один действующий одновременно как привод и датчик, а другой как эталон. Такой датчик является предпочтительным, поскольку он обеспечивает быстрый отклик датчика. Разумеется, могли бы быть использованы другие подходящие датчики. Во время работы имеется изменение сопротивления чувствительного резистора вследствие охлаждения примыкающим потоком текучей среды. Это изменение сопротивления является следствием потерь тепла.
Чувствительный резистор может быть использован при постоянной температуре, в таком случае измеряют увеличенную требуемую энергию нагрева, и она обеспечивает индикацию потока текучей среды. Альтернативно, чувствительный резистор может быть использован при постоянной мощности нагрева, в случае чего пониженная температура обеспечивает индикацию потока текучей среды. Альтернативно, чувствительный резистор может быть использован с постоянным током, что будет описано ниже, со ссылкой на Фиг.1 и 3, в случае чего изменение равновесия чувствительной схемы обеспечивает индикацию потока текучей среды.
Фиг.1 показывает примерный вариант воплощения системы датчиков по изобретению. Система 101 датчиков по Фиг.1 включает чувствительную схему 103, источник тока заданной величины в виде токового зеркала 105, дифференциальный усилитель 107 и генератор сигналов для подачи импульсного управляющего сигнала S1 в виде микроконтроллера 109 и управляющего транзистора 111.
Система 101 датчиков по Фиг.1 включает чувствительную схему 103. Чувствительная схема 103 включает в себя резисторы R1, R4 и переменный резистор RV в левой ветви и резисторы R2, R3 и чувствительный резистор RS в правой ветви. Чувствительный резистор RS является чувствительным резистором датчика, такого как вышеописанный датчик или датчика другого подходящего типа. RV является регулируемым сопротивлением и может быть использован для установления заданной точки релаксации (например, в отсутствие потока воздуха в системе), что будет дополнительно обсуждаться ниже. Альтернативно, для установки заданной точки релаксации может быть использована саморегулирующаяся схема смещения. В данном варианте воплощения выход микроконтроллера может быть соединен с неинвертирующим входом дифференциального усилителя (не показан на Фиг.1) и VOUT дифференциального усилителя может быть соединен с входом микроконтроллера. Микроконтроллер может быть использован для мониторинга выхода VOUT дифференциального усилителя и подачи напряжения на неинвертирующий вход дифференциального усилителя до тех пор, пока VOUT не = 0.
Измеренное напряжение VDIFF является измерением разницы (в данном примере разницей между V2 в правой ветви B и V1 в левой ветви A). Когда чувствительная схема 103 находится в равновесии, отношение сопротивлений в левой ветви,
Figure 00000003
, равно отношению сопротивлений в правой ветви,
Figure 00000004
, что приводит в результате к VDIFF=V2-V1 равному нулю. Как только RS охлаждается потоком текучей среды, меняется сопротивление RS, что приводит к изменению напряжения в правой ветви B и ненулевому значению для VDIFF.
Можно легко показать, что для чувствительной схемы 103 по Фиг.1:
Figure 00000005
(1)
если RV+R4=R1 и RS+R3=R2, то
Figure 00000006
Измерение разницы VDIFF обеспечивает индикацию потока текучей среды, который вызывает изменение сопротивления RS. Поскольку VDIFF является измерением разницы, могут быть проведены очень точные измерения, даже для малого изменения потока текучей среды и, следовательно, сопротивления. Конфигурация позволяет регистрировать такую информацию, как объем и интенсивность затяжки. Заметим из Уравнения (1), что VDIFF нелинейно зависит от чувствительного сопротивления RS.
В варианте воплощения по Фиг.1 источник тока заданной величины имеет вид токового зеркала 105, которое содержит два транзистора T1 и T2 в зеркальной конфигурации, плюс резистор RREF. Ток IM на T2 должен быть равен IREF на T1 (который также является током, проходящим через чувствительную схему 103). И:
VS=RREFIREF+VBE
Следовательно:
Figure 00000007
(2)
Нелинейность в чувствительной схеме (см. Уравнения (1) и (2) выше) компенсируется токовым зеркалом. Это предпочтительно, так как обнаруживается, что в системе, нелинейность которой компенсируется таким образом, нелинейность в два раза меньше, чем нелинейность в системе, компенсируемая изменением напряжения. Таким образом, токовое зеркало 105 в варианте воплощения по Фиг.1 уменьшает нелинейность системы.
Токовое зеркало 105 может иметь любую подходящую конфигурацию. Токовое зеркало может быть помещено со стороны высокого напряжения чувствительной схемы 103, а не между чувствительной схемой и землей, как показано на Фиг.1. Вместо T1 и T2 могли бы быть использованы транзисторы любого подходящего типа, включая PNP транзисторы, NPN транзисторы и КМОП транзисторы. Также возможны альтернативные схемы размещения источника тока. Система датчиков должна корректно работать в соответствующем диапазоне температур, и токовое зеркало 105 компенсирует любое изменение температуры. Другие температурно-компенсированные источники тока также доступны. Если внешняя температура меняется, на выходное напряжение чувствительной схемы, VDIFF, будет влиять это изменение, что может привести к неточной работе или измерениям. T1 и T2 должны иметь одинаковые электрические характеристики и должны быть размещены близко друг к другу и одинаково монтированы для минимизации любой разницы температур между ними.
Обращаясь к конкретному размещению токового зеркала 105, с одной стороны, если имеет место разница температур между T1 и T2, так как два транзистора имеют одинаковый потенциал (VBE) через их переходы база-эмиттер, VBE остается постоянным. Это означает, что если два транзистора находится при различных температурах, ток через T1 отличается от тока через T2, чтобы поддерживать VBE. С другой стороны, если меняется внешняя температура так, что одинаково воздействует на T1 и T2, ток через оба транзистора меняется одинаково для поддержания VBE постоянным.
Система 101 датчиков также включает в себя дифференциальный усилитель 107 на выходе чувствительной схемы 103 для усиления выходного напряжения VDIFF, которое обычно составляет всего несколько милливольт. На Фиг.1 используется усилитель AD623, произведенный Analog Devices, Inc, Массачусетс, США. Такой усилитель использует менее 0.5 мА и имеет коэффициент усиления вплоть до 1000. Тем не менее, его мог бы заменить любой подходящий дифференциальный усилитель. Усилитель 107 соединен с напряжением VS питания, и коэффициент усиления усилителя устанавливается резистором RG в соответствии с:
Figure 00000008
(3)
Таким образом, для коэффициента усиления ≈1000, RG установлено на 100 Ом.
Уравнение (3) применимо только для конкретного диапазона VDIFF. С любой стороны от данного диапазона усилитель будет насыщаться. В одном примере, если VDIFF = 0 В, VOUT = 1,5 В. Если VDIFF < -1,5 мВ, VOUT насыщается при 0 В. Если VDIFF > +1,5 мВ, VOUT насыщается при 3 В. В диапазоне -1,5 мВ < VDIFF < +1,5 мВ Уравнение (3) применимо, т.е. соотношение является линейным с градиентом, равным коэффициенту усиления, который равен приблизительно 1000, если RG установлено на 100 Ом.
Система 101 датчиков также включает микроконтроллер 109 и управляющий транзистор 111. В одном варианте воплощения микроконтроллер имеет вход GP0 и выходы GP2 и GP4. Чувствительная схема 103 и токовое зеркало 105 являются наибольшими потребителями энергии на Фиг.1. Для уменьшения энергопотребления чувствительная схема 103 и токовое зеркало 105 не получают электропитание непрерывно, а запускаются импульсным управляющим сигналом S1 от микроконтроллера 109. Импульсный ток IREF подается на токовое зеркало 105 и чувствительную схему 103 в соответствии с сигналом S1 на выходе GP2 микроконтроллера 109, посредством управляющего транзистора 111. Управляющий транзистор 111 ведет себя как переключатель, проводящий, когда сигнал на GP2 является высоким. Шириной и частотой импульса управляют посредством микроконтроллера 109. В данном варианте воплощения выход VOUT соединен с входом GP0 микроконтроллера для преобразования в цифровую форму выхода дифференциального усилителя. Выход GP0 отслеживают, и ширина и частота импульсного сигнала на GP2 может быть соответствующим образом отрегулирована. В варианте воплощения по Фиг.1 микроконтроллер 109 является КМОП 8-битным микроконтроллером с Flash памятью серии PIC12f675, произведенным Microchip Technology, Inc., Аризона, США. Микроконтроллер имеет питающий порт, порт заземления и шесть портов GP0-GP5 ввода/вывода (I/O), включая четыре порта для аналогово-цифрового преобразования. Он может функционировать при 3 В. Разумеется, может быть использован любой подходящий микроконтроллер.
Фиг.2а показывает один импульс прямоугольного сигнала на выходе GP2 микроконтроллера (сигнал S1). Фиг.2b показывает, каким образом сигнал на GP2 влияет на сигнал на VOUT в отсутствие затяжки. Фиг.2а показывает зависимость напряжения от времени для GP2. Фиг.2b показывает зависимость напряжения от времени для VOUT. Графики на Фиг.2а и 2b приведены не в масштабе. Каждый импульс сигнала на GP2 на Фиг.2а поделен на три фазы, обозначенные f, g и h на Фиг.2а. Эти фазы будут обсуждаться ниже. Сигнал на VOUT на Фиг.2b поделен на пять фаз, обозначенных a, b, c, d и e на Фиг.2b.
В фазе a сигнал на GP2 равен 0 В. Это до импульса. Следовательно, на чувствительную схему 103 не подается ток. Через чувствительный резистор RS не течет ток, поэтому он имеет температуру окружающей среды. Выход (выходной сигнал) чувствительной схемы 103, VDIFF представляет собой 0 В, что дает выход VOUT в 1.5 В, как обсуждалось выше.
В фазе b сигнал на GP2 равен 3 В. Теперь на чувствительную схему 103 подается ток, что означает, что температура RS начинает повышаться. Выход VDIFF чувствительной схемы 103 увеличивается до более, чем 1,5 В, что означает, что выход VOUT усилителя насыщается при 3 В.
В фазе с температура RS продолжает расти, и это начинает уменьшать выход чувствительной схемы 103. VDIFF падает ниже уровня насыщения в 1,5 мВ, поэтому с выхода VOUT усилителя получают линейный отклик. Поэтому VOUT линейно падает вместе с VDIFF с ростом температуры RS.
В фазе d температура RS поднялась достаточно, так что VDIFF становится менее -1,5 мВ, и выход VOUT усилителя вновь насыщается, на этот раз при 0 В.
В фазе е импульс на GP2 заканчивается, поэтому напряжение GP2 вновь находится на 0 В. Ток более не подается на чувствительную схему 103, что означает, что выход VDIFF равен 0 В, что дает выход VOUT 1.5 В, так же как и в фазе а. Температура RS уменьшается перед следующим импульсом.
В данной системе затяжка может быть обнаружена во время фазы с для VOUT, т.е. в течение линейного отклика дифференциального усилителя. При традиционной схеме размещения чувствительную схему 103 устанавливают таким образом, что ее равновесие VDIFF=0 достигается, когда сопротивление нагревателя датчика достигло постоянной температуры при нулевом потоке. При постоянном токе это означает подачу тока на датчик в течение длительного времени, достаточного, чтобы сопротивление нагревателя датчика достигло равновесной температуры. Это означает высокое энергопотребление датчика. В данном варианте воплощения изобретения энергопотребление снижают такой регулировкой импульсов, что сопротивление нагревателя не может или с трудом может достигнуть своей равновесной температуры.
Фиг.2с показывает сигнал на VOUT при обнаружении затяжки. Фиг.2с показывает зависимость напряжения от времени для VOUT. Снова, график на Фиг.2с приведен не в масштабе. При затяжке результирующий поток текучей среды вызывает смещение наклона VOUT (фаза с) направо. Величина сдвига наклона пропорциональна скорости потока. При смещениях наклона вправо сигнал на VOUT в конечном счете принимает форму управляющего сигнала на GP2, показанного на Фиг.2а. Это показано на Фиг.2с. Сигнал на GP2 снижается до нуля до начала наклона в фазе с или одновременно с ним. Затяжку обнаруживают непосредственно перед концом импульса на GP2. Если сигнал на VOUT оцифрован (через GP0), если его значение выше порогового значения, затяжку полагают обнаруженной. Поэтому важно, чтобы VOUT был равен нулю в отсутствие какого-либо потока текучей среды и до измерения.
Фиг.3 показывает альтернативную схему размещения для чувствительной схемы 103 в виде конфигурации 303 моста Уитстона, включающего чувствительный резистор RS. Четыре стороны моста Уитстона включают в себя резисторы R1, RV (в левой ветви A'), R2 и (R3 + RS) (в правой ветви B') соответственно. Вновь, RV является регулируемым сопротивлением и используется для установления заданной точки моста Уитстона. Мостовая схема расположения является предпочтительной, поскольку она позволяет обнаружить малые изменения сопротивления датчика. Дополнительно, такая схема уменьшает изменения, вызванные изменением температуры окружающей среды.
Фиг.4 показывает, каким образом переменное сопротивление RV или саморегулирующаяся схема смещения могут быть использованы для установления заданной точки релаксации чувствительной схемы 103 или моста 303 для измерения сопротивления и регулировки чувствительности системы датчиков. Как описано со ссылкой на фазы b, с и d на Фиг.2b, сопротивление RS датчика увеличивается с включением электропитания до значения, определяемого шириной импульса сигнала на GP2, генерируемого микроконтроллером 109. RV или саморегулирующаяся схема смещения могут быть использованы для определения того, при каком уровне напряжения происходит это изменение RS, и это проиллюстрировано на Фиг.4.
Диапазон значений, которые может принимать RS с изменением температуры, показан на Фиг.4 в виде диапазона 401. Воздействие регулировкой RV или использованием саморегулирующейся схемы смещения предназначено для смещения диапазона 401 вдоль диагональной линии, что показано стрелкой 403. Заданная точка релаксации является точкой, в которую помещено изменение напряжения RS. Смещение диапазона 401 RS вдоль диагональной линии на Фиг.4 соответствует смещению наклона в фазе с для VOUT на Фиг.2b влево или вправо. Наилучшая чувствительность достигается, когда диапазон 401 начинается в нуле или чуть ниже нуля на Фиг.4, что соответствует расположению наклона в фазе с для VOUT в конце импульса GP2 на Фиг.2b или непосредственно перед ним.
Фиг.5 показывает один вариант воплощения способа работы схемы размещения по Фиг.1. Верхняя треть Фиг.5 показывает зависимость напряжения от времени для GP2 (сигнал S1). Центральная треть Фиг.5 показывает зависимость напряжения от времени для VOUT (соответствующего GP0). Нижняя треть Фиг.5 показывает зависимость напряжения от времени для выхода VCTRL микроконтроллера (соответствующего сигналу S2 на GP4). Графики на Фиг.5 приведены не в масштабе. Как уже обсуждалось, для минимизации энергопотребления чувствительная схема 103 или мост 303 Уитстона и токовое зеркало 105 питаются импульсным управляющим сигналом S1 на GP2. Один прямоугольный импульс GP2 показан на Фиг.2а. Левая сторона Фиг.5 показывает работу сигнала в первом режиме. Правая сторона Фиг.5 показывает работу сигнала во втором режиме.
Левая сторона Фиг.5 показывает способ работы, когда затяжка не обнаружена, и сигнал работает в первом режиме. Частота импульса при работе сигнала в первом режиме в данном варианте воплощения составляет 3 Гц, т.е. импульс есть приблизительно каждые 330 мс. Такая частота обеспечивает хороший компромисс между чувствительностью и энергопотреблением. Ширина импульса на GP2 в данном варианте воплощения равна 12,1 мс. Следовательно, напряжение VOUT имеет форму, показанную слева на Фиг.5. Заметим, что каждый импульс VOUT в нижней половине левой стороны Фиг.5 имеет форму, показанную на Фиг.2b, но форма импульса показана только схематически на Фиг.5. В левой стороне Фиг.5 затяжка не обнаружена, поэтому форма импульса аналогична форме, показанной на Фиг.2b, а не форме, показанной на Фиг.2с.
Правая сторона Фиг.5 показывает способ работы, когда затяжка обнаружена, и сигнал работает во втором режиме. Затяжка обнаружена в момент 501 времени. Как можно видеть на центральной трети правой стороны Фиг.5, затяжка обнаружена, поскольку нижний участок импульса VOUT (низ наклона в фазе с) имеет более высокое значение. Это соответствует смещению наклона в фазе с направо потоком текучей среды, так что наклон обрывается до достижения фазы d возвращением сигнала GP2 до 0 В. При обнаружении затяжки в момент 501 времени обнаружение на входе GP0 переключает сигнал S2 на выходе GP4 с 0 на 1, так что включается VCTRL, как показано на нижней трети на правой стороне Фиг.5. Обнаружение на входе GP0 также вызывает изменение частоты импульса на GP2, и система начинает работать во втором режиме. Разумеется, изменение сигнала на GP2 может быть также использовано для управления другими схемами, например, механизмом аэролизации, пульверизатором, нагревательным элементом и индикатором затяжки. Сейчас, в данном варианте воплощения, частота импульса GP2 во втором режиме равна 22 Гц, т.е. импульс появляется приблизительно каждые 45 мс, как показано в верхней трети правой стороны Фиг.5. Заметим, что ширина импульса остается такой же, как и в первом режиме, т.е. 12,1 мс в данном варианте воплощения. Заметим, что нижний участок сигнала VOUT соответствует пунктирной кривой, обозначенной 503. Эта кривая является профилем затяжки, так как степень наклона VOUT, сдвигающегося направо, пропорциональна скорости потока. Когда нижний участок сигнала на VOUT увеличивается, скорость потока увеличивается от нуля до своего максимального значения, а когда нижний участок сигнала на VOUT уменьшается от своего максимального значения до нуля, скорость потока уменьшается от максимального значения до нуля.
В данном варианте воплощения система правильно калибрована; это можно видеть из кривой 503, которая только достигает, но не превышает высокого значения VOUT. Это эквивалентно диапазону 401 RS на Фиг. 4, начинающемуся у нуля или чуть ниже нуля, и наклону фазы с для VOUT, расположенному на конце импульса GP2 или непосредственно перед ним. Эта калибровка может быть достигнута изменением RV или схемы смещения, что обсуждалось выше со ссылкой на Фиг.4, или альтернативным способом калибровки, который будет обсуждаться ниже.
В момент времени 505, когда никакие изменения не обнаружены вновь на VOUT, выход VCTRL возвращается к 0 В. Импульс GP2 остается на второй частоте, равной 22 Гц, в течение заданного периода времени после обнаружения затяжки в момент 501 времени до момента 507 времени, когда он возвращается к своей первой частоте 3 Гц. Это период 501-507 времени может быть или установлен заранее, или может быть основан на привычках пользователя. Например, период времени мог бы соответствовать среднему периоду времени между двумя затяжками.
Таким образом, в течение первого режима, когда частота импульса GP2 равна 3 Гц, в худшем случае время для первой затяжки составляет приблизительно 330 мс. Если затяжка сделана во время второго режима, когда частота импульса GP2 равна 22 Гц, максимальное время отклика намного быстрее, и в худшем случае время для затяжки составляет приблизительно 45 мс.
Сигнал VOUT, который представляет затяжку, может быть записан и может быть использован для извлечения различных данных. Например, из сигнала VOUT может быть записано среднее полное время для затяжки. Это соответствует периоду времени от 501 до 507 на Фиг.5. Также, наклон кривой 503 может быть использован для вычисления силы или интенсивности, с которой пользователь делает затяжку. Также, из профиля 503 затяжки по периоду времени от 501 до 505 может быть определен объем затяжки. Также, из сигнала VOUT может быть получен средний период времени между затяжками (хотя заметим, что для простоты на Фиг.5 показана только одна затяжка).
Эта информация может быть подана в микроконтроллер, и это допускает большую степень гибкости в работе. Например, из зарегистрированного времени между затяжками микроконтроллер может адаптировать период времени, в течение которого GP2 остается на высокой частоте (от 501 до 507) в соответствии с привычками пользователя. В качестве дополнительного примера, микроконтроллер мог бы переключаться автоматически из низкочастотного импульса GP2 в высокочастотный импульс GP2 в момент времени, когда ожидается следующая затяжка, основываясь на привычках пользователя. Это уменьшит время отклика, т.е. время для затяжки. В качестве дополнительного примера, сила с которой пользователь делает затяжку, может быть зарегистрирована и использована для управления доставкой аэрозоля, например, на привод, механизм аэролизации или нагревательный элемент, чтобы подходить пользователю.
Способ работы, показанный на Фиг.5, может быть реализован программным обеспечением микроконтроллера. Во-первых, программное обеспечение включает и инициирует микроконтроллер. Далее, программное обеспечение выполняет электронную стабилизацию. При завершении этих процессов микроконтроллер может быть использован для генерации импульсов на GP2 и считывания отклика на VOUT. Если VOUT не превышает 0,1 В, затяжка не была обнаружена, в случае чего устанавливают первую частоту импульса для сигнала S1 на GP2, в данном случае 3 Гц. Микроконтроллер продолжает генерировать импульсы с первой частотой импульса и считывать отклик на VOUT до обнаружения затяжки.
Если VOUT больше, чем 0,1 В, затяжка была обнаружена, в случае чего запускается таймер обратного отсчета. Это соответствует моменту 501 времени на Фиг.5. Выход VCTRL микроконтроллера на GP4 (S2) устанавливается на высокое значение, и устанавливают вторую частоту импульса для сигнала на GP2, в данном случае 22 Гц. Микроконтроллер генерирует импульсы на второй частоте на GP2 и считывает отклик на VOUT. Если VOUT больше, чем 0,1 В, затяжка все еще фиксируется, в случае чего импульс S1 на GP2 все еще подается на второй частоте, и выход VCTRL микроконтроллера для GP4 (S2) остается высоким.
Если VOUT не превышает 0,1 В, затяжка более не детектируется. Это соответствует моменту 505 времени на Фиг.5. В таком случае устанавливается низкое VCTRL. Затем, если таймер обратного отсчета имеет не ноль, период времени, в течение которого импульс GP2 должен оставаться на высокой частоте, еще не истек, т.е. момент 507 времени на Фиг.5 еще не достигнут. В таком случае импульсный сигнал S1 на GP2 остается на высокой частоте.
Если таймер обратного отсчета имеет не ноль, период времени, в течение которого импульс GP2 должен оставаться на высокой частоте, истек, т.е. момент 507 времени на Фиг.5 достигнут. В таком случае импульсный сигнал S1 на GP2 возвращается к первой низкой частоте.
Как обсуждалось выше, чувствительность системы может быть установлена регулировкой RV или подачей напряжения на неинвертирующий вход дифференциального усилителя до тех пор, пока выход усилителя VOUT не равен 0 В. Другим способом является использование калибровочного сигнала SC. Импульс калибровочного сигнала SC может генерироваться периодически, например, каждые x импульсов (например, 1000 импульсов) сигнала S1 на GP2, или каждый раз, когда сигнал на GP2 изменяется из второго режима (22 Гц) в первый режим (3 Гц). Вновь обращаясь к Фиг.2а, калибровочный импульс используется для поддержания постоянного периода времени для фазы d, т.е. когда VOUT равно ОВ. Если используется калибровочный импульс, ширина импульса на GP2 не является более фиксированной, но является переменной. Импульс на GP2 делится на три фазы, f, g и h, как показано на Фиг. 2а. Во время калибровки в фазе f, которая имеет постоянную длительность (в одном варианте воплощения 6 мс), сигнал на GP2 сохраняется высоким при 3 В, независимо от сигнала на VOUT. В фазе g наблюдают сигнал на VOUT, и, пока VOUT остается выше, чем 0 В (как в фазе b или с - см. Фиг.2b), сигнал на GP2 сохраняется высоким при 3 В. Как только сигнал на VOUT достигает 0 В (фаза d - см. Фиг.2b), регистрируется момент времени, и устанавливается постоянная длительность (в одном варианте воплощения 300 мкс) периода времени для фазы h для GP2, который соответствует фазе d для VOUT. Во время калибровки, в данном варианте воплощения, если VOUT не достигает 0 В после общей длительности импульса (f+g+h), 14 мкс, затяжку полагают обнаруженной.
В нормальном рабочем режиме, общая ширина импульса GP2 равна f+g+h. Время g, которое было зарегистрировано во время калибровки, теперь используется для вычисления общей продолжительности импульса. Этот способ калибровки системы для установки чувствительности очень выгоден по следующим причинам. Во-первых, настраиваемое сопротивление RV может быть заменено постоянным сопротивлением. Во-вторых, автоматическая калибровка происходит каждый раз, когда импульсный калибровочный сигнал SC имеет импульс. Это означает, что нет необходимости в ручной настройке любых компонент в системе, ни во время производства, ни во время технического обслуживания, так как система будет настраивать саму себя автоматически для лучшей чувствительности. Временное окно, выбранное в данном варианте воплощения, от 6 мс до 14 мс, достаточно велико, чтобы допускать любые изменения температуры окружающей среды и отклика различных электронных компонент, но могло бы быть выбрано любое подходящее временное окно.

Claims (14)

1. Система датчиков расхода для восприятия потока текучей среды, указывающего затяжку в системе генерации аэрозолей, причем система датчиков выполнена с возможностью работать в первом режиме, в котором затяжка не ожидается или не обнаружена, и во втором режиме, в котором затяжка ожидается или обнаружена, и содержащая:
чувствительную схему, содержащую чувствительный резистор и выход напряжения, причем чувствительный резистор выполнен с возможностью обнаруживать поток текучей среды, указывающий затяжку, на основе изменения сопротивления, причем чувствительная схема выполнена так, что изменение сопротивления чувствительного резистора вызывает изменение выхода напряжения; и
генератор сигналов, выполненный с возможностью подачи импульсного управляющего сигнала S1 на чувствительную схему для питания чувствительной схемы, так что чувствительная схема получает электропитание посредством сигнала S1, когда импульсный управляющий сигнал S1 является высоким, и не получает электропитание, когда импульсный управляющий сигнал S1 является низким, при этом импульсный управляющий сигнал S1 имеет первую частоту f1 в первом режиме и вторую частоту f2 выше, чем первая частота f1, во втором режиме, и при этом генератор сигналов выполнен с возможностью переключаться из первого режима во второй режим, когда затяжка ожидается или обнаружена чувствительной схемой.
2. Система датчиков расхода по п.1, дополнительно содержащая источник тока, выполненный с возможностью подачи тока заданной величины через чувствительную схему, в которой импульсный управляющий сигнал S1 подают на источник тока.
3. Система датчиков расхода по п.1 или 2, дополнительно содержащая дифференциальный усилитель, приспособленный усиливать выходное напряжение чувствительной схемы.
4. Система датчиков расхода по п.3, в которой выход дифференциального усилителя пропорционален выходному напряжению чувствительной схемы в диапазоне значений выходного напряжения чувствительной схемы и насыщается, когда выходное напряжение чувствительной схемы ниже чем или выше чем диапазон.
5. Система датчиков расхода по п.1, дополнительно содержащая средство для регулировки чувствительности системы датчиков, причем средство для регулировки чувствительности содержит одно или более из:
переменного резистора в чувствительной схеме;
саморегулирующейся схемы смещения; и
генератора сигналов для подачи импульсного калибровочного сигнала SC на чувствительную схему.
6. Система датчиков расхода по п.1, в которой чувствительная схема содержит мост Уитстона, имеющий первую ветвь и вторую ветвь, и в которой выходное напряжение является разницей между напряжением в первой ветви и напряжением во второй ветви.
7. Система генерации аэрозолей для приема формирующего аэрозоль субстрата, причем система включает в себя систему датчиков расхода для восприятия потока текучей среды в системе генерации аэрозолей, указывающего затяжку, причем систему датчиков расхода по любому из предшествующих пунктов.
8. Система генерации аэрозолей по п.7, дополнительно содержащая:
по меньшей мере, один нагревательный элемент для нагрева субстрата, чтобы формировать аэрозоль;
в которой система датчиков расхода выполнена с возможностью активации нагревательного элемента, когда система датчиков расхода воспринимает поток текучей среды, указывающий на затяжку.
9. Способ для управления системой датчиков расхода для восприятия потока текучей среды, указывающего затяжку в системе генерации аэрозоля, причем система датчиков выполнена с возможностью работать в первом режиме, в котором затяжка не ожидается или не обнаружена, и во втором режиме, в котором затяжка ожидается или обнаружена, причем способ содержит этапы:
подают импульсный управляющий сигнал S1 на чувствительную схему для подачи электропитания на чувствительную схему, так что чувствительная схема получает электропитание посредством сигнала S1, когда импульсный управляющий сигнал S1 является высоким, и не получает электропитание, когда импульсный управляющий сигнал S1 является низким, причем чувствительная схема включает в себя чувствительный резистор и выход напряжения, причем чувствительный резистор выполнен с возможностью обнаружения потока текучей среды, указывающего затяжку, на основе изменения сопротивления чувствительного резистора, причем чувствительная схема выполнена так, что изменение сопротивления чувствительного резистора вызывает изменение выходного напряжения; и переключают систему датчиков между первым и вторым режимами работы, при этом импульсный управляющий сигнал S1 имеет первую частоту f1 в первом режиме, и имеет вторую частоту f2, которая выше, чем первая частота f1, во втором режиме, когда затяжка ожидается или обнаружена чувствительной схемой.
10. Способ по п.9, в котором этап переключения системы датчиков между первым и вторым режимами работы содержит переключение системы датчиков из первого режима, в котором импульсный управляющий сигнал S1 имеет первую частоту f1, во второй режим, в котором импульсный управляющий сигнал S1 имеет вторую частоту f2, если обнаружена затяжка.
11. Способ по п.9 или 10, в котором этап переключения системы датчиков между первым и вторым режимами работы содержит переключение системы датчиков из первого режима, в котором импульсный управляющий сигнал S1 имеет первую частоту f1, во второй режим, в котором импульсный управляющий сигнал S1 имеет вторую частоту f2, когда ожидается затяжка, на основе привычек пользователя.
12. Способ по п.9, дополнительно содержащий этап подачи сигнала S2 на другие компоненты в системе генерации аэрозолей, причем сигнал S2 является высоким, когда выходное напряжение чувствительной схемы указывает, что обнаружена затяжка, и сигнал S2 является низким, когда выходное напряжение чувствительной схемы указывает на то, что затяжка не обнаружена.
13. Способ по п.9, дополнительно содержащий этап регулировки чувствительности системы датчиков, содержащий одно или более из:
периодической регулировки сопротивления переменного резистора в чувствительной схеме;
обеспечение саморегулирующейся схемы смещения; и
подачу импульсного управляющего сигнала SC на чувствительную схему.
14. Способ по п.9, дополнительно содержащий этап доставки аэрозоля пользователю в зависимости от характеристик затяжки, обнаруженной чувствительной схемой.
RU2011104185/28A 2008-07-08 2009-05-25 Система датчиков расхода RU2496393C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08252328A EP2143346A1 (en) 2008-07-08 2008-07-08 A flow sensor system
EP08252328.3 2008-07-08
PCT/EP2009/003668 WO2010003480A1 (en) 2008-07-08 2009-05-25 A flow sensor system

Publications (2)

Publication Number Publication Date
RU2011104185A RU2011104185A (ru) 2012-08-20
RU2496393C2 true RU2496393C2 (ru) 2013-10-27

Family

ID=40032704

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011104185/28A RU2496393C2 (ru) 2008-07-08 2009-05-25 Система датчиков расхода

Country Status (23)

Country Link
EP (2) EP2143346A1 (ru)
JP (1) JP5404779B2 (ru)
KR (1) KR101573101B1 (ru)
CN (1) CN102088875B (ru)
AR (1) AR074040A1 (ru)
AU (1) AU2009267544B2 (ru)
BR (1) BRPI0915630B1 (ru)
CA (1) CA2729305C (ru)
CO (1) CO6341532A2 (ru)
DK (1) DK2299855T3 (ru)
EG (1) EG25966A (ru)
ES (1) ES2573942T3 (ru)
HU (1) HUE027071T2 (ru)
IL (1) IL209971A (ru)
MX (1) MX2011000318A (ru)
MY (1) MY160191A (ru)
NZ (1) NZ589885A (ru)
PL (1) PL2299855T3 (ru)
RU (1) RU2496393C2 (ru)
TW (1) TWI479458B (ru)
UA (1) UA100068C2 (ru)
WO (1) WO2010003480A1 (ru)
ZA (1) ZA201008868B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785333C2 (ru) * 2018-07-05 2022-12-06 Филип Моррис Продактс С.А. Индукционно нагреваемая система, генерирующая аэрозоль, с датчиком температуры окружающей среды
US12011045B2 (en) 2018-07-05 2024-06-18 Philip Morris Products S.A. Inductively heated aerosol-generating system with ambient temperature sensor

Families Citing this family (307)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
US9743691B2 (en) 2010-05-15 2017-08-29 Rai Strategic Holdings, Inc. Vaporizer configuration, control, and reporting
US9259035B2 (en) 2010-05-15 2016-02-16 R. J. Reynolds Tobacco Company Solderless personal vaporizing inhaler
US8757147B2 (en) 2010-05-15 2014-06-24 Minusa Holdings Llc Personal vaporizing inhaler with internal light source
US10159278B2 (en) 2010-05-15 2018-12-25 Rai Strategic Holdings, Inc. Assembly directed airflow
US10136672B2 (en) 2010-05-15 2018-11-27 Rai Strategic Holdings, Inc. Solderless directly written heating elements
US9999250B2 (en) 2010-05-15 2018-06-19 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US9095175B2 (en) 2010-05-15 2015-08-04 R. J. Reynolds Tobacco Company Data logging personal vaporizing inhaler
US9861772B2 (en) 2010-05-15 2018-01-09 Rai Strategic Holdings, Inc. Personal vaporizing inhaler cartridge
US9078473B2 (en) 2011-08-09 2015-07-14 R.J. Reynolds Tobacco Company Smoking articles and use thereof for yielding inhalation materials
EP2625975A1 (en) 2012-02-13 2013-08-14 Philip Morris Products S.A. Aerosol-generating article having an aerosol-cooling element
ES2592812T5 (es) 2011-12-30 2020-03-09 Philip Morris Products Sa Dispositivo generador de aerosol con detección de flujo de aire
AR089602A1 (es) 2011-12-30 2014-09-03 Philip Morris Products Sa Articulo generador de aerosoles para usar con un dispositivo generador de aerosoles
ES2650916T3 (es) 2011-12-30 2018-01-23 Philip Morris Products S.A. Artículo para fumar con tapón delantero y método
AU2012360831B2 (en) 2011-12-30 2017-02-16 Philip Morris Products S.A. Smoking article with front-plug and aerosol-forming substrate and method
US20130255702A1 (en) 2012-03-28 2013-10-03 R.J. Reynolds Tobacco Company Smoking article incorporating a conductive substrate
GB2502055A (en) 2012-05-14 2013-11-20 Nicoventures Holdings Ltd Modular electronic smoking device
PT2854570T (pt) 2012-05-31 2016-09-19 Philip Morris Products Sa Hastes aromatizantes para utilização em artigos geradores de aerossol
AR091509A1 (es) 2012-06-21 2015-02-11 Philip Morris Products Sa Articulo para fumar para ser usado con un elemento de calentamiento interno
US10004259B2 (en) 2012-06-28 2018-06-26 Rai Strategic Holdings, Inc. Reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article
US8881737B2 (en) 2012-09-04 2014-11-11 R.J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
US8910639B2 (en) 2012-09-05 2014-12-16 R. J. Reynolds Tobacco Company Single-use connector and cartridge for a smoking article and related method
WO2014040221A1 (zh) * 2012-09-11 2014-03-20 Liu Qiuming 电子烟
CN103404969A (zh) 2012-10-05 2013-11-27 佛山市新芯微电子有限公司 电子烟装置
US9854841B2 (en) 2012-10-08 2018-01-02 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
US10117460B2 (en) 2012-10-08 2018-11-06 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
GB2507103A (en) * 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
GB2507104A (en) 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
US10034988B2 (en) 2012-11-28 2018-07-31 Fontem Holdings I B.V. Methods and devices for compound delivery
US9210738B2 (en) 2012-12-07 2015-12-08 R.J. Reynolds Tobacco Company Apparatus and method for winding a substantially continuous heating element about a substantially continuous wick
US8910640B2 (en) 2013-01-30 2014-12-16 R.J. Reynolds Tobacco Company Wick suitable for use in an electronic smoking article
DE102013203340A1 (de) * 2013-02-28 2014-08-28 Nagel Maschinen- Und Werkzeugfabrik Gmbh Verfahren und Vorrichtung zur fluidischen Geometriemessung
US10031183B2 (en) 2013-03-07 2018-07-24 Rai Strategic Holdings, Inc. Spent cartridge detection method and system for an electronic smoking article
US20140261486A1 (en) 2013-03-12 2014-09-18 R.J. Reynolds Tobacco Company Electronic smoking article having a vapor-enhancing apparatus and associated method
US9277770B2 (en) 2013-03-14 2016-03-08 R. J. Reynolds Tobacco Company Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method
US20140261487A1 (en) 2013-03-14 2014-09-18 R. J. Reynolds Tobacco Company Electronic smoking article with improved storage and transport of aerosol precursor compositions
US9918495B2 (en) 2014-02-28 2018-03-20 Rai Strategic Holdings, Inc. Atomizer for an aerosol delivery device and related input, aerosol production assembly, cartridge, and method
CN109527661B (zh) 2013-03-14 2021-10-08 Rai策略控股有限公司 雾剂递送装置的雾化器和相关输入,雾剂产生组合件,烟弹,以及方法
US9609893B2 (en) 2013-03-15 2017-04-04 Rai Strategic Holdings, Inc. Cartridge and control body of an aerosol delivery device including anti-rotation mechanism and related method
KR20220095253A (ko) 2013-03-15 2022-07-06 레이 스트라티직 홀딩스, 인크. 재료 시트로 형성된 가열 요소, 복수의 애토마이저를 제조하기 위한 인풋 시트 및 방법, 에어로졸 송달 장치용 카트리지 및 흡연 물품용 카트리지를 조립하는 방법
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US9220302B2 (en) 2013-03-15 2015-12-29 R.J. Reynolds Tobacco Company Cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article
US9423152B2 (en) 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US9491974B2 (en) 2013-03-15 2016-11-15 Rai Strategic Holdings, Inc. Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers
RU2763434C2 (ru) 2013-06-19 2021-12-29 ФОНТЕМ ХОЛДИНГС 4 Би.Ви. Устройство и способ измерения массового расхода воздуха
US11229239B2 (en) 2013-07-19 2022-01-25 Rai Strategic Holdings, Inc. Electronic smoking article with haptic feedback
US10172387B2 (en) 2013-08-28 2019-01-08 Rai Strategic Holdings, Inc. Carbon conductive substrate for electronic smoking article
WO2015042412A1 (en) 2013-09-20 2015-03-26 E-Nicotine Technology. Inc. Devices and methods for modifying delivery devices
EP3039974B1 (en) * 2013-09-30 2018-04-18 Japan Tobacco, Inc. Non-combusting flavor inhaler
US9806549B2 (en) 2013-10-04 2017-10-31 Rai Strategic Holdings, Inc. Accessory for an aerosol delivery device and related method and computer program product
GB2519101A (en) 2013-10-09 2015-04-15 Nicoventures Holdings Ltd Electronic vapour provision system
US10292424B2 (en) 2013-10-31 2019-05-21 Rai Strategic Holdings, Inc. Aerosol delivery device including a pressure-based aerosol delivery mechanism
US20150128969A1 (en) 2013-11-11 2015-05-14 R.J. Reynolds Tobacco Company Mouthpiece for smoking article
US20150128968A1 (en) 2013-11-11 2015-05-14 R.J. Reynolds Tobacco Company Mouthpiece for smoking article
US9839237B2 (en) 2013-11-22 2017-12-12 Rai Strategic Holdings, Inc. Reservoir housing for an electronic smoking article
CA3132323C (en) 2013-12-23 2023-02-07 Juul Labs, Inc. Vaporization device systems and methods
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US9974334B2 (en) 2014-01-17 2018-05-22 Rai Strategic Holdings, Inc. Electronic smoking article with improved storage of aerosol precursor compositions
US10575558B2 (en) 2014-02-03 2020-03-03 Rai Strategic Holdings, Inc. Aerosol delivery device comprising multiple outer bodies and related assembly method
US9451791B2 (en) 2014-02-05 2016-09-27 Rai Strategic Holdings, Inc. Aerosol delivery device with an illuminated outer surface and related method
US20150224268A1 (en) 2014-02-07 2015-08-13 R.J. Reynolds Tobacco Company Charging Accessory Device for an Aerosol Delivery Device and Related System, Method, Apparatus, and Computer Program Product for Providing Interactive Services for Aerosol Delivery Devices
US9833019B2 (en) 2014-02-13 2017-12-05 Rai Strategic Holdings, Inc. Method for assembling a cartridge for a smoking article
FR3017954B1 (fr) * 2014-02-21 2016-12-02 Smokio Cigarette electronique
US9839238B2 (en) 2014-02-28 2017-12-12 Rai Strategic Holdings, Inc. Control body for an electronic smoking article
US9597466B2 (en) 2014-03-12 2017-03-21 R. J. Reynolds Tobacco Company Aerosol delivery system and related method, apparatus, and computer program product for providing control information to an aerosol delivery device via a cartridge
US11696604B2 (en) 2014-03-13 2023-07-11 Rai Strategic Holdings, Inc. Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
EP4233581A3 (en) * 2014-03-21 2023-10-04 Nicoventures Trading Limited Apparatus for heating smokable material and a method of identifying an article of smokable material
US9877510B2 (en) 2014-04-04 2018-01-30 Rai Strategic Holdings, Inc. Sensor for an aerosol delivery device
US20150313282A1 (en) 2014-05-01 2015-11-05 R.J. Reynolds Tobacco Company Electronic smoking article
US9924741B2 (en) 2014-05-05 2018-03-27 Rai Strategic Holdings, Inc. Method of preparing an aerosol delivery device
US20150335070A1 (en) 2014-05-20 2015-11-26 R.J. Reynolds Tobacco Company Electrically-powered aerosol delivery system
US9955726B2 (en) 2014-05-23 2018-05-01 Rai Strategic Holdings, Inc. Sealed cartridge for an aerosol delivery device and related assembly method
US10888119B2 (en) 2014-07-10 2021-01-12 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for controlling operation of a device based on a read request
US10058123B2 (en) 2014-07-11 2018-08-28 R. J. Reynolds Tobacco Company Heater for an aerosol delivery device and methods of formation thereof
US9913493B2 (en) 2014-08-21 2018-03-13 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US9609895B2 (en) 2014-08-21 2017-04-04 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for testing components of an aerosol delivery device
US10765144B2 (en) 2014-08-21 2020-09-08 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US11051554B2 (en) 2014-11-12 2021-07-06 Rai Strategic Holdings, Inc. MEMS-based sensor for an aerosol delivery device
CN112155255A (zh) 2014-12-05 2021-01-01 尤尔实验室有限公司 校正剂量控制
US10500600B2 (en) 2014-12-09 2019-12-10 Rai Strategic Holdings, Inc. Gesture recognition user interface for an aerosol delivery device
WO2016091658A1 (en) 2014-12-11 2016-06-16 Philip Morris Products S.A. Inhaling device with user recognition based on inhalation behaviour
EP3236787B1 (en) 2014-12-25 2023-04-26 Fontem Ventures B.V. Dynamic output power management for electronic smoking device
US10321711B2 (en) 2015-01-29 2019-06-18 Rai Strategic Holdings, Inc. Proximity detection for an aerosol delivery device
US10027016B2 (en) 2015-03-04 2018-07-17 Rai Strategic Holdings Inc. Antenna for an aerosol delivery device
US9980516B2 (en) 2015-03-09 2018-05-29 Rai Strategic Holdings, Inc. Aerosol delivery device including a wave guide and related method
US10172388B2 (en) 2015-03-10 2019-01-08 Rai Strategic Holdings, Inc. Aerosol delivery device with microfluidic delivery component
US11000069B2 (en) 2015-05-15 2021-05-11 Rai Strategic Holdings, Inc. Aerosol delivery device and methods of formation thereof
US10238145B2 (en) 2015-05-19 2019-03-26 Rai Strategic Holdings, Inc. Assembly substation for assembling a cartridge for a smoking article
KR102600782B1 (ko) 2015-06-12 2023-11-10 필립모리스 프로덕츠 에스.에이. 전자 흡연 물품의 생물학적 제어
BR112017025606B1 (pt) 2015-06-12 2022-08-09 Philip Morris Products S.A. Sistema e artigo eletrônico para reconhecimento de produto de tag de rfid em dispositivos geradores de aerossol e seu uso
US11504489B2 (en) 2015-07-17 2022-11-22 Rai Strategic Holdings, Inc. Contained liquid system for refilling aerosol delivery devices
US10966460B2 (en) 2015-07-17 2021-04-06 Rai Strategic Holdings, Inc. Load-based detection of an aerosol delivery device in an assembled arrangement
US11033054B2 (en) 2015-07-24 2021-06-15 Rai Strategic Holdings, Inc. Radio-frequency identification (RFID) authentication system for aerosol delivery devices
US11134544B2 (en) 2015-07-24 2021-09-28 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US10206429B2 (en) 2015-07-24 2019-02-19 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US10015987B2 (en) 2015-07-24 2018-07-10 Rai Strategic Holdings Inc. Trigger-based wireless broadcasting for aerosol delivery devices
US10058125B2 (en) 2015-10-13 2018-08-28 Rai Strategic Holdings, Inc. Method for assembling an aerosol delivery device
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
US20170112194A1 (en) 2015-10-21 2017-04-27 Rai Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
US10582726B2 (en) 2015-10-21 2020-03-10 Rai Strategic Holdings, Inc. Induction charging for an aerosol delivery device
US20170119052A1 (en) 2015-10-30 2017-05-04 R.J. Reynolds Tobacco Company Application specific integrated circuit (asic) for an aerosol delivery device
US10201187B2 (en) 2015-11-02 2019-02-12 Rai Strategic Holdings, Inc. User interface for an aerosol delivery device
US10820630B2 (en) 2015-11-06 2020-11-03 Rai Strategic Holdings, Inc. Aerosol delivery device including a wirelessly-heated atomizer and related method
RU2733625C2 (ru) 2015-11-24 2020-10-05 Р. Дж. Рейнолдс Тобакко Компани Система подачи аэрозоля с электрическим питанием
US10440992B2 (en) 2015-12-07 2019-10-15 Rai Strategic Holdings, Inc. Motion sensing for an aerosol delivery device
US9955733B2 (en) 2015-12-07 2018-05-01 Rai Strategic Holdings, Inc. Camera for an aerosol delivery device
US11291252B2 (en) 2015-12-18 2022-04-05 Rai Strategic Holdings, Inc. Proximity sensing for an aerosol delivery device
US10092036B2 (en) 2015-12-28 2018-10-09 Rai Strategic Holdings, Inc. Aerosol delivery device including a housing and a coupler
US10051891B2 (en) 2016-01-05 2018-08-21 Rai Strategic Holdings, Inc. Capacitive sensing input device for an aerosol delivery device
US10194694B2 (en) 2016-01-05 2019-02-05 Rai Strategic Holdings, Inc. Aerosol delivery device with improved fluid transport
US10258086B2 (en) 2016-01-12 2019-04-16 Rai Strategic Holdings, Inc. Hall effect current sensor for an aerosol delivery device
US10104912B2 (en) 2016-01-20 2018-10-23 Rai Strategic Holdings, Inc. Control for an induction-based aerosol delivery device
US10015989B2 (en) 2016-01-27 2018-07-10 Rai Strategic Holdings, Inc. One-way valve for refilling an aerosol delivery device
WO2017139675A1 (en) 2016-02-11 2017-08-17 Pax Labs, Inc. Securely attaching cartridges for vaporizer devices
UA125687C2 (uk) 2016-02-11 2022-05-18 Джуул Лебз, Інк. Заповнювальний картридж випарного пристрою та способи його заповнення
US11412781B2 (en) 2016-02-12 2022-08-16 Rai Strategic Holdings, Inc. Adapters for refilling an aerosol delivery device
US20170251724A1 (en) 2016-03-04 2017-09-07 Rai Strategic Holdings, Inc. Flexible display for an aerosol delivery device
US9936733B2 (en) 2016-03-09 2018-04-10 Rai Strategic Holdings, Inc. Accessory configured to charge an aerosol delivery device and related method
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
GB201605102D0 (en) 2016-03-24 2016-05-11 Nicoventures Holdings Ltd Mechanical connector for electronic vapour provision system
US11207478B2 (en) 2016-03-25 2021-12-28 Rai Strategic Holdings, Inc. Aerosol production assembly including surface with micro-pattern
US10334880B2 (en) 2016-03-25 2019-07-02 Rai Strategic Holdings, Inc. Aerosol delivery device including connector comprising extension and receptacle
US10333339B2 (en) 2016-04-12 2019-06-25 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10945462B2 (en) 2016-04-12 2021-03-16 Rai Strategic Holdings, Inc. Detachable power source for an aerosol delivery device
US10028534B2 (en) 2016-04-20 2018-07-24 Rai Strategic Holdings, Inc. Aerosol delivery device, and associated apparatus and method of formation thereof
US10405579B2 (en) 2016-04-29 2019-09-10 Rai Strategic Holdings, Inc. Methods for assembling a cartridge for an aerosol delivery device, and associated systems and apparatuses
US10179690B2 (en) 2016-05-26 2019-01-15 Rai Strategic Holdings, Inc. Aerosol precursor composition mixing system for an aerosol delivery device
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
US10959458B2 (en) 2016-06-20 2021-03-30 Rai Strategic Holdings, Inc. Aerosol delivery device including an electrical generator assembly
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
US10085485B2 (en) 2016-07-06 2018-10-02 Rai Strategic Holdings, Inc. Aerosol delivery device with a reservoir housing and a vaporizer assembly
US10463078B2 (en) 2016-07-08 2019-11-05 Rai Strategic Holdings, Inc. Aerosol delivery device with condensing and non-condensing vaporization
US10405581B2 (en) 2016-07-08 2019-09-10 Rai Strategic Holdings, Inc. Gas sensing for an aerosol delivery device
US10231485B2 (en) 2016-07-08 2019-03-19 Rai Strategic Holdings, Inc. Radio frequency to direct current converter for an aerosol delivery device
US10602775B2 (en) 2016-07-21 2020-03-31 Rai Strategic Holdings, Inc. Aerosol delivery device with a unitary reservoir and liquid transport element comprising a porous monolith and related method
US10617151B2 (en) 2016-07-21 2020-04-14 Rai Strategic Holdings, Inc. Aerosol delivery device with a liquid transport element comprising a porous monolith and related method
US11019847B2 (en) 2016-07-28 2021-06-01 Rai Strategic Holdings, Inc. Aerosol delivery devices including a selector and related methods
US10765146B2 (en) 2016-08-08 2020-09-08 Rai Strategic Holdings, Inc. Boost converter for an aerosol delivery device
US20180070634A1 (en) 2016-09-09 2018-03-15 Rai Strategic Holdings, Inc. Analog control component for an aerosol delivery device
US20180070633A1 (en) 2016-09-09 2018-03-15 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
US11937647B2 (en) 2016-09-09 2024-03-26 Rai Strategic Holdings, Inc. Fluidic control for an aerosol delivery device
EP3509446B1 (en) * 2016-09-12 2023-07-26 Philip Morris Products S.A. Aerosol-generating device with spectrometer for aerosol analysis
US10189632B2 (en) 2016-09-12 2019-01-29 Altria Client Services Llc Aerosol-generating system
US10080387B2 (en) 2016-09-23 2018-09-25 Rai Strategic Holdings, Inc. Aerosol delivery device with replaceable wick and heater assembly
US10477896B2 (en) 2016-10-12 2019-11-19 Rai Strategic Holdings, Inc. Photodetector for measuring aerosol precursor composition in an aerosol delivery device
WO2018070287A1 (ja) * 2016-10-13 2018-04-19 株式会社堀場エステック 流体センサ、当該流体センサを備えた流体制御装置、及び、調整方法
US20180132526A1 (en) 2016-11-11 2018-05-17 Rai Strategic Holdings, Inc. Real-time temperature control for an aerosol delivery device
US20180132529A1 (en) 2016-11-14 2018-05-17 Rai Strategic Holdings, Inc. Aerosol delivery device with integrated wireless connectivity for temperature monitoring
US20180132528A1 (en) 2016-11-14 2018-05-17 Rai Strategic Holdings, Inc. Photoelectric proximity sensor for gesture-based control of an aerosol delivery device
US10524508B2 (en) 2016-11-15 2020-01-07 Rai Strategic Holdings, Inc. Induction-based aerosol delivery device
US10492530B2 (en) 2016-11-15 2019-12-03 Rai Strategic Holdings, Inc. Two-wire authentication system for an aerosol delivery device
US9864947B1 (en) 2016-11-15 2018-01-09 Rai Strategic Holdings, Inc. Near field communication for a tobacco-based article or package therefor
US11103012B2 (en) 2016-11-17 2021-08-31 Rai Strategic Holdings, Inc. Satellite navigation for an aerosol delivery device
US10653183B2 (en) 2016-11-18 2020-05-19 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
US10206431B2 (en) 2016-11-18 2019-02-19 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10524509B2 (en) 2016-11-18 2020-01-07 Rai Strategic Holdings, Inc. Pressure sensing for an aerosol delivery device
US10172392B2 (en) 2016-11-18 2019-01-08 Rai Strategic Holdings, Inc. Humidity sensing for an aerosol delivery device
US10537137B2 (en) 2016-11-22 2020-01-21 Rai Strategic Holdings, Inc. Rechargeable lithium-ion battery for an aerosol delivery device
KR102598879B1 (ko) 2016-12-01 2023-11-07 레이 스트라티직 홀딩스, 인크. 에어로졸 전달 장치 및 제어 바디
EP3549235B1 (en) 2016-12-02 2021-05-05 RAI Strategic Holdings, Inc. Induction charging for an aerosol delivery device
US11013266B2 (en) 2016-12-09 2021-05-25 Rai Strategic Holdings, Inc. Aerosol delivery device sensory system including an infrared sensor and related method
JP7157756B2 (ja) 2016-12-12 2022-10-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生装置における製品認識
US10842188B2 (en) 2016-12-14 2020-11-24 Rai Strategic Holdings, Inc. Smoking article for selective delivery of an aerosol precursor composition, a cartridge, and a related method
US10092039B2 (en) 2016-12-14 2018-10-09 Rai Strategic Holdings, Inc. Smoking article for on-demand delivery of an increased quantity of an aerosol precursor composition, a cartridge, and a related method
IL267212B2 (en) * 2016-12-16 2023-12-01 Philip Morris Products Sa A system for creating a spray with a liquid sensor
US10366641B2 (en) 2016-12-21 2019-07-30 R.J. Reynolds Tobacco Company Product display systems and related methods
CN115153103A (zh) * 2017-01-18 2022-10-11 韩国烟草人参公社 气溶胶生成装置
US10080388B2 (en) 2017-01-25 2018-09-25 Rai Strategic Holdings, Inc. Aerosol delivery device including a shape-memory alloy and a related method
US10517326B2 (en) 2017-01-27 2019-12-31 Rai Strategic Holdings, Inc. Secondary battery for an aerosol delivery device
US10827783B2 (en) 2017-02-27 2020-11-10 Rai Strategic Holdings, Inc. Digital compass for an aerosol delivery device
US10219544B2 (en) 2017-03-24 2019-03-05 Rai Strategic Holdings, Inc. Aerosol delivery device and a related method
US10674765B2 (en) 2017-03-29 2020-06-09 Rai Strategic Holdings, Inc. Aerosol delivery device with improved atomizer
US10440995B2 (en) 2017-03-29 2019-10-15 Rai Strategic Holdings, Inc. Aerosol delivery device including substrate with improved absorbency properties
US10314340B2 (en) 2017-04-21 2019-06-11 Rai Strategic Holdings, Inc. Refillable aerosol delivery device and related method
US10285444B2 (en) 2017-04-27 2019-05-14 Rai Strategic Holdings, Inc. Aerosol delivery device including a ceramic wicking element
US11297876B2 (en) 2017-05-17 2022-04-12 Rai Strategic Holdings, Inc. Aerosol delivery device
US11589621B2 (en) 2017-05-23 2023-02-28 Rai Strategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
US10517330B2 (en) 2017-05-23 2019-12-31 RAI Stategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
US10383369B2 (en) 2017-06-07 2019-08-20 Rai Strategic Holdings, Inc. Fibrous filtration material for electronic smoking article
US10842197B2 (en) 2017-07-12 2020-11-24 Rai Strategic Holdings, Inc. Detachable container for aerosol delivery having pierceable membrane
US10349674B2 (en) 2017-07-17 2019-07-16 Rai Strategic Holdings, Inc. No-heat, no-burn smoking article
US11337456B2 (en) 2017-07-17 2022-05-24 Rai Strategic Holdings, Inc. Video analytics camera system for an aerosol delivery device
CN107467718B (zh) * 2017-08-15 2023-08-01 惠州市新泓威科技有限公司 电子烟具的发热装置及其控制方法
US10791761B2 (en) 2017-08-17 2020-10-06 Rai Strategic Holdings, Inc. Microtextured liquid transport element for aerosol delivery device
DE102017119521A1 (de) 2017-08-25 2019-02-28 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator und Verfahren zum Steuern einer Verdampfereinheit
WO2019046315A1 (en) 2017-08-28 2019-03-07 Juul Labs, Inc. DRYER FOR SPRAY DEVICE
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US11039645B2 (en) * 2017-09-19 2021-06-22 Rai Strategic Holdings, Inc. Differential pressure sensor for an aerosol delivery device
US10505383B2 (en) 2017-09-19 2019-12-10 Rai Strategic Holdings, Inc. Intelligent charger for an aerosol delivery device
US10157265B1 (en) 2017-09-21 2018-12-18 Rai Strategic Holdings, Inc. Clinical study product dispensing device
JP7344199B2 (ja) 2017-10-05 2023-09-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 連続的な電力調整を有する電気的に作動するエアロゾル発生装置
US10660370B2 (en) 2017-10-12 2020-05-26 Rai Strategic Holdings, Inc. Aerosol delivery device including a control body, an atomizer body, and a cartridge and related methods
CN107637868B (zh) * 2017-10-23 2021-07-09 东莞市维万特智能科技有限公司 电子烟参数设置方法及电子烟
US20190116863A1 (en) 2017-10-24 2019-04-25 Rai Strategic Holdings, Inc. Method for formulating aerosol precursor for aerosol delivery device
US10517332B2 (en) 2017-10-31 2019-12-31 Rai Strategic Holdings, Inc. Induction heated aerosol delivery device
US10806181B2 (en) 2017-12-08 2020-10-20 Rai Strategic Holdings, Inc. Quasi-resonant flyback converter for an induction-based aerosol delivery device
CN107997239A (zh) * 2017-12-13 2018-05-08 惠州市吉瑞科技有限公司深圳分公司 气溶胶发生装置及其控制方法、应用于气溶胶发生装置的微处理器
US10786010B2 (en) 2017-12-15 2020-09-29 Rai Strategic Holdings, Inc. Aerosol delivery device with multiple aerosol delivery pathways
US10555558B2 (en) 2017-12-29 2020-02-11 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
US11019850B2 (en) 2018-02-26 2021-06-01 Rai Strategic Holdings, Inc. Heat conducting substrate for electrically heated aerosol delivery device
US10813385B2 (en) 2018-03-09 2020-10-27 Rai Strategic Holdings, Inc. Buck regulator with operational amplifier feedback for an aerosol delivery device
US20190274354A1 (en) 2018-03-09 2019-09-12 Rai Strategic Holdings, Inc. Electronically heated heat-not-burn smoking article
US10945465B2 (en) 2018-03-15 2021-03-16 Rai Strategic Holdings, Inc. Induction heated susceptor and aerosol delivery device
US11382356B2 (en) 2018-03-20 2022-07-12 Rai Strategic Holdings, Inc. Aerosol delivery device with indexing movement
US11206864B2 (en) 2018-03-26 2021-12-28 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
US10932490B2 (en) 2018-05-16 2021-03-02 Rai Strategic Holdings, Inc. Atomizer and aerosol delivery device
US10959459B2 (en) 2018-05-16 2021-03-30 Rai Strategic Holdings, Inc. Voltage regulator for an aerosol delivery device
US11191298B2 (en) 2018-06-22 2021-12-07 Rai Strategic Holdings, Inc. Aerosol source member having combined susceptor and aerosol precursor material
US11094993B2 (en) 2018-08-10 2021-08-17 Rai Strategic Holdings, Inc. Charge circuitry for an aerosol delivery device
US10939707B2 (en) 2018-08-23 2021-03-09 Rai Strategic Holdings, Inc. Aerosol delivery device with segmented electrical heater
US11265974B2 (en) 2018-08-27 2022-03-01 Rai Strategic Holdings, Inc. Aerosol delivery device with integrated thermal conductor
CN109141559B (zh) * 2018-08-29 2021-05-04 杭州电子科技大学 一种大量程双模热感桥式微流量计
US20200077703A1 (en) 2018-09-11 2020-03-12 Rai Strategic Holdings, Inc. Wicking element for aerosol delivery device
US20200093181A1 (en) 2018-09-20 2020-03-26 Rai Strategic Holdings, Inc. Flavorants
US11247005B2 (en) 2018-09-26 2022-02-15 Rai Strategic Holdings, Inc. Aerosol delivery device with conductive inserts
US10791767B2 (en) 2018-10-12 2020-10-06 Rai Strategic Holdings, Inc. Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system
US11291249B2 (en) 2018-10-12 2022-04-05 Rai Strategic Holdings, Inc. Aerosol delivery device with visible indicator
US11502466B2 (en) 2018-10-12 2022-11-15 Rai Strategic Holdings, Inc. Aerosol delivery device with improved connectivity, airflow, and aerosol paths
US20200113240A1 (en) 2018-10-12 2020-04-16 Rai Strategic Holdings, Inc. Vaporization system
US20200113243A1 (en) 2018-10-12 2020-04-16 Rai Strategic Holdings, Inc. Heater and liquid transport for an aerosol delivery system
JP7206291B2 (ja) * 2018-10-26 2023-01-17 日本たばこ産業株式会社 吸引装置
US20200128880A1 (en) 2018-10-30 2020-04-30 R.J. Reynolds Tobacco Company Smoking article cartridge
US11592793B2 (en) 2018-11-19 2023-02-28 Rai Strategic Holdings, Inc. Power control for an aerosol delivery device
US11156766B2 (en) 2018-11-19 2021-10-26 Rai Strategic Holdings, Inc. Aerosol delivery device
US20200154779A1 (en) 2018-11-19 2020-05-21 Rai Strategic Holdings, Inc. Charging control for an aerosol delivery device
US11372153B2 (en) 2018-11-19 2022-06-28 Rai Strategic Holdings, Inc. Cartridge orientation for selection of a control function in a vaporization system
US11614720B2 (en) 2018-11-19 2023-03-28 Rai Strategic Holdings, Inc. Temperature control in an aerosol delivery device
US20200154785A1 (en) 2018-11-20 2020-05-21 R.J. Reynolds Tobacco Company Overwrap material containing aerosol former for aerosol source member
US11753750B2 (en) 2018-11-20 2023-09-12 R.J. Reynolds Tobacco Company Conductive aerosol generating composite substrate for aerosol source member
US11547816B2 (en) 2018-11-28 2023-01-10 Rai Strategic Holdings, Inc. Micropump for an aerosol delivery device
US11096419B2 (en) 2019-01-29 2021-08-24 Rai Strategic Holdings, Inc. Air pressure sensor for an aerosol delivery device
US20200237018A1 (en) 2019-01-29 2020-07-30 Rai Strategic Holdings, Inc. Susceptor arrangement for induction-heated aerosol delivery device
US20200245696A1 (en) 2019-02-06 2020-08-06 Rai Strategic Holdings, Inc. Buck-boost regulator circuit for an aerosol delivery device
US11456480B2 (en) 2019-02-07 2022-09-27 Rai Strategic Holdings, Inc. Non-inverting amplifier circuit for an aerosol delivery device
US20200278707A1 (en) 2019-03-01 2020-09-03 Rai Strategic Holdings, Inc. Temperature control circuitry for an aerosol delivery device
US11324249B2 (en) 2019-03-06 2022-05-10 R.J. Reynolds Tobacco Company Aerosol delivery device with nanocellulose substrate
JP7293384B2 (ja) 2019-03-08 2023-06-19 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド エアロゾル供給装置用乳酸の加水分解方法
US11602164B2 (en) 2019-03-14 2023-03-14 Rai Strategic Holdings, Inc. Aerosol delivery device with graded porosity from inner to outer wall surfaces
US11935350B2 (en) 2019-04-02 2024-03-19 Rai Strategic Holdings, Inc. Functional control and age verification of electronic devices through speaker communication
US11200770B2 (en) 2019-04-02 2021-12-14 Rai Strategic Holdings, Inc. Functional control and age verification of electronic devices through visual communication
US11676438B2 (en) 2019-04-02 2023-06-13 Rai Strategic Holdings, Inc. Authentication and age verification for an aerosol delivery device
US11783395B2 (en) 2019-04-24 2023-10-10 Rai Strategic Holdings, Inc. Decentralized identity storage for tobacco products
US11690405B2 (en) 2019-04-25 2023-07-04 Rai Strategic Holdings, Inc. Artificial intelligence in an aerosol delivery device
US11517688B2 (en) 2019-05-10 2022-12-06 Rai Strategic Holdings, Inc. Flavor article for an aerosol delivery device
US20200359703A1 (en) 2019-05-17 2020-11-19 Rai Strategic Holdings, Inc. Age verification with registered cartridges for an aerosol delivery device
US20200367553A1 (en) 2019-05-22 2020-11-26 Rai Strategic Holdings, Inc. Reservoir configuration for aerosol delivery device
US11589425B2 (en) 2019-05-24 2023-02-21 Rai Strategic Holdings, Inc. Shape memory material for controlled liquid delivery in an aerosol delivery device
US11207711B2 (en) 2019-08-19 2021-12-28 Rai Strategic Holdings, Inc. Detachable atomization assembly for aerosol delivery device
KR20220052357A (ko) 2019-08-29 2022-04-27 레이 스트라티직 홀딩스, 인크. 이중 챔버 에어로졸 디스펜서
US11889861B2 (en) 2019-09-23 2024-02-06 Rai Strategic Holdings, Inc. Arrangement of atomization assemblies for aerosol delivery device
US11785991B2 (en) 2019-10-04 2023-10-17 Rai Strategic Holdings, Inc. Use of infrared temperature detection in an aerosol delivery device
US11304451B2 (en) 2019-10-18 2022-04-19 Rai Strategic Holdings, Inc. Aerosol delivery device with dual reservoir
US20210112882A1 (en) 2019-10-18 2021-04-22 Rai Strategic Holdings, Inc. Surface acoustic wave atomizer for aerosol delivery device
US11470689B2 (en) 2019-10-25 2022-10-11 Rai Strategic Holdings, Inc. Soft switching in an aerosol delivery device
KR102292597B1 (ko) 2019-11-14 2021-08-24 (주) 텔로팜 저항형 유량 센서의 오프셋 신호 조절을 위한 자동 오프셋 조절장치
US20230024704A1 (en) 2019-11-18 2023-01-26 Rai Strategic Holdings, Inc. Security tag
US20210195938A1 (en) 2019-12-27 2021-07-01 Nicoventures Trading Limited Substrate with multiple aerosol forming materials for aerosol delivery device
EP4084641A1 (en) 2019-12-30 2022-11-09 RAI Strategic Holdings, Inc. A heart rate monitor for an aerosol delivery device
US11607511B2 (en) 2020-01-08 2023-03-21 Nicoventures Trading Limited Inductively-heated substrate tablet for aerosol delivery device
US11457665B2 (en) 2020-01-16 2022-10-04 Nicoventures Trading Limited Susceptor arrangement for an inductively-heated aerosol delivery device
US12016369B2 (en) 2020-04-14 2024-06-25 Nicoventures Trading Limited Regenerated cellulose substrate for aerosol delivery device
US20210321655A1 (en) 2020-04-16 2021-10-21 R.J. Reynolds Tobacco Company Aerosol delivery device including a segregated substrate
US20210321674A1 (en) 2020-04-21 2021-10-21 Rai Strategic Holdings, Inc. Pressure-sensing user interface for an aerosol delivery device
US11839240B2 (en) 2020-04-29 2023-12-12 Rai Strategic Holdings, Inc. Piezo sensor for a power source
KR102457773B1 (ko) * 2020-05-22 2022-10-21 주식회사 케이티앤지 에어로졸 생성 장치, 그 동작 방법 및 에어로졸 생성 장치에 사용되는 카트리지
US20230225403A1 (en) 2020-05-29 2023-07-20 Nicoventures Trading Limited Aerosol delivery device
US20220000178A1 (en) 2020-07-01 2022-01-06 Nicoventures Trading Limited 3d-printed substrate for aerosol delivery device
US11771132B2 (en) 2020-08-27 2023-10-03 Rai Strategic Holdings, Inc. Atomization nozzle for aerosol delivery device
US20220079212A1 (en) 2020-09-11 2022-03-17 Nicoventures Trading Limited Alginate-based substrates
US11707088B2 (en) 2020-09-25 2023-07-25 Rai Strategic Holdings, Inc. Aroma delivery system for aerosol delivery device
US11771136B2 (en) 2020-09-28 2023-10-03 Rai Strategic Holdings, Inc. Aerosol delivery device
US20220104532A1 (en) 2020-10-07 2022-04-07 NIlCOVENTURES TRADING LIMITED Methods of making tobacco-free substrates for aerosol delivery devices
US11856986B2 (en) 2020-10-19 2024-01-02 Rai Strategic Holdings, Inc. Customizable panel for aerosol delivery device
US20220168514A1 (en) 2020-12-01 2022-06-02 Rai Strategic Holdings, Inc. Microchannel Feed System for an Aerosol Delivery Device
US11969545B2 (en) 2020-12-01 2024-04-30 Rai Strategic Holdings, Inc. Liquid feed systems for an aerosol delivery device
US20220183389A1 (en) 2020-12-11 2022-06-16 Rai Strategic Holdings, Inc. Sleeve for smoking article
DE102020134440A1 (de) 2020-12-21 2022-06-23 Innovative Sensor Technology Ist Ag Heizelement für eine elektronische Zigarette und elektronische Zigarette zum Erfassen physikalischen Eigenschaft eines Tabakaerosols und/oder eines Gesundheitszustands eines Benutzers
AU2022238034A1 (en) 2021-03-19 2023-10-12 Nicoventures Trading Limited Extruded substrates for aerosol delivery devices
KR20230159852A (ko) 2021-03-19 2023-11-22 니코벤처스 트레이딩 리미티드 에어로졸 전달 장치를 위한 비드-포함 기재
US20220312849A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device with integrated lighter
US20220312846A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device consumable unit
US20220312848A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device with integrated inductive heater
KR102637144B1 (ko) * 2021-06-23 2024-02-16 주식회사 케이티앤지 에어로졸 생성 장치 및 그의 동작 방법
EP4362715A1 (en) 2021-06-30 2024-05-08 Nicoventures Trading Limited Substrate with multiple aerosol forming materials for aerosol delivery device
IL309950A (en) 2021-07-09 2024-03-01 Nicoventures Trading Ltd Extracted structures
US20230020470A1 (en) 2021-07-15 2023-01-19 Rai Strategic Holdings, Inc. Non-combustible aerosol provision systems with atomizer-free consumables
EP4376642A1 (en) 2021-07-30 2024-06-05 Nicoventures Trading Limited Aerosol generating substrate comprising microcrystalline cellulose
US20230056177A1 (en) 2021-08-17 2023-02-23 Rai Strategic Holdings, Inc. Inductively heated aerosol delivery device consumable
CN115769918A (zh) * 2021-09-06 2023-03-10 深圳麦克韦尔科技有限公司 电子雾化装置及其控制方法
US20230105080A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Absorbent containing mouthpiece for aerosol delivery device
US20230107943A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Mouthpiece for aerosol delivery device
CN113925217B (zh) * 2021-10-20 2022-10-18 深圳烟草工业有限责任公司 一种加热烟具电路及其控制方法
WO2023119134A1 (en) 2021-12-20 2023-06-29 Nicoventures Trading Limited Substrate material comprising beads for aerosol delivery devices
US20230189881A1 (en) 2021-12-20 2023-06-22 Rai Strategic Holdings, Inc. Aerosol delivery device with improved sealing arrangement
CN114376274B (zh) * 2022-01-14 2024-01-30 深圳麦时科技有限公司 气溶胶产生装置及其控制方法、控制装置和存储介质
US20230413897A1 (en) 2022-06-27 2023-12-28 R.J. Reynolds Tobacco Company Alternative filter materials and components for an aerosol delivery device
WO2024035440A1 (en) 2022-08-12 2024-02-15 Gmems Tech Shenzhen Limited Micromachined capacitive flow sensor, packaged flow sensor product comprising the same, and method thereof
WO2024069542A1 (en) 2022-09-30 2024-04-04 R. J. Reynolds Tobacco Company Method for forming reconstituted tobacco
WO2024069544A1 (en) 2022-09-30 2024-04-04 Nicoventures Trading Limited Reconstituted tobacco substrate for aerosol delivery device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388594A (en) * 1991-03-11 1995-02-14 Philip Morris Incorporated Electrical smoking system for delivering flavors and method for making same
WO1999020132A1 (en) * 1997-10-16 1999-04-29 Philip Morris Products Inc. Lighter actuation system
RU2005115958A (ru) * 2003-04-29 2005-11-10 Бест Партнерз Ворлдвайд Лимитед (Cn) Беспламенная электронная сигарета с распылением
US20060155488A1 (en) * 2005-01-12 2006-07-13 Visteon Global Technologies, Inc. Mass air flow circuit having pulse width modulation feedback control

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3248603A1 (de) * 1982-12-30 1984-07-12 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur messung des massendurchsatzes eines stroemenden mediums
GB8713645D0 (en) 1987-06-11 1987-07-15 Imp Tobacco Ltd Smoking device
JPH065635Y2 (ja) * 1988-08-19 1994-02-09 日本科学工業株式会社 流速センサ
US4947874A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Smoking articles utilizing electrical energy
JP2672603B2 (ja) * 1988-11-08 1997-11-05 株式会社日立製作所 熱式空気流量計
US5060671A (en) 1989-12-01 1991-10-29 Philip Morris Incorporated Flavor generating article
US5591368A (en) 1991-03-11 1997-01-07 Philip Morris Incorporated Heater for use in an electrical smoking system
US5505214A (en) 1991-03-11 1996-04-09 Philip Morris Incorporated Electrical smoking article and method for making same
JPH10148557A (ja) * 1996-11-15 1998-06-02 Murata Mfg Co Ltd 流量センサ回路およびそのセンサ出力の調整方法
US5878752A (en) * 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
JPH10246662A (ja) * 1997-03-05 1998-09-14 Toshiba Corp 電子式水道メータ
JP2002533663A (ja) * 1998-12-22 2002-10-08 ゼンジリオン アクチエンゲゼルシャフト 質量流量を測定する方法およびセンサ
US6453739B1 (en) * 1999-09-10 2002-09-24 Hitachi America, Ltd. Time domain measurement and control system for a hot wire air flow sensor
JP3791596B2 (ja) * 2001-10-17 2006-06-28 株式会社山武 熱式流量計
US6810883B2 (en) 2002-11-08 2004-11-02 Philip Morris Usa Inc. Electrically heated cigarette smoking system with internal manifolding for puff detection
JP3966467B2 (ja) * 2002-12-27 2007-08-29 株式会社山武 熱式流量計および喫煙装置
CN2719043Y (zh) 2004-04-14 2005-08-24 韩力 雾化电子烟
CN201067079Y (zh) 2006-05-16 2008-06-04 韩力 仿真气溶胶吸入器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388594A (en) * 1991-03-11 1995-02-14 Philip Morris Incorporated Electrical smoking system for delivering flavors and method for making same
WO1999020132A1 (en) * 1997-10-16 1999-04-29 Philip Morris Products Inc. Lighter actuation system
RU2005115958A (ru) * 2003-04-29 2005-11-10 Бест Партнерз Ворлдвайд Лимитед (Cn) Беспламенная электронная сигарета с распылением
US20060155488A1 (en) * 2005-01-12 2006-07-13 Visteon Global Technologies, Inc. Mass air flow circuit having pulse width modulation feedback control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785333C2 (ru) * 2018-07-05 2022-12-06 Филип Моррис Продактс С.А. Индукционно нагреваемая система, генерирующая аэрозоль, с датчиком температуры окружающей среды
US12011045B2 (en) 2018-07-05 2024-06-18 Philip Morris Products S.A. Inductively heated aerosol-generating system with ambient temperature sensor
RU2821389C1 (ru) * 2020-01-22 2024-06-24 Филип Моррис Продактс С.А. Измерение потока воздуха, обнаружение затяжки и отслеживание температуры окружающей среды с помощью термоанемометра

Also Published As

Publication number Publication date
AU2009267544B2 (en) 2015-06-04
BRPI0915630B1 (pt) 2020-02-04
RU2011104185A (ru) 2012-08-20
CO6341532A2 (es) 2011-11-21
EP2299855A1 (en) 2011-03-30
TWI479458B (zh) 2015-04-01
AR074040A1 (es) 2010-12-22
CN102088875A (zh) 2011-06-08
EP2143346A1 (en) 2010-01-13
KR101573101B1 (ko) 2015-11-30
IL209971A (en) 2015-03-31
AU2009267544A1 (en) 2010-01-14
CA2729305C (en) 2017-02-21
ZA201008868B (en) 2011-09-28
EG25966A (en) 2012-11-13
PL2299855T3 (pl) 2016-09-30
DK2299855T3 (en) 2016-05-02
JP5404779B2 (ja) 2014-02-05
CN102088875B (zh) 2012-08-15
MX2011000318A (es) 2011-03-01
NZ589885A (en) 2013-10-25
CA2729305A1 (en) 2010-01-14
EP2299855B1 (en) 2016-03-16
WO2010003480A1 (en) 2010-01-14
MY160191A (en) 2017-02-28
JP2011527415A (ja) 2011-10-27
TW201007628A (en) 2010-02-16
ES2573942T3 (es) 2016-06-13
UA100068C2 (ru) 2012-11-12
HUE027071T2 (en) 2016-08-29
KR20110025186A (ko) 2011-03-09
IL209971A0 (en) 2011-02-28

Similar Documents

Publication Publication Date Title
RU2496393C2 (ru) Система датчиков расхода
US7082825B2 (en) Smoking device including a flowmeter
WO2016115891A1 (zh) 温控系统及其控制方法、含有温控系统的电子烟
JP4324520B2 (ja) 湿度測定方法および構造
US7685875B2 (en) Fluid flow rate sensor and method of operation
CN108618206B (zh) 烟具设备及用于该烟具设备的测温控温方法
CN112006334A (zh) 气溶胶吸入器及其控制装置、控制方法
US20220030954A1 (en) Method and apparatus for controlling the temperature of an evaporator for an inhaler, in particular an electronic cigarette product
EP0749013B1 (en) Humidity sensor
CN112469293B (zh) 气溶胶生成装置及其动作的方法、计算机可读取存储介质
WO2019196003A1 (zh) 烟具设备及用于该烟具设备的测温控温方法
JP4150803B2 (ja) 半導体ガスセンサー式ガス濃度測定装置
JP2014209083A (ja) 絶対湿度センサおよびこれに用いる絶対湿度センサチップ
JP3555013B2 (ja) 感熱式流量計
JP2004212103A (ja) 熱式流量計および喫煙装置
JP2022527926A (ja) 電気加熱発煙システム及び揮発性化合物の放出制御方法
KR20240061703A (ko) 에어로졸 발생장치
KR20230160719A (ko) 단일 발열층을 갖는 발열 필름 히터를 이용한 무센서 온도 제어가 가능한 에어로졸 발생장치
KR20240053849A (ko) 퍼프 행위를 인식하는 에어로졸 발생 장치
JP2006030110A (ja) フローセンサの駆動方法および駆動回路
CN116019263A (zh) 气溶胶生成装置及其控制方法
JP2989418B2 (ja) 加熱調理器の湿度検出装置
KR20070085218A (ko) 저항성 열손실 압력 센서의 작동 방법